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Abstract

A new selective segmentation active contour model is proposed in this paper that embeds an
enhanced image information. By utilizing the average image of channels (AIC), which handles
texture and noise, our model is capable to selectively segment and capture objects with nonuni-
form features. Moreover, the AIC is fitted with linear functions which are updated regularly
to accurately guide the level set function to handle non constant intensities. Furthermore, we
employ prior information in terms of geometrical constraints which work in alliance with image
information to capture objects with intensity inhomogeneity. Experiments show that the pro-
posed method achieves better results than the latest selective segmentation models. In addition,
our approach maintains the performance on some hard real and synthetic color images.

Keywords. Image selective segmentation, Level set, Functional minimization, Numerical
method.

1 Introduction

Image segmentation is one of the most important and complicated task in the field of

image processing and computer vision. Many different approaches are introduced in the

literature including PDE-based active contour models [8, 14] for curve evolution which

has gained much popularity among the researchers. The active contour methods use a

partial differential equation (PDE) to model and track how fronts evolve in a discrete

domain by maintaining and updating a distance field to the fronts. This method can be

categorized as the edge-based methods [3, 4, 11, 12] and region-based methods [9, 18, 22,

28]. The edge-based models use edge information to guide the active contours towards

the object boundaries, whereas, region based models use statistical region data of an

image. In particular, the Mumford-Shah (MS) model [18] is a milestone in the region

based segmentation models.
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For a given image z = z(x, y), the MS model for segmentation solves

min
z0,Γ

F (z0,Γ)
MS = Hn−1(Γ)+ ∥ z − z0 ∥2L2(Ω) +α

∫
Ω−Γ

|∇z0|2dxdy (1)

for the reconstruction of the ideal image z0(x, y) over domain Ω, where Ω is a bounded

subset of Rn with Lipschitz boundary and the feature boundary set Γ. The term Hn−1

is the n− 1 dimensional Hausdorff measure, which in the 2-dimensional case H1 denotes

the length of the curve. Since the term Hn−1 causes computational complexity in the

MS functional, therefore a natural way to approximate MS functional was introduced by

Chan-Vese (CV) [9], which implemented the piecewise segmentation

F 2D
CV (Γ, c1, c2) = µ.H1(Γ) + λ1 ∥ z − c1 ∥2L2(Ωin)

+λ2 ∥ z − c2 ∥2L2(Ωout), (2)

where c1 and c2 are average values of z respectively in Ωin (i.e., inside Γ) and in (Ωout)

(i.e., outside of Γ). In level set formulation the equation (2) takes the form

F 2D
CV (ϕ, c1, c2) = µH1(ϕ) + λ1 ∥ z − c1 ∥2L2(Ωin)

+λ2 ∥ z − c2 ∥2L2(Ωout),

where

H1(ϕ) =

∫
Ω

δ(ϕ)|∇ϕ|dxdy, (3)

∥ z − c1 ∥2L2(Ωin)
=

∫
Ω

|z(x, y)− c1|2H(ϕ)dxdy, (4)

∥ z − c2 ∥2L2(Ωout) =

∫
Ω

|z(x, y)− c2|2(1−H(ϕ))dxdy. (5)

Since the Heaviside function, H, is not differentiable at the origin, a regularized version

of Heaviside function is used [9, 10, 20],

Hϵ(w) =
1

2

(
1 +

2

π
arctan(

w

ϵ
)
)
, δϵ(w) = H ′

ϵ(w) =
ϵ

π(ϵ2 + w2)
. (6)

A simple extension to the CV model is to use linear approximation instead of constant

[23]. This model is more appropriate when the image has region of linear shading instead

of piecewise constant intensities.

F 2D
Linear(ϕ, ai, bi) = µ.H1(ϕ) + λ1 ∥ z − (a0 + a1x+ a2y) ∥2L2(Ωin)

(7)

+ λ2 ∥ z − (b0 + b1x+ b2y) ∥2L2(Ωout)

where ai, bi, where i = 0, 1, 2 are coefficients of linear functions. The ai can be computed

by linear system:

∂

∂ai
∥ z − (a0 + a1x+ a2y) ∥2L2(Ωin)

= 0, i = 0, 1, 2, (8)
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whereas similar solution procedure follows for bi. Several recent generalization and vari-

ants [2, 16, 15, 19, 25, 26] of the CV model can be seen which have shown better results

in bias field correction, texture and noise. However, these aforementioned segmentation

models are not designed for segmenting a particular object of interest and not all objects

in it. Thus selective segmentation is a task in which an object/region of interest is de-

tected, given additional information of geometric constraints in the form of list of points

near the object/region. Motivated from the work in [11, 12], we recently proposed two

mixed models of edge based and region-based methods that are more robust for noisy im-

ages [3] and when edges are not prominent[4]. However, these models were not designed

for texture and inhomogeneity.

In this paper, we propose a novel active contour model (ACM) which embeds AIC, an

enhanced version of a given image for robust guidance of the contour to capture, objects

with diffuse edges, objects with noise and textural detail. Furthermore, the AIC is ap-

proximated with linear functions to handle varying intensity objects. Experiments show

that the proposed method achieves better results than the latest selective segmentation

models. Moreover, the proposed approach maintains the performance in real and syn-

thetic color images.

The rest of the paper is organized as follows. Section 2 reviews some latest selective

segmentation models. Section 3 exhibits the proposed new model. Section 4 reveals an

additive operator splitting (AOS) method for solving the resulted PDE. Section 5 displays

some experimental tests with competing models. Conclusion is made in Section 6.

2 The Badshah-Chen Model (BC)

To capture a particular object of interest, the Badshah and Chen (BC) [3] proposed the

following functional for minimization

F 2D
BC(ϕ, c1, c2) = µH1

dg(ϕ) + λ1 ∥ z − c1 ∥2L2(Ωin)
+λ2 ∥ z − c2 ∥2L2(Ωout) .

The term H1
dg(ϕ) is weighted length term, weighted with an edge detector function g [3, 4]

and a distance function d given by

d(x, y) =
n∏

i=1

(
1− e

−
(x− xi)

2

2σ2 e
−
(y − yi)

2

2σ2

)
, ∀(x, y) ∈ Ω, (9)

where {(xi, yi) : i = 1, 2, 3, .....,m} are the points around the object of interest.

The BC model [3] is the state of the art model which overcomes the deficiencies of the

Gout model [11]. On one side the BC model is working well in noisy images and on the

other side it is robust in terms of CPU time and number of iterations [3, 4]. However there

are images which are challenging for the BC model, such as MRI and CT images with

fuzzy edges, unilluminated organs and overlapping homogeneous regions [4]. To overcome

this problem a new model was introduced which is based on the concept of coefficient of

variation (CoV) [4].
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3 Coefficient of Variation Equipped Selective Segmentation Model
(SSM)

The coefficient of variation (CoV) based image selective segmentation model [4] in level

set formulation [27] is given by:

F 2D
COV (ϕ, c1, c2) = µH1

dg(ϕ) + λ1 ∥
z − c1
c1

∥2L2(Ωin)
+λ2 ∥

z − c2
c2

∥2L2(Ωout) . (10)

Minimization of F 2D
COV (ϕ, c1, c2) leads to the following equations for the solutions c1, c2

and ϕ respectively as

c1(ϕ) =
∥ z ∥2L2(Ωin)

∥
√
z ∥2L2(Ωin)

c2(ϕ) =
∥ z ∥2L2(Ωout)

∥
√
z ∥2L2(Ωout)

, (11)

and 
δϵ(ϕ)

[
µdiv

(
G(x, y) ∇ϕ

|∇ϕ|

)
−λ1

(z(x, y)− c1)
2

c21
+ λ2

(z(x, y)− c2)
2

c22

]
= 0 in Ω,

G(x, y)δϵ(ϕ)

|∇ϕ|
∂ϕ

∂n⃗
= 0 on ∂Ω,

(12)

where

G(x, y) = d(x, y)g(|∇z|). (13)

After adding a balloon term αG(x, y)|∇ϕ| as done in [3] to speed up the convergence, the

evolution equation is obtained as follows:

∂ϕ

∂t
= δϵ(ϕ)

[
µ∇.

(
G(x, y)

∇ϕ

|∇ϕ|

)
− λ1

(z(x, y)− c1)
2

c21
(14)

+ λ2
(z(x, y)− c2)

2

c22
+ αG(x, y)|∇ϕ|

]
, in Ω

ϕ(t, x, y) = ϕ0(x, y), in Ω. (15)

Although the SSM model works well in images having objects of diffuse edges or low

contrast type of objects [4], but still on the other hand segmenting textural objects is an

issue for both BC and SSM model. To overcome this issue, we propose a new model based

on the concept of AIC.

4 The Proposed Model (MABC Model)

The idea behind the AIC model is to utilize more convenient form of a given image data to

accurately guide the level set function for efficient segmentation of images having texture

and noise. To obtain the AIC, we will utilize the extended structure tensor (EST) which
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is an extended version of the classical structure tensor for the texture image segmentation.

We explain the basic idea behind our approach as follows.

For a given gray image z(x, y) the classical structure tensor (CST) Jσ is obtained by

Gaussian smoothing of the tensor product of the image gradient, i.e.,

Jσ = Kσ ∗ (∇z∇zT ) =

(
Kσ ∗ z2x Kσ ∗ zxzy
Kσ ∗ zxzy Kσ ∗ z2y

)
(16)

where Kσ is a Gaussian kernel with standard deviation σ, and subscripts x and y denote

the partial derivatives. For vector-valued images, the following expression is employed:

Jσ = Kσ ∗
( n∑

i=1

∇zi∇zTi

)
.

For a gray scale image z(x, y) the extended structure tensor (EST )JE
σ is define as:

JE
σ = Kσ ∗ (uuT ) =

 Kσ ∗ z2x Kσ ∗ zxzy Kσ ∗ zxz
Kσ ∗ zxzy Kσ ∗ z2y Kσ ∗ zyz
Kσ ∗ zxz Kσ ∗ zyz Kσ ∗ z2

 (17)

where

u =
[
zx zy z

]T
For vector-valued images, the following expression can be used:

JE
σ = Kσ ∗

( N∑
i=1

uiu
T
i

)
where

ui =
[
zi,x zi,y zi

]T
As it is clear from equation (16) that the CST yields three feature channels for each scale

i.e., z2x, z
2
y , and zxzy. While, it is clear from equation (17) that EST uses six feature

channels instead of three in which three of them contain the original image information.

This makes the use of EST more convenient as compared to CST, the reason behind

this is that: the classical structure tensor has the disadvantage of not using any intensity

information i.e. it uses only three feature channel and does not use the original image data

which may give the resultant image far different than the given image. For instant, see the

Fig. 1 where for the given images in Fig. 1(a), 1(d) and 1(g), the CST performance can be

seen respectively as Fig. 1(b), 1(e) and 1(h). It can be very easily observed that by using

CST, the results are not satisfactory. On the other hand, if the intensity information is

incorporated into CST to get EST, the results which are much better can be seen in Fig.

1(c), 1(f) and 1(i).

Thus we will first compute the EST and then obtain the AIC, average image of all the

channels JE
σ,i(i = 1, 2...9) belonging to the EST JE

σ . The AIC denoted by z⋆ is given by

z⋆ =
1

9

9∑
i=1

JE
σ,i (18)
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(a) Noisy Image (b) CST Result (c) EST Result

(d) Texture Image (e) CST Result (f) EST Result

(g) Noisy Image (h) CST Result (i) EST Result

Fig. 1: The figure illustrating results of CST and EST on noisy and textural images. (a) Given
noisy Image; (b) CST result; (c) EST result; (d) Given textural image (e) CST result (f)
EST result; (g) Given noisy image; (h) CST result; (i) EST result.
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where σ is the standard deviation of Gaussian kernel. The image z⋆(x, y) is a blend of

classical structure tensor and original image information which helps to smooth textural

features by maintaining image original features [28]. Since the use of Gaussian smoothing

causes the edge diffusion in EST, therefore selection of an efficient fidelity term is a crucial

step.

We propose the following functional of minimization for selective segmentation

F 2D
MABC = µH1

dg(ϕ) + λD(z⋆(x, y)). (19)

The first term in the above functional is a blend of metric and edge detector function.

The metric function serves as a prior information by restricting the contour around the

object of interest for selective segmentation and tries to avoid influence of intensity inho-

mogeneity. The edge detector function attracts the contour towards the true boundaries

of the object of interest using the image original information in the form of gradient. The

second term is the data term which uses the information from the AIC to tackle textural

and noisy object of interest. On the other hand, the AIC creates diffusion near the object

edges during smoothing process and therefore, the incorporation of a suitable data fitting

term is also required. For the data term Dterm(z
⋆(x, y)) in our proposed model (19),

we consider two options, namely, piecewise constant [3, 9, 22] and piecewise linear [23]

approximation of the AIC and are respectively as follows:

Dconstant = ∥ z⋆ − c1 ∥2L2(Ωin)
+λ2 ∥ z⋆ − c2 ∥2L2(Ωout), (20)

and

Dlinear = λ1 ∥ z⋆ − (a0 + a1x+ a2y) ∥2L2(Ωin)
(21)

+ λ2 ∥ z⋆ − (b0 + b1x+ b2y) ∥2L2(Ωout) .

It can be seen from figure 2 that the data term Dconstant is good in detecting constant

intensity objects whereas the performance is poor in inhomogeneous intensity objects. On

the other hand, the data term Dlinear is performing good in detecting objects of variable

intensities.

Therefore, the proposed functional in level set formulation (19) with linear fidelity term

is as follows

F 2D
MABC = µH1

dg(ϕ) + λDlinear(z
⋆(x, y)), (22)

The minimization of the proposed functional (22) yields the following equations for solu-

tions ai, bi and ϕ, respectively

∂

∂ai
∥ z⋆(x, y)− (a0 + a1x+ a2y) ∥2L2(Ωin)

= 0, i = 0, 1, 2, (23)

∂

∂bi
∥ z⋆(x, y)− (b0 + b1x+ b2y) ∥2L2(Ωin)

= 0, i = 0, 1, 2, (24)
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(a) Initial Contour (b) Dconstant Result (c) Initial Contour (d) Dconstant Result

(e) Initial Contour (f) Dconstant Result (g) Initial Contour (h) Dconstant Result

Fig. 2: The figure illustrating the performance of the data term Dconstant. (Row 1st) The suc-
cessful detection by the data term Dconstant; (Row 2nd) The unsuccessful detection by
the data term Dconstant.

(a) Initial Contour (b) Dlinear Result (c) Initial Contour (d) Dlinear Result

Fig. 3: The figure illustrating the performance of the data term Dlinear. (a) Object of interest;
(b) Object extracted; (c) The object of interest; (d) The successful result by usingDlinear.
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and

∂ϕ

∂t
= δϵ(ϕ)

[
µ∇.

(
G(x, y)

∇ϕ

|∇ϕ|

)
−Dlinear(z

⋆(x, y))
]
, in Ω (25)

ϕ(t, x, y) = ϕ0(x, y), in Ω. (26)

We solve the above PDE by using Additive Operating Method as done in [3].

5 Experimental Results

This section exhibits some test results of the proposed model and latest selective segmen-

tation models. First we compare the results of the proposed model with the Gout model

on some synthetic and real world images. Secondly, we test the proposed model, BC and

SSM models on some real and synthetic images. Finally, we test the proposed model on

color noisy and textural real world and synthetic hard images. The proposed model is

implemented using Matlab 7.9.0 on a core i3 computer with 2GB RAM, 2.40 GHz pro-

cesser, and window 7 operating system. In all the three models we use λ1 = λ2 = λ.

We first test the proposed model and the Gout model on a noisy synthetic image as dis-

played in Fig. 4(a). It can be very easily observed that the Gout model is unable to

capture the object of interest whereas the proposed model completed the desired task

successfully in figure 4(f). Next, Fig. 5 shows a medical brain image in which a tumor is

to be segmented but it is clear from figure 5(c) that Gout model is not able to segment

it. In contrast the figure 5(g) shows the successful attempt by the proposed model. Sim-

ilarly, Fig. 6 exhibits a noisy medical image of a knee in which a particular bone is to be

segmented. From the figure 6(c), it can be easily seen that the Gout model is unable to

complete the task. On the other hand, the proposed model completed the desired task

efficiently which can be seen in Fig. 6(g). Now we compare the new model with the BC

and the SSM model. For brevity, we shall denote:

M-1 — the BC model

M-2 — the SSM model and

M-3 — the proposed MABC.

We begin with some simple examples where all three (M-1,M-2 and M-3) work well and

then give some examples of textural, noisy and other hard images that will show that M-3

has far better performance than the M-1 and M-2.

In each of the following figures, the performance of the M-1, M-2, and the proposed M-3

can be seen in row first, second, and third respectively. The first column shows the origi-

nal image with initial contours. The second column displays the intermediate situations

of active contour of each model. The third column reveals the final solution in each model

and the fourth column displays the segmented version of the final solution for the sake of

convenience in deep observations.

In figure 7(a) the original image with initial contour is displayed. The figure 7(c) and

7(g) shows that M-1 model and M-2 are unable to complete the task while the successful
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(a) Initial Contour (b) Gout Model (c) Segmented Result (d) Corresponding 3D Graph

(e) Initial Contour (f) Proposed Model (g) Segmented Result (h) Corresponding 3D Graph

Fig. 4: A figure illustrating the performance of Gout model (first row) and proposed model (sec-
ond row) on noisy image. In contrast with Gout model, the Proposed model successfully
completed the task as clear from 4(g).

(a) Initial Contour (b) Gout Model (c) Segmented Result (d) Corresponding 3D Graph

(e) Initial Contour (f) Proposed Model (g) Segmented Result (h) Corresponding 3D Graph

Fig. 5: A figure illustrating the performance of Gout model (first row) and proposed model
(second row) on real medical brain image. In contrast to Gout model, the Proposed
model successfully captured the region of interest.
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(a) Initial Contour (b) Gout Model (c) Segmented Result (d) Corresponding 3D Graph

(e) Initial Contour (f) Proposed Model (g) Segmented Result (h) Corresponding 3D Graph

Fig. 6: A figure illustrating the performance of Gout model (first row) and proposed model
(second row) on real medical knee image. In contrast to Gout model, the Proposed
model successfully captured the region of interest.

result of M-3 can be seen clear from 7(k). The figure 8 shows a real world image in which

the uncompleted result of M-2 can be seen from 8(g). On the other hand, the successful

detection by M-3 model can easily observed from the same figure. The figure 9 exhibits a

real medical abdominal image with Poisson noise. The figure 9(c) shows the uncompleted

task of M-1 model. Although, it can be seen in 9(g) and 9(l) that M-2 detected the desired

region but it should also be noted that M-2 took 520 iterations while M-3 completed the

job in 200 iterations.

The figure 10 exhibits a synthetic inhomogeneous image. It can be easily observed from

the same figure that M-1 and M-2 are unable to capture the inhomogeneous intensity ob-

ject while the proposed M-3 successfully captured the object. Next,the three models are

tested on some textural intensity images. For example, the figures 11, 12, 13 and 14 are

textural images in which M-1 and M-2 are completely unable to work due to the textural

objects. The uncompleted tasks of M-1 and M-2 are shown in figures 11(c), 12(c), 13(c),

14(c) and 11(g), 12(g), 13(g), 14(g). While the successful results of M-3 in texture images

can be seen in figures 11(k), 12(k), 13(k) and 14(k). Firstly, in figure 11, the three models

are tested on a real snake image in desert. The robust performance of the proposed M-3

can be easily witnessed from the same figure, while, the uncomplete tasks of M-1 and M-2

are also displayed. Next, the three models are tested on a synthetic textural image as

in figure 12. It can be easily observed from the figure that the proposed model captured

completely the object of interest by handling successfully the texture information on the
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object. On the other hand, the unsuccessful performance by M-1 and M-2 can also be

seen from the same figure. Next, the three models are tested on a real world image as

in figure 13 displaying three balls with interior textural details. The successful attempt

by M-3 and unsuccessful attempts by M-1 and M-2 can easily witnessed from the same

figure. The M-3 model successfully captured the selected ball by ignoring the textural

details on the ball. Next, all the three models are tested on a real world image displaying

six textural objects as in figure 14. It can be easily observed that the proposed M-3

successfully captured the textural object of interest in contrast to M-1 and M-2.

(a) Initial Contour (b) 1000 iterations of M-1 (c) After 2000 iterations (d) Segmented Result

(e) Initial Contour (f) 900 iterations of M-2 (g) After 2000 iterations (h) Segmented Result

(i) Initial Contour (j) 300 iterations of M-3 (k) After 700 iterations (l) Segmented Result

Fig. 7: A figure illustrating the performance of M-1, M-2 and M-3 on a real fog plane image. In
contrast with M-1 and M-2, the M-3 successfully completed the task. For M-3, parameters
used are: λ = 0.01, µ = 2552/150000 and σ = 0.7.
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(a) Initial Contour (b) 50 iterations of M-1 (c) After 100 iterations (d) Segmented Result

(e) Initial Contour (f) 200 iterations of M-2 (g) After 500 iterations (h) Segmented Result

(i) Initial Contour (j) 50 iterations of M-3 (k) After 100 iterations (l) Segmented Result

Fig. 8: A figure illustrating the performance of M-1, M-2 and M-3 on a real plane image in sky.
In contrast with M-1 and M-2, the proposed M-3 successfully completed the task. For
M-3 model parameters used are: λ = 0.1, µ = 2552/15000 and σ = 0.01.
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(a) Initial Contour (b) 50 iterations of M-1 (c) After 150 iterations (d) Segmented Result

(e) Initial Contour (f) 200 iterations of M-2 (g) After 520 iterations (h) Segmented Result

(i) Initial Contour (j) 100 iterations of M-3 (k) After 200 iterations (l) Segmented Result

Fig. 9: A figure revealing the performance of M-1, M-2 and M-3 on real medical abdominal
image. It can be easily observed that M-3 successfully captured the region of interest
with parameters: λ = 0.0002, µ = 2552/8000 and σ = 1.
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(a) Initial Contour (b) 100 iterations of M-1 (c) After 1000 iterations (d) Segmented Result

(e) Initial Contour (f) 200 iterations of M-2 (g) After 1000 iterations (h) Segmented Result

(i) Initial Contour (j) 100 iterations of M-3 (k) After 250 iterations (l) Segmented Result

Fig. 10: A figure illustrating the performance of M-1, M-2 and M-3 on a synthetic varying
intensity image. In contrast with M-1 and M-2, the M-3 successfully completed the
task. For M-3 parameters used are: λ = 0.9, µ = 2552/5000 and σ = 3
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(a) Initial Contour (b) 1000 iterations of M-1 (c) After 3500 iterations (d) Segmented Result

(e) Initial Contour (f) 1000 iterations of M-2 (g) After 3500 iterations (h) Segmented Result

(i) Initial Contour (j) 500 iterations of M-3 (k) After 2700 iterations (l) Segmented Result

Fig. 11: A figure illustrating the performance of M-1, M-2 and M-3 on a real textural snake in
sand image. In contrast with M-1 and M-2, the proposed M-3 successfully completed
the task. For M-3 model parameters used are: λ = 0.01, µ = 2552/6000 and σ = 4.2.
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(a) Initial Contour (b) 400 iterations of M-1 (c) After 1000 iterations (d) Segmented Result

(e) Initial Contour (f) 400 iterations of M-2 (g) After 1000 iterations (h) Segmented Result

(i) Initial Contour (j) 100 iterations of M-3 (k) After 300 iterations (l) Segmented Result

Fig. 12: A figure illustrating the performance of M-1, M-2 and M-3 on a textural synthetic image.
In contrast with M-1 and M-2, the proposed M-3 successfully completed the task. For
M-3 parameters used are: λ = 0.001, µ = 2552/1000 and σ = 4.
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(a) Initial Contour (b) 100 iterations of M-1 (c) After 500 iterations (d) Segmented Result

(e) Initial Contour (f) 100 iterations of M-2 (g) After 200 iterations (h) Segmented Result

(i) Initial Contour (j) 50 iterations of M-3 (k) After 100 iterations (l) Segmented Result

Fig. 13: A figure illustrating the performance of M-1, M-2 and M-3 on a real textural balls image.
In contrast with M-1 and M-2, the proposed M-3 successfully captured the object of
interest. For M-3 parameters used are: λ = 0.009, µ = 2552/30 and σ = 2.5.
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(a) Initial Contour (b) 300 iterations of M-1 (c) After 1000 iterations (d) Segmented Result

(e) Initial Contour (f) 300 iterations of M-2 (g) After 1000 iterations (h) Segmented Result

(i) Initial Contour (j) 200 iterations of M-3 (k) After 350 iterations (l) Segmented Result

Fig. 14: A figure showing the performance of M-1, M-2 and M-3 on a real textural image. In
contrast with M-1 and M-2, the proposed M-3 completely captured the object of interest.
For M-3 parameters used are: λ = 0.009, µ = 2552/50 and σ = 2.
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5.1 Performance on Vector-valued Images

To ensure that the proposed model maintains the performance vector-valued images, the

M-3 is tested on some real and synthetic hard textural vector-valued images. Firstly,

the proposed model is tested on a color images as displayed in figure 15. It can be seen

easily that M-3 successfully completed the task by capturing the object of interest in both

the images in figure 15. Next, the M-3 is tested on two color medical images of a knee

as displayed in figure 16. It can easily observed from the figure 16 that the proposed

M-3 successfully captured the slices of interest in the knee images. Secondly, we test the

performance of M-3 on real and synthetic color textural images.

Firstly, the M-3 is tested on two synthetic color images as displayed in figure 17. In both

the test images in figure 17, the objects of interest involve textural details which can

effect the detection of the objects. But, it can be easily observed from the same figure

that the proposed M-3 successfully captured the objects of interest. Next, M-3 is tested

on a cctv images as displayed in figure 18. It can be easily observed that the proposed

M-3 successfully captured the person of interest. Similar result can be witnessed very

easily in figures 19 and 20 where the proposed M-3 successfully captured the objects of

interest without being effected with the objects interior textural details.

(a) Initial Contour (b) Segmented Result (c) Initial Contour (d) Segmented Result

Fig. 15: A figure exhibiting color images of glasses and birds in which a particular glass and bird
are selected and successfully detected using M-3. For M-3 parameters used are: λ = 80,
µ = 2552/150, σ = 2 and iteration=100 for 15(a) and λ = 300, µ = 2552/100000,
σ = 0.1 and iteration=200 for 15(c).
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(a) Initial Contour (b) Segmented Result (c) Initial Contour (d) Segmented Result

Fig. 16: A figure displaying color medical images of knee in which particular slices are selected
and extracted using M-3. The parameters used are: λ = 90, µ = 2552/100, σ = 1,
iteration=180 for 16(a) and λ = 80, µ = 2552/500, σ = 0.9, iteration=500 for 16(c).

(a) Initial Contour (b) Segmented Result (c) Initial Contour (d) Segmented Result

Fig. 17: A figure displaying real world image having texture and a synthetic tanks image. The
M-3 successfully captured the selected objects which are building and tank as clear
from 17(b) and 17(d) respectively. The parameters used are: λ = 200, µ = 2552/500,
σ = 2.5, iteration=350 for 17(a) and λ = 100, µ = 2552/500, σ = 0.9, iteration=300 for
17(c).

(a) Initial Contour (b) Segmented Result (c) Initial Contour (d) Segmented Result

Fig. 18: A figure exhibiting real cctv images and performance of M-3. It can easily observed that
the proposed M-3 extracted the persons of interest. The parameters used are: λ = 150,
µ = 2552/5000, σ = .5, iteration=200 for 18(a) and λ = 50, µ = 2552/800, σ = 1,
iteration=500 for 18(c).
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(a) Initial Contour (b) Segmented Result (c) Initial Contour (d) Segmented Result

Fig. 19: A figure displaying a color image of cups, an image of textural objects and the perfor-
mance of M-3. It can be easily seen from the figure that M-3 successfully captured the
cup and object of interest. The parameters used are: λ = 120, µ = 2552/100, σ = 0.9,
iteration=700 for 19(a) and λ = 130, µ = 2552/10, σ = 2, iteration=400 for 19(c).

(a) Initial Contour (b) Segmented Result (c) Initial Contour (d) Segmented Result

Fig. 20: A figure exhibiting color synthetic textures images and performance of M-3. M-
3 successfully captured the region of interest. The parameters used are λ = 100,
µ = 2552/100, σ = 3, iteration=500 for 20(a) and λ = 80, µ = 2552/50, σ = 3,
iteration=200 for 20(c).
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5.2 Conclusion

A new active contour model for selective segmentation is proposed which can efficiently

capture noisy and textural objects of interest. Moreover, the proposed model maintains

the efficiency in real world and synthetic color textural images. In future, we plan to

extend the proposed algorithm to video segmentation.
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