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On Fast Iterative Algorithms For Solving The Minimisation

Of Curvature-Related Functionals In Surface Fairing

Carlos Brito-Loeza and Ke Chen

A number of successful variational models for processing planar images have recently been generalized
to three dimensional (3D) surface processing. With this new dimensionality, the amount of numerical
computations to solve the minimization of such new 3D formulations naturally grows up dramatically.
Though the need of computationally fast and efficient numerical algorithms able to process high
resolution surfaces is high, much less work has been done in this area. Recently a two step algorithm
for the fast solution of the total curvature model was introduced in [T. Tasdizen, R. Whitaker, P.
Burchard and S. Osher, ACM Transactions on Graphics, 22, 2003]. In this paper, we generalise
and modify this algorithm to the solution of analogues of the mean curvature model of [M. Droske
and Martin Rumpf, Interfaces and free boundaries, 6, 2004] and the Gaussian curvature model of
[Matthew Elsey and Selim Esedoḡlu, Multiscale Model. Simul., 7, 2009]. Numerical experiments are
shown to illustrate the good performance of the algorithms and test results.

1 Introduction

In recent years it has become evident that some variational models developed
for manipulating and transforming digital images in popular tasks such as
image reconstruction, image denoising, image segmentation and others are
able to succeed where other computational strategies struggle to deliver good
results. Due to this success some researches have worked on the generalization
of such models to 3D processing.

One of the hot topics has been the study of models for surface fairing also
known as surface denoising or surface smoothing [9,17,18]. In this application,
the selection of the regularization term which is the one in charge of capturing
the high frequency oscillations it is a critical designing step. It is also highly
desirable to provide such models with strong geometric foundations in such a
way that all the theory and mathematical tools from the fields of geometry
and differential geometry can be at hand to properly analyze such models.
Similar to what has been done in image processing, geometric entities such as
the gradient or the curvature of the surface may be used. In deciding what
to use, one may consider generalizing the regularizers for planar images, e.g.,
total variation (first order information) and curvature (second order informa-
tion). It turns out that unless the underlying objects are special, [7, 10, 15]
have already presented clear evidence that, for surface fairing, second order
information (curvature) is preferable over first order information (gradient) in
order to obtain the best results. In the literature we can find among others, the
approach of Welch and Witkin [21,22] for mesh fairing which minimizes a func-
tional based on total curvature (TC), the model of Schneider and Kobbelt [15]
using the intrinsic Laplacian of mean curvature also on meshes, the work of
Droske and Rumpf [9] using a level set formulation for the Willmore or mean
curvature (MC) energy, the Tasdizen et al. work [17] also using total curvature
and the model of Elsey and Esedoglu [10] minimizing an energy function based
on the Gaussian curvature (GC) of the surface.

In the above five models, the last three [9,10,17] making use of level sets to
obtain an implicit surface representation are considered in this work. These

Facultad de Matemáticas, Universidad Autónoma de Yucatán Mexico. Email: carlos.brito@uady.mx
Centre for Mathematical Imaging Techniques and Department of Mathematical Sciences, The University of Liverpool, Peach Street, Liverpool
L69 7ZL, United Kingdom. Email: k.chen@liv.ac.uk, cmit@liv.ac.uk

ISSN 1029-4937 print; ISSN 0020-7160 online c© 2013 Taylor & Francis Ltd.

DOI:



Algorithms For Minimisation Of Curvature In Surface Fairing 93

three models differ from each other in the way the curvature is defined and
the way the numerical solution is obtained. About the latter and more critical
than 2D models where the fast numerical solution is needed, the numerical
algorithm for 3D plays a very important role in the realisation of a fairing
model due to the large amount of data to be processed. When moving from
2D to 3D, the number of computations increases in nonlinear proportion to the
new dimensionality. Therefore new and fast numerical algorithms are necessary
and in high demand.

Each model from [9,10,17] has as first-order optimality condition a fourth or-
der nonlinear partial differential equation (PDE). It is well known that fourth
order PDEs do not obey a maximum principle and, in parabolic form, are
usually very stiff. Besides, accurate discretisation of the high order deriva-
tives is computationally expensive and probably oscillatory. These are some
of the reasons that commonly motivate researchers to avoid direct numeri-
cal solution of such difficult equations. Recently for 2D images, there has been
some improvement in this field with the development of algorithms such as the
stabilized fixed point (SFP) method reported in [2] and based on convexity
splitting ideas, the nonlinear multigrid method of [6], the augmented Langra-
gian method of [23] and the fixed point homotopy method of [24]. All those are
very promising results but unless convergence is obtained in a short number
of iterations, they can still be computationally expensive for commercial use.

Also for 2D images, there is the two-step (TS) algorithm that has already
been successfully tested in a variety of high order variational problems; see for
instance [1,17] and references therein. In a TS algorithm, an irregular normal
field obtained from the noisy data is first smoothed and then new data fitted
to the smoothed field. This method has already been used in [17] for the TC
surface fairing model. It is known that the TS algorithm, which we will review
in detail shortly, does not always give the right solution to the original problem
but a close approximation to it.

In this paper, we will follow similar arguments to those presented in [17] to
show that by using a TS in a different way we can indeed find the accurate
solution of analogous models to [9, 10, 17]. The rest of this paper is organized
as follows. Section 2 reviews the different definitions for surface curvature.
Section 3 presents the three curvature based models from [9, 10, 17]. Section
4 will be committed to introduce and analyse the TS algorithm for a general
formulation. In Section 5 we will show how to use a TS for the solution of
the MC model [9] and the GC model [10]. Section 8 will present some results,
the complexity analysis and a performance comparison of the TS algorithm
over the analogue and original models. Finally, in Section 9, we will discuss
the results and the challenges still to overcome.

2 A review of surface curvature

In geometry the curvature, here represented by κ(x), at a point x = (x, y, z)
living on a 3D surface S is related to the amount of deviation of S(x) from
being flat. There are two universally accepted curvature definitions for a given
surface S and they are:

(1) Gaussian curvature is defined as the product of the two principal curva-
tures [8], i.e. κG(x) = κ1(x)κ2(x). This curvature is an intrinsic measure since
its value does not depend on the way S is embedded in the space. The value
of κG represents the element of area of spherical element of surface area.

(2) Mean curvature which is computed by averaging the two principal cur-
vatures [8], i.e. κM (x) = (κ1(x) + κ2(x))/2, represents the rate of change of
surface area under small deformations in the normal direction.

When constructing variational models for surface fairing, either Gaussian
curvature [10] or Mean curvature [9] have been used to define energy func-
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tionals. These functionals need to be minimised in order to reduce the sharp
oscillations constituting the noise or imperfections on the surface. The use of
curvature-based functionals to capture the energy of the corrupted data to be
processed has proved to deliver remarkable results in other topics of signal and
image processing, see for instance [2,5,6] and references therein. Therefore its
generalisation to 3D surface processing comes naturally.

We remark that since surfaces are commonly defined parametrically and
hence curvature formulas are often represented by local parameters [8]. Al-
though models using this kind of representation suit very well to mesh smooth-
ing on one hand, it is however well known that, with the parametric repre-
sentation, any severe change in the topology of the surface (such as splitting
up) is very difficult to handle. Then again, implicit surface representation by
using level set functions, does not suffer from this problem and is a technique
widely tested in many applications. Curvature formulas for implicitly defined
surfaces, on the other hand, are much harder to locate. In this sense, the
monograph of Goldman [12] contains an invaluable source of information.

Here we will use φ to represent the level set surface representation and will
adopt the following notation for the gradient vector ∇φ, the Hessian matrix
H(φ) and its adjoint H∗(φ)

∇φ = (φx, φy, φz) (1)

H(φ) =

φxx φxy φxz
φyx φyy φyz
φzx φzy φzz

 (2)

H∗(φ) =

φyyφzz − φyzφzy φyzφzx − φyxφzz φyxφzy − φyyφzx
φzxφzy − φxyφzz φxxφzz − φxzφzx φxyφzx − φxxφzy
φxyφyz − φxzφyy φyxφxz − φxxφyz φxxφyy − φxyφyx

 (3)

Following [12], the Mean and Gaussian curvatures are defined as follows

κM = ∇ ·
(
∇φ
|∇φ|

)
, (4)

κG =
∇φ ·H∗(φ) · ∇φT

|∇φ|4
(5)

where |∇φ| =
√
φ2
x + φ2

y + φ2
z. Further they are related by the following equal-

ity

κG =
1

2

(
κ2
M − κ2

T

)
(6)

where κT =
√
κ2

1 + κ2
2 is the length of the second fundamental form [4]. The

integral
∫
S κ

2
TdS has been called by some researchers the total curvature of

the surface. The expression in level set form for κT is given by

κT = |(∇N)(I − P )| , P =
∇φ⊗∇φ
|∇φ|2

, N =
∇φ
|∇φ|

(7)

where ⊗ is the tensor product, I the identity matrix,, I−P the 3×3 tangential
projection matrix,N is the unit outward normal vector to the surface and∇N
represents a matrix whose rows are the gradient vectors of the components of
N .
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3 Curvature-based surface fairing models

In this section, we shall review three variational surface fairing models before
we consider how to solve them effectively in next sections.

3.1 The total curvature model – TC [17]

In [17] the authors filtered out the noise of the surface by constructing an en-
ergy functional based on κT and proposed the following minimisation problem

min
φ

∫
Ω
G(κ2

T )|∇φ|dx (8)

where Ω ⊂ R3 is the domain where the level set function φ lives, G may be
chosen as the identity function, i.e. G(κ2

T ) = κ2
T , yielding isotropic diffusion

or as

G(κ2
T ) = 2µ2(1− e−

κ2T
2µ2 ) (9)

leading to anisotropic diffusion, where µ is a positive parameter.
To avoid solving directly the associated fourth order Euler-Lagrange PDE

and noticing that κ2
T can be expressed in terms of N , the authors of [17] found

a simply but elegant way to solve (8) by decoupling N from φ. They applied a
two-step process by first minimising (8) with respect N to obtain a smoothed
new N and second fitting a new φ to the this vector field . This process
although computationally very efficient, does not give the exact solution to
(8) but only a very good approximation as it was showed in [17]. We will show
more details of this two step process in solving the analogue models to be
introduced below.

Aiming to simplify even more the problem, in [17] the term |∇φ| was removed
from (8) to create an easier to solve analogue model. By using the definition
of κT in (7) this model can be written as

min
φ

∫
Ω
G(‖(∇N)(I − P )‖)dx. (10)

This analogue model which also has associated a fourth order PDE was
solved using the two-step process mentioned above. In details, first the normals
to the noisy surface are computed using the available φold and processed until
smoothing them. This means using (7) to compute P (φold) and minimising

min
N

∫
Ω
G(‖(∇N)(I − P )‖)dx (11)

through solving

Nk+1 −Nk

∆t
= −(I −Nk ⊗Nk)∇ · g(‖(∇Nk)(I − P )‖2)∇Nk(I − P )

(12)

where g is the derivative of G with respect to its argument and P is kept
constant across all iterations. The second step involves finding new data φnew
which fits the best the recently smoothed normal field i.e., the resulting N
from the solution of (12). This is obtained by now minimising

min
φ

∫
Ω

(|∇φ| − ∇φ ·N) dx (13)
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through solving

φk+1 − φk

∆t
= −∇ ·

(
∇φk

‖∇φk‖
−N

)
. (14)

This two step process can be cyclically repeated and the solution from 14
taken as the true minimizer of (10). Details of the aforementioned process are
shown later on in Algorithm 4.1.

The authors in [17] did not go further in analysing the two-step method of
Algorithm 4.1 when applied to the analogue model of (10). In this paper, we
will closely follow the steps of [17] and will show that Algorithm 4.1 indeed
finds the true minimiser of the analogue model. Even more we will show how
to extend this method to the other two curvature based models to be reviewed
here.

3.2 The mean curvature model – MC [9]

Our second model to review involves the Willmore energy

min
φ

∫
Ω
κ2
M |∇φ|dx (15)

as introduced in [9], where the numerical solution was obtained by evolving
the following fourth order parabolic equation

∂φ

∂t
= −|∇φ|∇ ·

(
κ2
M∇φ

2|∇φ|
+ (I − P )

∇(κM |∇φ|)
|∇φ|

)
. (16)

The boundary conditions are

∇φ
|∇φ|

· ν = 0, ∇ (|∇φ|κM ) · ν = 0 (17)

where ν is the unit outward normal on ∂Ω

3.3 The Gaussian curvature model – GC [10]

In [10] the authors used the Gaussian curvature κG and proposed the model

min
φ

∫
Ω
|κG||∇φ|dx. (18)

They argued that this model is the analogue, in the context of geometry pro-
cessing, to the total variation based image denoising model of Rudin, Osher
and Fatemi (ROF) [14]. This model, as the total variation regularization does
for monotone functions, treats convex shapes as noise-free assigning to them
the least possible energy [9]. To solve the above minimisation, the authors
avoided the numerical treatment of a very stiff fourth order PDE which arises
from taking the first variation of (18) and went for a simpler explicit repre-
sentation of the surface using triangulation.

4 The TS algorithm

As mentioned, the TS algorithm has been already successfully tested on a
number of different problems. This algorithm is a good option when a direct
fast solution method for a high order PDE is not at hand. Here we will review
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with detail its foundations and will show that for analogue models to those
from Section 3 delivers the right solution.

We first present a general two step algorithm for the minimisation of high
order variational functionals of the type

min
φ
Fφ =

∫
Ω
G(φ)dx. (19)

Here φ may represent image intensities as in [1, 13, 19], surface values as
in [17] or any other type of data. When (19) involves second order information,
such as any of the curvature definitions introduced above, its associated Euler-
Lagrange equation or first order condition results to be a fourth order PDE.

Trying to solve directly such a high order PDE represents many challenges.
For instance, fourth order PDEs do not obey a maximum principle so level sets
can easily collide during the iterative evolution of the data causing instabilities
in the algorithm; efficient and accurate discretisation is also hard to obtain
and computationally very costly; non-standard stable numerical algorithms,
as in [2, 6, 23,24], have to be implemented.

The idea of simplifying the numerical solution by splitting the process in two
steps, each one involving solving simpler PDEs, is by no means new and has
been recursively used by other authors. We recommend consulting [1,13,17,19]
and references therein for extensive treatment of these methods.

Two-step methods work as follows: in the first step, the normal field is
smoothed to remove high oscillations (denoising) or to interpolate the nor-
mal field vectors (inpainting). Once this step has finished, the second involves
reconstructing the data from the new field.

On the following, we will follow the steps of [17] to show that provided G(φ)
can be expressed as a function of N , i.e. G = G(φ,N) , (19) can be minimised
in a two step process by first solving

min
N

Fφ =

∫
Ω
G(φ)dx (20)

and then

min
φ
Eφ =

∫
Ω
D(φ)dx (21)

where D(φ) = |∇φ| − ∇φ ·N .

Remark 1 It is important to point out that for functionals of the form Fφ =∫
ΩG(φ)dx, as the one presented above, the TS algorithm succeeds in finding

the true solution of the minimisation problem (19). Indeed, the rest of this
section will be devoted to prove this fact.

This however does not happen, as it was shown in [17], when the functional
has the form

∫
ΩG(φ)|∇φ|dx where the TS algorithm only finds an approximate

solution.

4.1 The first step

To minimise (19), the first condition dG(φ)
dφ = 0 needs to be satisfied. However,

and on the contrary to normal procedures, the equation given at the end of

this section will show that dG(φ)
dφ can be expressed as a function of dG(φ)

dN . Hence
the name vector field smoothing given to this step is appropriate since energy
reduction of (19) is accomplished by minimising G with respect to N as in

(20). The exact formula of dG(φ)
dN for each model will be given until Section 5.
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We now proceed to obtain the aforementioned expression for dG(φ)
dφ . This can

be done by taking the following steps:

dFφ
dφ

=

∫
Ω

dG(φ)

dφ
dx. (22)

Using the above equation and the identity

dG(φ)

dφ
dφ =

dG(φ)

dN
· dN (23)

we can express dFφ as follows

dFφ =

∫
Ω

dG(φ)

dφ
dφdx

=

∫
Ω

dG(φ)

dN
· dNdx. (24)

The term dN can be rewritten as follows

dN = d

(
∇φ
|∇φ|

)
= d

(
∇φ

(∇φ · ∇φ)1/2

)
=
d(∇φ)

|∇φ|
− d(∇φ ·N)

|∇φ|
N . (25)

This let us rewrite (24) as follows

dFφ =

∫
Ω

dG(φ)

dN
·
(
d(∇φ)

|∇φ|
− d(∇φ ·N)

|∇φ|
N

)
dx

=

∫
Ω

dG(φ)

dN
· d(∇φ)

|∇φ|
dx−

∫
Ω

d(∇φ ·N)

|∇φ|
dG(φ)

dN
·Ndx. (26)

The second term in (26) can be neglected if the constraint dG/dN ·N = 0
is imposed. Requiring dG/dN ·N = 0 means no changes of the normal map
in the normal direction so if we start with a normal map with unit length
constraint, this feature will remain within the evolution of the surface. In our
algorithms, this constraint will be enforced numerically by using a projection
operator as it will be shown in Section 5.

Thus after neglecting the second term in (26) we get

dFφ =

∫
Ω

dG(φ)

dN
· d(∇φ)

|∇φ|
dx (27)

=

∫
Ω

(
1

|∇φ|

)
dG(φ)

dN
· ∇(dφ) dx

= −
∫

Ω
∇ ·
(

1

|∇φ|
dG(φ)

dN

)
dφdx+

∫
Γ

(
1

|∇φ|
dG(φ)

dN

)
dφ · ndΓ

leading to

dFφ
dφ

= −
∫

Ω
∇ ·
(

1

|∇φ|
dG(φ)

dN

)
dx (28)

where to drop the boundary term, it has been assumed that the energy flow
across the boundary Γ is zero. Hence, Neumann boundary conditions for Ω
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have been considered. Finally we have the required expression for dG(φ)
dφ and

the first optimality condition

dG(φ)

dφ
≡ −∇ ·

(
1

|∇φ|
dG(φ)

dN

)
= 0. (29)

4.2 The second step

This step involves minimising (21) with respect to φ, hence the first condition
dD(φ)
dφ = 0 have to be satisfied. This is

dEφ
dφ

=

∫
Ω

dD(φ)

dφ
dx

=

∫
Ω

d

dφ
(|∇φ| − ∇φ ·N) dx

= −
∫

Ω
∇ · ∇φ
|∇φ|

dx+

∫
Ω
∇ ·Ndx (30)

where also Neumann boundary condition was used to drop the boundary term.

Hence the expression for dD(φ)
dφ and first condition are given by

dD(φ)

dφ
≡ −∇ · ∇φ

|∇φ|
+∇ ·N = 0. (31)

4.3 Analysis

The algorithm just described would fail if the second step would not be reduc-
ing the energy in the surface. Being a two step process, both steps must be
tuned to perform the same task: minimisation of (19). Therefore to guarantee
this, the following equation must be true

dG(φ)

dφ
=
dD(φ)

dφ
. (32)

In Section 4.1, equation (29) states that a reduction of the energy can be
obtained by minimising G with respect to N . Again from (29), it can be seen
that a feasible way to achieve this would be to smooth the vector field by

solving dG(φ)
dN = 0. In this fashion, [17] proposed to use the iterative procedure

shown in Algorithm 4.1. However we shall show that equation (32) cannot be
accomplished by Algorithm 4.1, and a slightly modified algorithm (Algorithm
4.2) can lead to satisfying (32).

Algorithm 4.1 The algorithm of [17]

Require: φ0, IN1, IN2, OUT
n = 0
Compute the normal vector field N0 and the projection operator P using
the available φ0

while n < OUT do
*** The First Step ***
for k=0 to IN1 do

With Nn as initial guess, and using a gradient descent method, solve
dG
dN = 0 keeping φn lagged i.e. not updating P

Nk+1 = Nk −∆t dGdN
end for
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Update N by doing Nn+1 = N IN1

*** The Second Step ***
for k=0 to IN2 do

With φn as initial guess, and using a gradient descent method, solve
dD
dφ = 0 this time keeping Nn+1 lagged

φk+1 = φk −∆tdDdφ
end for
Update φn by doing φn+1 = φIN2

Update P using φn+1

n = n+ 1
end while
OUT, IN1, IN2 are the maximum number of iterations of each loop

The whole first step in Algorithm 4.1 may be seen as

Nn+1 = Nn − dG(φ)

dN
, (33)

if we take ∆t = 1/IN1, where the second term is evaluated at some N . At the
start of the second step, we see that the quantity from (31) is

dD(φ)

dφ
= −∇ · ∇φ

n

|∇φn|
+∇ ·N , (34)

where N = Nn+1. Then from (33), we have

dD(φ)

dφ
= −∇ · ∇φ

n

|∇φn|
+∇ ·

(
Nn − dG(φ)

dN

)
(35)

where we note that ∇· ∇φ
n

|∇φn| = ∇·Nn from a previous iteration and therefore

dD(φ)

dφ
= −∇ ·

(
dG(φ)

dN

)
. (36)

Then we have the undesirable result

−∇ ·
(
dG(φ)

dN

)
6= −∇ ·

(
1

|∇φ|
dG(φ)

dN

)
⇒ dD(φ)

dφ
6= dG(φ)

dφ
(37)

since |∇φ| 6= 1 in general, implying that Algorithm 4.1 will not be successful
for solving (19).

From the above simple analysis, we see that if we slightly modify the evolu-
tion in (33) as follows

Nn+1 = Nn − 1

|∇φ|
dG(φ)

dN
(38)

we have the desired result

dD(φ)

dφ
= −∇ ·

(
1

|∇φ|
dG(φ)

dN

)
=
dG(φ)

dφ
. (39)

This leads to a new algorithm as shown in Algorithm 4.2.

Algorithm 4.2 A modified algorithm

Require: φ0, IN1, IN2, OUT
n = 0
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Compute the normal vector field N0 and the projection operator P using
the available φ0

while n < OUT do
*** The First Step ***
for k=0 to IN1 do

With Nn as initial guess, and using a gradient descent method, solve
dG
dN = 0 keeping φn lagged i.e. not updating P

Nk+1 = Nk − ∆t
|∇φn|

dG
dN

end for
Update N by doing Nn+1 = N IN1

*** The Second Step ***
for k=0 to IN2 do

With φn as initial guess, and using a gradient descent method, solve
dD
dφ = 0 this time keeping Nn+1 lagged

φk+1 = φk −∆tdDdφ
end for
Update φn by doing φn+1 = φIN2

Update P using φn+1

n = n+ 1
end while
OUT, IN1, IN2 are the maximum number of iterations of each loop

In the Algorithms 5.1, 5.2 and 5.3 to be introduced for each model in the
next section, the iterative scheme (38) will be used in the first step, specifically
over (42), (46) and (48).

5 The TS method for curvature models

In what follows, we will derive for each one of models reviewed in Section 3,
the second order PDE that has to solved in the first leg of the two-step process.

More specifically we will derive the correspondent dG(φ)
dN = 0 to each model.

We note that from each model we drop the term |∇φ| from the functional to
guarantee obtaining the correct solution from the two-step algorithm as shown
before. Removing this term simplifies computations and has been done before
in other applications [17, 25] without modifying the model properties so we
expect to be the same here. The second step is common for all models and
was already been derived in (31) but for sake of completeness we repeat it

here. It consists on solving −∇ · ∇φ|∇φ| +∇ ·N = 0 with appropriate boundary

conditions.

Remark 2 In each model, it is important to ensure that the solution satisfies
the unit length constraint. This can be done either by brute force or by using
the projection operator I −N ⊗N at every iteration forcing the changes of
N to be perpendicular to itself. We selected the second option.

5.1 The smoothing step

This step is sometimes named as the smoothing step in denoising algorithms

Total curvature model - isotropic case The isotropic case of the total cur-
vature model writen in the level set form is the given by

min
N

F(φ,N) =

∫
Ω
|(∇N) (I − P )|2 dx. (40)
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To compute the first order condition we proceed as follows

dF

dN
=

d

dε

[∫
Ω
|∇(N + εψ) (I − P )|2 dx

]
ε=0

=

∫
Ω

2 (I − P )∇N · ∇ψ dx

= −2

∫
Ω
∇ · ((∇N) (I − P ))ψdx+

∫
Γ
(∇N) (I − P ) · ndΓ. (41)

Then selecting as boundary condition (∇N) (I − P ) · n = 0 the boundary
term is dropped resulting in

−∇ · ((∇N) (I − P )) = 0 (42)

Algorithm 5.1 TS algorithm for the Total Curvature Model

Require: φ0

for n=0 to OUT do
Compute the normal vector field N and the projection operator P using
the available φn

for k=0 to IN1 do
Solve (42) by ∂N

∂t = 1
|∇φ|(I−N⊗N)∇·((∇N) (I − P )) for N keeping

φ lagged i.e. not updating P
end for
Using the recently updated N in the previous loop iterate to find new φ
for k=0 to IN2 do

Solve −∇ · ∇φ|∇φ| +∇ ·N = 0 this time keeping N lagged

end for
end for
OUT, IN1, IN2 are the maximum number of iterations of each loop

Mean curvature model The level set expression for the mean curvature model
is given by

min
N

F(φ,N) =

∫
Ω

(
∇ · ∇φ
|∇φ|

)2

dx (43)

which can be rewritten in terms of N as

min
N

F(φ,N) =

∫
Ω

(∇ ·N)2 dx. (44)

The first order condition is computed as follows

dF

dN
=

d

dε

[∫
Ω

(∇ · (N + εψ))2 dx

]
ε=0

=

∫
Ω

2 (∇ ·N) (∇ ·ψ) dx

= −
∫

Ω
2∇ (∇ ·N)ψdx+

∫
Γ
N · ndΓ (45)

where by selecting as boundary conditionN ·n = 0 let us to drop the boundary
term resulting in

−∇ (∇ ·N) = 0 (46)
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Algorithm 5.2 TS algorithm for the Mean Curvature Model

Require: φ0

for n=0 to OUT do
Compute the normal vector field N and the projection operator P using
the available φn

for k=0 to IN1 do
Solve (46) by ∂N

∂t = 1
|∇φ|(I −N ⊗N)∇ (∇ ·N)

end for
Using the recently updated N in the previous loop iterate to find new φ
for k=0 to IN2 do

Solve −∇ · ∇φ|∇φ| +∇ ·N = 0 this time keeping N lagged

end for
end for
OUT, IN1, IN2 are the maximum number of iterations of each loop

Gaussian curvature model By using the identity, κG = 1
2

(
κ2
M − κ2

T

)
we can

rewrite the analogue model as follows

min
φ

∫
Ω

1

2

∣∣κ2
M − κ2

T

∣∣ dx. (47)

From the previous two models it is easy to write the first order condition for
the Gaussian-curvature-based model i.e.

−∇ · ((∇N) (I − P ))−∇ (∇ ·N) = 0 (48)

with corresponding boundary conditions.

Algorithm 5.3 TS algorithm for the Gaussian Curvature Model

Require: φ0

for n=0 to OUT do
Compute the normal vector field N and the projection operator P using
the available φn

for k=0 to IN1 do
Solve (48) by ∂N

∂t = ( 1
|∇φ|I −N ⊗N)∇ · ((∇N) (I − P ))−∇ (∇ ·N)

for N keeping φ lagged i.e. not updating P
end for
Using the recently updated N in the previous loop iterate to find new φ
for k=0 to IN2 do

Solve −∇ · ∇φ|∇φ| +∇ ·N = 0 this time keeping N lagged

end for
end for
OUT, IN1, IN2 are the maximum number of iterations of each loop

6 Numerical implementation

We proceed to outline the discretisation scheme we use for the differential
operators involved in each one of the TS algorithms just described. From now
on, we assume a continuous domain Ω = [0,m]×[0, n]×[0, p] and let (hx, hy, hz)
to represent a vector of finite mesh sizes, then we define the infinite grid by

Gh = {(x, y, z) : x = xi = ihx, y = yj = jhy; z = zk = khz; i, j, k ∈ Z}
(49)
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Ωh = Ω ∩ Gh and uh = φh(x, y, z) = φh(xi, yj , zk) = φh(ihx, jhy, khz) the
discrete version of any function φ defined on Ωh. For simplicity we will assume
that m = n = p and h = hx = hy = hz. We will use (·)Λ

ψ to denote the

derivative with respect to any variable ψ, where the symbol Λ = {+,−, c}
is used to differentiate among forward, backward and central differences. For
instance,

(φ+
x )i,j,k = (φi+1,j,k − φi,j,k) /h,

(φ−x )i,j,k = (φi,j,k − φi−1,j,k) /h,

(φcx)i,j,k = (φi+1,j,k − φi−1,j,k) /2h,

denote the forward, backward and central differences of φ on the direction x
at point (i, j, k) respectively.

6.1 Discretisation of the first step

To begin with, discretisation of the first step involves computing the projection
operator I−P which will remain lagged along the iterations. The expression
for P at every (i, j, k) point is given by

P =
1

|∇φ|

 (φcx)2 φcxφ
c
y φ

c
xφ

c
z

φcyφ
c
x (φcy)

2 φcyφ
c
z

φczφ
c
x φ

c
zφ

c
y (φcz)

2

 . (50)

The norm |∇φ| is computed as follows

|∇φ| =
√

(φcx)2 + (φcy)
2 + (φcz)

2 + β

where β is an small parameter to avoid division by zero.
The next operator that needs to be approximated is ∇N . To this end, first

N =
[
N1, N2, N3

]
is discretized as follows

N =
[
φcx, φ

c
y, φ

c
z

]
/|∇φ|, (51)

and the matrix

∇N =

 (N1)+
x (N1)+

y (N1)+
z

(N2)+
x (N2)+

y (N2)+
z

(N3)+
x (N3)+

y (N3)+
z

 . (52)

To approximate the 3 × 1 vector A =
[
A1, A2, A3

]
which results from

A = ∇· ((∇N)(I−P )), first the matrix product B = (∇N)(I−P ) is com-
puted and then, the divergence operator applied row-wise toB using backward
differences.

Now, to approximate ∇(∇·N), first forward differences are applied to each
entry of N and the divergence computed as

∇ ·N = (N1)+
x + (N2)+

y + (N3)+
z (53)

then the gradient vector ∇(∇ ·N) is computed using backward differences.
Finally, an explicit time marching scheme is used to evolve the parabolic

PDE. For instance,

Nn+1 −Nn

∆t
= −∇ · ((∇N) (I − P ))−∇ (∇ ·N) (54)
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is used for the Gaussian curvature model at every point. The implementation
for the other two models is straightforward from here.

6.2 Discretisation of the second step

Here we use a staggered discretization. For instance, to approximate ∇ · V =
(V 1)x + (V 2)y + (V 3)z for any V = [V 1, V 2, V 3] at some pixel (i, j, k) we use
central differences between ghost half-points as follows

(∇ · V )i,j =

(
V 1
i+ 1

2
,j
− V 1

i− 1

2
,j

)
h

+

(
V 2
i,j+ 1

2

− V 2
i,j− 1

2

)
h

+

(
V 3
i,j,k+ 1

2

− V 3
i,j,k− 1

2

)
h

.

(55)
This way

h

(
∇ · ∇φ
|∇φ|

)
i,j,k

=
(φx)i+ 1

2
,j,k

|∇φ|i+ 1

2
,j,k

−
(φx)i− 1

2
,j,k

|∇φ|i− 1

2
,j,k

+
(φy)i,j+ 1

2
,k

|∇φ|i,j+ 1

2
,k

(56)

−
(φy)i,j− 1

2
,k

|∇φ|i,j− 1

2
,k

+
(φz)i,j,k+ 1

2

|∇φ|i,j,k+ 1

2

−
(φz)i,j,k− 1

2

|∇φ|i,j,k− 1

2

. (57)

When appropriate we use min-mod derivatives as defined below since as
noted in [2, 14] they help to recover sharp edges. The min-mod derivative is
defined as

min-mod (a, b) =

(
sgn a+ sgn b

2

)
min(|a|, |b|). (58)

We note that average derivatives were also tested and indeed we use them
to compute the computational complexity of the algorithm in Section 7. For
instance to compute the terms at the (i + 1

2 , j, k) and (i − 1
2 , j, k) points we

proceed as follows:
Partial derivatives in x by the central differencing of two adjacent whole

pixels

(φx)i+ 1

2
,j,k = (φi+1,j,k − φi,j,k)/h,

(φx)i− 1

2
,j,k = (φi,j,k − φi−1,j,k)/h,

Partial derivatives in y by the min-mod of (·)y’s at two adjacent whole points

(φy)i+ 1

2
,j,k = min-mod

(
1

2h
(φi+1,j+1,k − φi+1,j−1,k),

1

2h
(φi,j+1,k − φi,j−1,k)

)
,

(φy)i− 1

2
,j,k = min-mod

(
1

2h
(φi,j+1,k − φi,j−1,k),

1

2h
(φi−1,j+1.k − φi−1,j−1,k)

)
,

Partial derivatives in z by the min-mod of (·)z’s at two adjacent whole points

(φz)i+ 1

2
,j,k = min-mod

(
1

2h
(φi+1,j,k+1 − φi+1,j,k−1),

1

2h
(φi,j,k+1 − φi,j,k−1)

)
,

(φz)i− 1

2
,j,k = min-mod

(
1

2h
(φi,j,k+1 − φi,j,k−1),

1

2h
(φi−1,j,k+1 − φi−1,j,k−1)

)
,
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TS algorithm
Step TC model MC model GC model

1st 116 flops 38 flops 134 flops
2nd 80 flops 80 flops 80 flops

Table 1.: Complexity analysis of the algorithms.

Norm of the gradient vector

|∇u|i+ 1

2
,j,k =

√
((φx)i+ 1

2
,j,k)

2 + ((φy)i,j+ 1

2
,k)

2 + ((φz)i,j,k+ 1

2
)2 + β,

|∇φ|i− 1

2
,j,k =

√
((φx)i− 1

2
,j,k)

2 + ((φy)i,j− 1

2
,k)

2 + ((φz)i,j,k− 1

2
)2 + β.

By a similar procedure we can obtain the approximations for V 2
i,j+ 1

2

, V 2
i,j− 1

2

,

V 3
i,j,k+ 1

2

, and V 3
i,j,k− 1

2

. Finally, the Neumann’s boundary condition on ∂Ω is

treated as

φi,0 = φi,1, φi,n+1 = φi,n, φ0,j = φ1,j , φm+1,j = φm,j . (59)

7 Complexity analysis

In this section we shall review the computational cost of each algorithm in
order to give an idea of the low cost involved in each one of them. We will use
flops as comparison measure. For instance, addition, subtraction and multipli-
cation will be assigned 1 flop and division and square root will be assigned 8
flops. In Table 1 we present a summary of the cost of one iteration for each
algorithm. It is very clear that the most costly algorithm is the GC model and
the cheapest the MC model. The cost for each model is however very small if
compared against discretisation of the fourth order PDEs which turns to be
at least three times. This is the main strength of the TS algorithm.

8 Results

In this section we present and discuss the results obtained through running
the TS algorithm, for each model, from Section 3, over two test problems. Our
first test problem is the noisy cube shown in Figure 1(a) of size 32× 32× 32.
The second test problem is the noisier sharp-sphere, containing both sharp and
smooth regions, in Figure 1(b) of size 106×113×113 . In both cases, Gaussian
noise was added to create a noisy surface and then the noisy surface processed
using the publicly available level set toolbox [16] to force the implicit surface
to be a signed distant function.

In the TS algorithm both steps were solved using an explicit gradient de-
scent method with manually optimized time-step. In all cases, the selected
regularization parameter was β = 10−3. To stop the algorithms the following
stopping criteria was used: in the first leg, stop if the reduction of the relative
residual between two consecutive iterations is less than 10−4; in the second
leg stop if the change in the energy decreasing is less than one ten thousandth
the initial energy value. A maximum of 250 iterations is setup for each leg.
As illustrated in Algorithms 5.1, 5.2 and 5.3, the TS algorithm is also ran in
cycles. This is, after finishing the second leg, we recomputed the lagged terms
and ran the algorithm again. Our observations indicate that no more than 5
cycles are required to have a good surface reconstruction.

As can be appreciated from Table 2, we can see that the TS algorithm
required more cycles and CPU time to solving the TC model while it worked
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TS Algorithm
Size TC model MC model GC model

Cube
O 3/73.98 s A 2/15.71 s A 3/17.84 s
A 3/73.03 s O 2/16.83 s O 3/19.43 s

Sharp-Sphere
O 3/2898 s O 2/1373 s O 3/1381 s
A 3/2867 s A 2/1438 s A 3/1447 s

Table 2.: Number of cycles and CPU times for the model problems. A stands for Analogue and O for Original

pretty well for the other two models. The CPU-times obtained for the second
test problem also show the need to improve the TS algorithm. This maybe
done by using a nonlinear multigrid algorithm for each leg and maybe will be
our future work. From Table 2, we also can deduce that solving the analogue
or original model with TS involves almost the same amount of computational
effort and time.

To illustrate the quality of reconstruction and to have a reference for com-
paring the original models against the analogue models, we present the results
for the first test problem in Figure 2. These results must be interpreted with
caution since the TS algorithm does not solve accurately the original model,
see [17]. From Figure 2 we can see that solving any, original or analogue, model
with TS delivers visually almost the same kind of reconstruction.

(a) (b)

Figure 1.: (a) Noisy Cube. (b) Noisy Sphere (courtesy of Dr. Rongjie Lai, University of Southern California).

Finally in Figure 3, we show the results of TS solving the analogue model
for the second test problem . In this case, the MC model result in Figure 3 (a),
shows that this model as expected delivers better restoration in the smooth
regions but tends to round the sharp edges. On the contrary, is apparent from
Figures 3 (b) and (c) that the GC and TC models preserve better the salient
sections while showing some kind of staircase effect in the smooth ones.

9 Discussion

In this paper we have presented a generalisation of a well known method for
the numerical solution of high order PDEs. We have shown that the presented
two-step method it is a good option for the solution of the analogues of the
curvature models . In the context of surface fairing models and up to our
knowledge, the TS method had been only applied to the solution of the total
curvature model. Here we have shown how to use it for the solution of the MC
and GC models as well. By doing this, we are providing a unified algorithm
which can be used to make fair comparisons among the three models. We have
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(a) (b)

(c) (d)

(e) (f)

Figure 2.: (a) analogue MC result. (b) original MC result. (c) analogue GC result. (d) original GC result. (e)
analogue TC result. (f) original TC result.

also shown that the TS algorithm proposed is computationally very efficient
and cheap compared to direct solvers of the fourth order problem. For the
solution of each second order PDE we have used very simple Explicit time
marching methods so there is still room for improvement here. For instance,
nonlinear multigrid methods maybe used to speed up convergence and this
maybe part of our future work.
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