
Multigrid Algorithm based on Hybrid Smoothers for
Variational and Selective Segmentation Models

Michael Roberts
†, Ke Chen

†∗
and Klaus Irion

‡

†Centre for Mathematical Imaging Techniques and Department of Mathematical
Sciences, The University of Liverpool, United Kingdom

and ‡Department of Radiology, Liverpool Heart and Chest Hospital,
Liverpool, United Kingdom

Abstract
Automatic segmentation of an image to identify all meaningful parts is one of the most challeng-
ing as well as useful tasks in a number of application areas. This is widely studied. Selective
segmentation, less studied, aims to use limited user specified information to extract one or more
interesting objects (instead of all objects). Constructing a fast solver remains a challenge for both
classes of model. However our primary concern is on selective segmentation.

In this work, we develop an effective multigrid algorithm, based on a new non-standard smoother
to deal with non-smooth coefficients, to solve the underlying partial differential equations (PDEs)
of a class of variational segmentation models in the level set formulation. For such models,
non-smoothness (or jumps) is typical as segmentation is only possible if edges (jumps) are
present. In comparison with previous multigrid methods which were shown to produce an
acceptable mean smoothing rate for related models, the new algorithm can ensure a small and
global smoothing rate that is a sufficient condition for convergence. Our rate analysis is by Local
Fourier Analysis and, with it, we design the corresponding iterative solver, improving on an
ineffective line smoother. Numerical tests show that the new algorithm outperforms multigrid
methods based on competing smoothers.

Keywords. Partial differential equations, multigrid, fast solvers, Local Fourier Analysis, image
segmentation, jump coefficients.

1. Introduction

Segmentation of an image into its individual objects is one incredibly important application of
image processing techniques. Not only are accurate segmentation results required, but also it is
required that the segmentation method is fast. Many imaging applications demand increasingly
higher resolution e.g. an image of size 25000 × 25000 (or practically 108 unknowns) can be
common in oncology imaging. Here we address the problem of slow solutions by developing a
fast multigrid method for PDEs arising from segmentation models.

Segmentation can take two forms; firstly global segmentation is the isolation of all objects in an
image from the background and secondly, selective segmentation is the isolation of a subset of the
objects in an image from the background. Selective segmentation is very useful in, for example,
medical imaging for the segmentation of single organs.

∗Email k.chen@liverpool.ac.uk, Web: www.liv.ac.uk/cmit (corresponding author). Work supported by UK EPSRC
grants EP/K036939/1 and EP/N014499/1.

1

Approaches to image segmentation broadly fall into two classes; region-based and edge-based.
Some region-based approaches are region growing [1], watershed algorithms [37], Mumford-Shah
[26] and Chan-Vese [15]. The final two of these are PDE-based variational approaches to the
problem of segmentation. There are also models which mix the two classes to use the benefits of
the region-based and edge-based approaches and will incorporate features of each. Edge-based
methods aim to encourage an evolving contour towards the edges in an image and normally
require an edge detector function [12]. The first edge-based variational approach was devised by
Kass et al. [21] with the famous snakes model, this was further developed by Casselles et al. [12]
who introduced the Geodesic Active Contour (GAC) model. Region-based global segmentation
models include the well known works of Mumford-Shah [26] and Chan-Vese [15]. Importantly
they are non-convex and hence a minimiser of these models may only be a local, not the global,
minimum. Further work by Chan et al. [14] gave rise to a method to find the global minimiser for
the Chan-Vese model under certain conditions.

Selective segmentation of objects in an image, given a set of points near the object or objects to
be segmented, builds in such user input to a model using a set S = {(xi, yi) ∈ Ω, 1 ≤ i ≤ k}
where Ω ⊂ R2 is the image domain [19, 5, 6]. Nguyen et al. [28] considered marker sets S and
A which consist of points inside and outside, respectively, the object or objects to be segmented.
Gout et al. [19] combined the GAC approach with the geometrical constraint that the contour
pass through the points of S . This was enforced with a distance function which is zero at S and
non-zero elsewhere. Badshah and Chen [5] then combined the Gout et al. model with [15] to
incorporate a constraint on the intensity in the selected region, thereby encouraging the contour to
segment homogenous regions. Rada and Chen [30] introduced a selective segmentation method
based on two-level sets which was shown to be more robust than the Badshah-Chen model. We
also refer to [6, 22] for selective segmentation models which include different fitting constraints,
using coefficient of variation and the centroid of S respectively.

None of these models have a restriction on the size of the object or objects to be detected and
depending on the initialisation these methods have the potential to detect more or fewer objects
than the user desired. To address this and to improve on [30], Rada and Chen [31] introduced
a model (we refer to it as the Rada-Chen model from now on) combining the Badshah-Chen [5]
model with a constraint on the area of the objects to be segmented. The reference area used to
constrain the area within the contour is that of the polygon formed by the markers in S . Spencer
and Chen [33] recently introduced a model with the distance fitting penalty as a standalone term
in the energy functional, unbounding it from the edge detector term of the Gout et al. model. All
of the above selective segmentation models discussed are non-convex and hence the final result
depends on the initialisation. Spencer and Chen [33], in the same paper, reformulated the model
they introduced to a convex form using a penalty term as in [14]. We have considered the convex
Spencer-Chen model but found that the numerical implementation is unfortunately sensitive to
the main parameters and is unstable if they aren’t chosen correctly within a small range; hence
we focus on the non-convex model they introduce for which reliable results have been found (we
refer to this as the Spencer-Chen model from now on). A convex version of the Rada-Chen model
cannot be formulated [33]. In this paper we only consider 2D images, however for completion we
remark that 3D segmentation models do exist [23, 39].

Solving the PDE models, in the context of large scale images, quickly remains a challenge. The
variational approach to image segmentation involves the minimisation of an energy functional
such as that in [31]. This will typically involve solving a system of equations from a discretised
PDE using an iterative method. In particular, discretisations of models such as [5, 6, 15, 31, 33]
are non-linear and so require non-linear iterative methods to solve. The number of equations in

2

the system is equal to the number of pixels in the image, which can be very large, and for each
equation in the system the number of steps of an iterative method required can also be very large
(to reach convergence). Due to improvements in technology and imaging, we now can produce
larger and larger images, however this has the direct consequence that analysis of such images
has become much more computationally intensive. We remark that if we directly discretise the
variational models first (without using PDEs), Chan-Vese type models can be reformulated into
minimisation based on graph cuts and then fast algorithms have been proposed [7, 25].

The multigrid approach for solving PDEs in imaging has been tried before and previous work
by Badshah and Chen [3, 4] introduced a 2D Chan-Vese multigrid algorithm for two-phase and
multi-phase images, additionally Zhang et al. [39] implemented a multigrid algorithm for the
3D Chan-Vese model. The fundamental idea behind multigrid is that if we perform most of the
computations on a reduced resolution image then the computational expense is lower. We then
transfer our solution from the low resolution grid to the high resolution grid through interpolation
and smooth out any errors which have been introduced by the interpolation using a few steps
of a smoothing algorithm, e.g. Gauss-Seidel. The multigrid method is an optimal solver when
it converges [24, 34]. This requires that the smoothing scheme, which corrects the errors when
transferring between the higher and lower resolution images and vice-versa, is effective, i.e.
reduces the error magnitude of high-frequency components quickly.

In the large literature of multigrid methods, the convergence problem associated with non-smooth
or jumping coefficients was often highlighted [2, 11] and developing working algorithms which
converge is a key problem. Much attention was given to designing better coarsening strategies
and improved interpolation operators [38, 40] while keeping the simple smoothers; such as the
damped Jacobi, Gauss-Seidel or line smoothers. In practice, one can quickly exhaust the list of
standard smoothers and yet cannot find a suitable one unless compromising in optimality by
increasing the number of iterations. In contrast, our approach here is to seek a non-standard and
more effective smoother with an acceptable smoothing rate. Our work is motivated by Napov
and Notay [27] who established the explicit relationship of a smoothing rate to the underlying
multigrid convergence rate for linear models; in particular the former also serves as the lower
bound for the latter.

The contributions of this paper can be summarised as follows: (1) We review six smoothers
for the Rada-Chen and Spencer-Chen selective segmentation models and perform Local Fourier
Analysis (LFA) to assess their performance and quantitatively determine their effectiveness (or
lack of). (2) We propose an effective non-linear multigrid method to solve the Rada-Chen model
[31] and the Spencer-Chen model [33], based on new smoothers that add non-standard smoothing
steps locally at coefficient jumps. We recommend in particular one of our new hybrid smoothers
which achieves a better smoothing rate than the other smoothers studied and thus gives rise
to a multigrid framework which converges to the energy minimiser faster than when standard
smoothers are used.

The remainder of this paper is structured as follows; in §2 we review some global and selective
segmentation models building to the Rada-Chen and Spencer-Chen models. In §3 we describe the
Full Approximation Scheme multigrid framework, give details of six smoothers that we considered
and compare the smoothing rates. We find that none of these standard smoothers can produce
a small enough smoothing rate to yield an effective multigrid method and so in §4 we then
introduce two new hybrid smoothers based on new iterative schemes to improve the smoothing
rates at those pixels where the six smoothers perform badly. In §5 we test our algorithms with
some numerical results, recommend the best algorithm using one of our proposed smoothers and

3

analyse the complexity of the recommended multigrid algorithm. Finally in §6 we provide some
concluding remarks.

2. Review of segmentation models

Our methods will apply to both global segmentation models and selective segmentation models.
It is necessary to briefly describe both types. Denote a given image in domain Ω ⊂ R2 by z(x, y).

2.1. Global segmentation models

The model of Mumford and Shah [26] is one of the most famous and important variational models
in image segmentation. We will review its two-dimensional piecewise constant variant, commonly
known as the Chan-Vese (CV) model [15], which takes the form

min
Γ,c1,c2

FCV(Γ, c1, c2) = µ · length(Γ) + λ1

∫
Ω1

|z(x, y)− c1|2dΩ + λ2

∫
Ω2

|z(x, y)− c2|2dΩ (1)

where the foreground Ω1 is the subdomain to be segmented, the background is Ω2 = Ω\Ω1
and µ, λ1, λ2 are fixed non-negative parameters. The values c1 and c2 are the average intensities
of z(x, y) inside Ω1 and Ω2 respectively. Using the ideas of Osher and Sethian [29], a level set
function

φ(x, y) =

> 0, (x, y) ∈ Ω1,
0, (x, y) ∈ Γ,
< 0, otherwise,

is used by [15] to track the object boundary Γ, where we now define it as the zero level set of φ, i.e.
Γ = {(x, y) ∈ Ω | φ(x, y) = 0}. We reformulate (1) as

min
φ,c1,c2

FCV(φ, c1, c2) =µ
∫

Ω
|∇Hε(φ)|dΩ + λ1

∫
Ω
(z(x, y)− c1)

2Hε(φ)dΩ

+ λ2

∫
Ω
(z(x, y)− c2)

2(1− Hε(φ))dΩ,
(2)

with Hε(φ) a smoothed Heaviside function such as [15]

Hε(φ) =
1
2
+

1
π

arctan
(

φ

ε

)
where we use ε = 1 in our experiments. We solve this minimisation problem in two stages, first
with φ fixed we minimise with respect to c1 and c2, yielding

c1 =

∫
Ω Hε(φ) · z(x, y) dΩ∫

Ω Hε(φ) dΩ
, c2 =

∫
Ω(1− Hε(φ)) · z(x, y) dΩ∫

Ω(1− Hε(φ)) dΩ
, (3)

and secondly, with c1 and c2 fixed we minimise (2) with respect to φ. This requires the determina-
tion of the associated Euler-Lagrange form [15] and then solving the resulting PDE. A drawback
of the Chan-Vese functional (2) is that it is non-convex. Therefore a minimiser of this functional
may only be a local minimum and not the global minimum. Hence the final segmentation result is
dependent on the initial contour. Chan et al. [14] reformulated (2) to obtain an equivalent convex
model and hence we can always obtain the global minimum for this model.

4

2.2. Selective segmentation models

Selective segmentation models make use of user input, being a marker set of points near the object
or objects to be segmented. Let S = {(xi, yi) ∈ Ω, 1 ≤ i ≤ k} be such a marker set. The contour is
encouraged to pass through or near the points of S by a distance function such as [23]

d(x, y) =
k

∏
i=1

(
1− e−

(xi−x)2

2σ2 e−
(yi−y)2

2σ2
)

, ∀(x, y) ∈ Ω, (xi, yi) ∈ S ,

where σ is a fixed non-negative tuning parameter. See, for example, [19, 33] for other distance
functions. The distance function is zero at the points of S and non-zero elsewhere, taking a
maximum value of one. Gout et al. [23] were the first to introduce a model incorporating a
distance function into the Geodesic Active Contour model of Caselles et al. [12], however this
model struggles when boundaries between objects and their background are fuzzy or blurred. To
address this, Badshah and Chen [5] introduced a new model which includes the intensity fitting
terms from the CV model (1). However this model has poor robustness [30] if iterating for too
many steps the final segmentation can include more or fewer objects than intended. To improve
on this, Rada and Chen [31] introduced a model which incorporates an area fitting term into the
Badshah-Chen (BC) model and is far more robust.

The Rada-Chen model [31]. This is the first model we focus on in this paper, defined by

FRC(φ, c1, c2) =µ
∫

Ω
d(x, y)g(|∇z(x, y)|2)|∇Hε(φ)|dxdy

+ λ1

∫
Ω
(z(x, y)− c1)

2Hε(φ)dxdy + λ2

∫
Ω
(z(x, y)− c2)

2(1− Hε(φ))dxdy

+ ν

[(∫
Ω

Hε(φ)dxdy− A1

)2
+

(∫
Ω
(1− Hε(φ))dxdy− A2

)2]
,

(4)

where µ, λ1, λ2, ν are fixed non-negative parameters. The edge detector function g(|∇z(x, y)|2) is
given by g(s) = 1/(1 + βs) for tuning parameter β which takes value 0 at edges and is 1 away
from them. A1 is the area of the polygon formed from the points of S and A2 = |Ω| − A1. The
final term of this functional therefore puts a penalty on the area inside a contour being very
different to A1. The first variation of (4) with respect to φ gives the Euler-Lagrange form [31]

δε(φ)

{
µ∇ ·

(
d(x, y) · g(|∇z(x, y)|2)∇φ

|∇φ|

)
−
[
λ1(z(x, y)− c1)

2 − λ2(z(x, y)− c2)
2
]

− ν

[
(
∫

Ω
Hε(φ)dxdy− A1)− (

∫
Ω
(1− Hε(φ))− A2)

]}
= 0,

(5)

in Ω with the condition that ∂φ
∂n = 0 on ∂Ω, n the outward normal vector and δε(φ) =

dHε(φ)
dφ .

Discretisation of the Rada-Chen model. We denote by φi,j = φ(xi, yj) the approximation of φ at
(i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. We let hx and hy be the grid spacings in the x and y directions
respectively. Using finite differences, and noting A2 = 1− A1, we obtain the scheme

Ai,jφi+1,j + Bi,jφi−1,j + Ci,jφi,j+1 + Di,jφi,j−1 − Si,jφi,j

−δε(φi,j)

{[
λ1(zi,j − c1)

2 − λ2(zi,j − c2)
2
]
− 2ν

[
hxhy ∑

k,l
Hε(φk,l)− A1

]}
= 0,

(6)

5

where Gi,j =
di,j · g(|∇zi,j|)
|∇φi,j|

, Ai,j =
µδε(φi,j)

h2
x

Gi+ 1
2 ,j, Bi,j =

µδε(φi,j)

h2
x

Gi− 1
2 ,j,

Ci,j =
µδε(φi,j)

h2
y

Gi,j+ 1
2
, Di,j =

µδε(φi,j)

h2
y

Gi,j− 1
2
, Si,j = Ai,j + Bi,j + Ci,j + Di,j, (7)

The Spencer-Chen model [33]. The second model we focus on in this paper is defined by

FSC(φ, c1, c2) =µ
∫

Ω
g(|∇z(x, y)|2)|∇Hε(φ)|dxdy + λ1

∫
Ω
(z(x, y)− c1)

2Hε(φ)dxdy

+ λ2

∫
Ω
(z(x, y)− c2)

2(1− Hε(φ))dxdy + θ
∫

Ω
d(x, y)Hε(φ)dxdy,

(8)

where µ, λ1, λ2 and θ are fixed non-negative parameters. Note that this model differs from the
Rada-Chen model (4) as the distance function has been separated from the edge detector term and
is now a standalone penalty term. This model has Euler-Lagrange form

δε(φ)

{
µ∇ ·

(
g(|∇z(x, y)|2)∇φ

|∇φ|

)
−
[
λ1(z(x, y)− c1)

2 − λ2(z(x, y)− c2)
2
]
− θd(x, y)

}
= 0, (9)

in Ω with the condition that ∂φ
∂n = 0 on ∂Ω, again with n the outward normal vector. We discretise

this similarly to the Rada-Chen model previously.

3. Non-linear multigrid Algorithm 1

Segmentation using a non-linear multigrid algorithm has been explored by Badshah and Chen
[3, 4] for the Chan-Vese model [15] and the Vese-Chan model [36] which are global segmentation
models. A multigrid method has not yet been applied to selective segmentation and this is the
main task of this paper, to apply the multigrid method to the Rada-Chen (4) and Spencer-Chen (8)
selective segmentation models. However as we will see shortly, the task is challenging as standard
methods do not work. For brevity we will restrict consideration just to the Rada-Chen model as
the derivations for the Spencer-Chen model are similar.

3.1. The Full Approximation Scheme

To solve the Rada-Chen model we must solve the non-linear system (6) and so we will use the
non-linear Full Approximation Scheme [13, 16, 20, 34] algorithm due to Brandt [9]. Denote a
discretised system by

Nhφh = f h, (10)

where h indicates that these are the functions on the n×m cell-centred grid Ωh and Nh is the
discretised non-linear operator (which contains the boundary conditions). Similarly define the
grids Ω2h as the n

2 ×
m
2 cell-centred grid resulting from the standard coarsening [34] of Ωh, we

indicate functions on Ω2h by f 2h, N2h and φ2h. Let Φh be an approximation to φh such that the
error eh = φh −Φh is smooth. Define the residual as rh = f h − NhΦh. Therefore using (10) we
have the residual equation

Nh(Φh + eh)− NhΦh = rh.

6

If the error eh is smooth then this can be well approximated on Ω2h; the assumption can be a big
issue for non-linear problems. With an approximation of eh on Ω2h we can solve the residual
equation on Ω2h, which is significantly less computationally expensive than solving on Ωh, and
then transfer this error to Ωh and use it to correct the approximation Φh. This method, using the
two grids Ω2h and Ωh, is called a two-grid cycle and it can be nested such that we can consider
solving on Ω4h, Ω8h, . . . and transferring the errors up through the levels to Ωh and smoothing on
each level. This is the multigrid method. We transfer from Ωh to Ω2h by restriction and from Ω2h

to Ωh by interpolation.

Restriction. We use the full-weighting operator I2h
h Φh = Φ2h [34]

φ2h
i,j =

1
16

[
φh

2i−1,2j−1 + 2φh
2i−1,2j + φh

2i−1,2j+1 + 2φh
2i,2j−1 + 4φh

2i,2j

+ 2φh
2i,2j+1 + φh

2i+1,2j−1 + 2φh
2i+1,2j + φh

2i+1,2j+1

]
,

and at boundary pixels φ2h
i,m = 1

2

[
φh

2i,m−1 + φh
2i,m

]
and φ2h

n,j =
1
2

[
φh

n−1,2j + φh
n,2j

]
.

Interpolation. We use a bilinear interpolation operator Ih
2hΦ2h = Φh [34]

φh
2i,2j = φ2h

i,j , φh
2i+1,2j =

1
2

[
φ2h

i,j + φ2h
i+1,j

]
, φh

2i,2j+1 =
1
2

[
φ2h

i,j + φ2h
i,j+1

]
,

φh
2i+1,2j+1 =

1
4

[
φ2h

i,j + φ2h
i+1,j + φ2h

i,j+1 + φ2h
i+1,j+1

]
.

We now move to the most important element of the multigrid method – the smoother. As
previously mentioned, we need eh to be smooth to ensure that Φh is a good approximation to φh.
In practice, we smooth eh by using an iterative method such as Gauss-Seidel [3, 4] and the success
or failure of a multigrid method hinges on the effectiveness of it at smoothing the errors.

3.2. Smoothers for the Rada-Chen [31] model

Gauss-Seidel and Newton iterative methods have been shown to be effective smoothers for PDE
problems with smooth coefficients [34, 38]. In this subsection we look at three distinct smoothing
iterative techniques; lexicographic Gauss-Seidel, line Gauss-Seidel and Newton smoothers. For
each of these smoothers we consider two different approaches for fixing the coefficients in the
scheme - globally or locally. Hence overall we consider six smoothers for [31]; the same smoothers
are adaptable for [33] in a simple way.

Smoothers 1-2 (GSLEX I - II). Lexicographic Gauss-Seidel smoothers are widely used in multigrid
methods [3, 34]. We update φi,j one at a time and work across and down through the grid of pixels
in an image. Lexicographic Gauss-Seidel smoothers for the Rada-Chen model [31]. We can rearrange (6)
as

φi,j =
(

Ai,jφi+1,j + Bi,jφi−1,j + Ci,jφi,j+1 + Di,jφi,j−1 − fi,j
) /

Si,j, (11)

where fi,j = δε(φi,j)
{[

λ1(zi,j − c1)
2 − λ2(zi,j − c2)

2]+ 2ν
[
+ hxhy ∑k,l Hε(φk,l)− A1

]}
, to obtain a

fixed point scheme for the Rada-Chen model. There are two approaches for implementing this
smoother; either update the coefficients globally at the start of each outer iteration or update them
locally, immediately after solving for each pixel value. We denote the global smoother by GSLEX-I
and the local smoother by GSLEX-II. In the algorithm for both smoothers, we cycle through each

7

pixel (i, j) in turn solving (11) and updating the value of φ(i, j), only with GSLEX-II do we update
the coefficients immediately and they are used in the update of φ(i, j) on the next iteration.

Smoothers 3-4 (GSLINE I - II). Line smoothers are often used for harder problems (e.g. anisotropic
coefficients). Here we perform the Gauss-Seidel updates one column at a time but the approach
can be easily reformulated for a row by row update.

Gauss-Seidel line smoothers for the Rada-Chen model [31]. If we rearrange (6) to have all the φ·,j terms
on the left hand side we obtain

Ai,jφi+1,j + Bi,jφi−1,j − Si,jφi,j = Fi,j = −Ci,j φi,j+1 − Di,jφi,j−1 + fi,j, (12)

where we can reformulate (12) as the following tridiagonal system

−S1,j A1,j 0 . . . 0 0

B2,j −S2,j A2,j
. . . 0 0

0 B3,j
.

...
...

. An−2,j 0

0 0
. . . Bn−1,j −Sn−1,j An−1,j

0 0 . . . 0 Bn,j −Sn,j

·

φ1,j

φ2,j
...
...

φn−1,j

φn,j

=

F1,j

F2,j
...
...

Fn−1,j

Fn,j

. (13)

This system is diagonally dominant (by definition (7)) and if Ci,j + Di,j 6= 0 then the system
is strictly diagonally dominant. We can choose parameters for the edge detector and distance
function which ensure this is always true. Therefore this will ensure that the Gauss-Seidel line
smoother will converge to a solution [18]. As before, we obtain two smoothers; the global smoother
GSLINE-I and the local smoother GSLINE-II.

Smoothers 5-6 (NEWT I - II). Our last set of smoothers rely on the Newton fixed point iteration
schemes.

Newton smoothers for the Rada-Chen model [31]. We can rewrite (6) in a non-linear form for φi,j

Si,jφ
(k)
i,j − Pi,j + Qi,j(φ

(k)
i,j) = 0.

where Pi,j = Ai,jφi+1,j + Bi,jφi−1,j + Ci,jφi,j+1 + Di,jφi,j−1 − δε(φi,j)
[
λ1(zi,j − c1)

2 − λ2(zi,j − c2)
2]

and Qi,j = 2νδε(φi,j)
[
hxhy ∑k,l Hε(φk,l)− A1

]
. The Newton scheme to compute φ

(k+1)
i,j is

φ
(k+1)
i,j = φ

(k)
i,j −

(
Si,jφ

(k)
i,j − Pi,j + Qi,j(φ

(k)
i,j)
) / (

Si,j + Q′i,j(φ
(k)
i,j)
)

(14)

where Q′i,j(φ
(k)
i,j) = 2νδε(φi,j)

2hxhy + 2νδ′ε(φi,j))
[

hxhy ∑k,l Hε(φk,l)− A1

]
. We again have a global

smoother, NEWT-I, and a local smoother, NEWT-II.

3.3. Algorithm 1

In §3.1 we briefly discussed the FAS across two grids, Ωh (the fine grid) and Ω2h (the coarse
grid). The two-grid cycles can be nested so we can perform the majority of the computations on
coarser grids than Ω2h, such as Ω4h, Ω8h, etc and recursive use of V-cycles gives rise to multigrid
schemes [34]. The general non-linear multigrid Full Approximation Scheme algorithm is given by
Algorithm 1.

8

Algorithm 1: FAS multigrid algorithm, φh ← FASMG(φh, Nh, f h, γ, ν1, ν2, level, max_level, Smoother)

Pre-smoothing: Perform ν1 iterations of the smoother: φh ← Smoother(φh, f h, ν1).

Coarse grid correction: Compute the residual: rh = f h − Nhφ
h.

Transfer the residual to Ω2h by restriction: r2h = I2h
h rh.

Compute: φ2h = I2h
h φh, Φ2h = φ2h, f

2h
= N2hφ2h + r2h.

if level = max_level then
Compute the exact solution φ2h of N2h(φ2h) = N2h(Φ2h) + r2h

on Ω2h using e.g. time-marching [15] or AOS [34].
else

Perform γ cycles (steps) of
φ2h ← FASMG(φ2h, N2h, f 2h, γ, ν1, ν2, level + 1, max_level, Smoother).

end if
Interpolation: Compute: e2h = φ2h −Φ2h.

Transfer the error to Ωh by interpolation: eh = Ih
2he2h.

Correct the fine grid approximation: φh = φh + eh.
Post-smoothing: Perform ν2 iterations of the smoother: φh ← Smoother(φh, f h, ν2).

3.4. Local Fourier Analysis of Algorithm 1 for the Rada-Chen Model

Local Fourier Analysis (LFA) is a useful tool for finding a quantitative measure for the effectiveness
of a smoother [9, 16, 34]. It is designed to study linear problems with constant coefficients on
an infinite grid. However, it is a standard and recommended [9, 11] tool to analyse non-linear
operators. To overcome the limitations, we neglect the boundary conditions, extend the operator
to an infinite grid and assume that we can linearise the operator locally (we do this by freezing the
coefficients). LFA measures the largest amplification factor on high-frequency errors, for example
if there is a smoothing rate of 0.8 this means that the high-frequency errors are damped by at least
20%. We initially must derive formulas for the approximation error at each pixel in our 5-point
stencil.

Error forms. Using the definition of fi,j, we can rewrite (6) as

Ai,jφi+1,j + Bi,jφi−1,j + Ci,jφi,j+1 + Di,jφi,j−1 − Si,jφi,j = fi,j, (15)

where we fix Ai,j, Bi,j, Ci,j and Di,j based on a previous iteration. The GSLEX I-II and NEWT I-II
schemes all work in a lexicographic manner, and so if we denote the previous iteration as the k-th
we can rewrite (15) as

Ai,jφ
(k)
i+1,j + Bi,jφ

(k+1)
i−1,j + Ci,jφ

(k)
i,j+1 + Di,jφ

(k+1)
i,j−1 − Si,jφ

(k+1)
i,j = fi,j, (16)

and we obtain the error form by subtracting (16) from (15)

Ai,je
(k)
i+1,j + Bi,je

(k+1)
i−1,j + Ci,je

(k)
i,j+1 + Di,je

(k+1)
i,j−1 − Si,je

(k+1)
i,j = 0, (17)

Using a similar argument, we obtain the following error form for the line smoothers GSLINE I-II

Ai,je
(k+1)
i+1,j + Bi,je

(k+1)
i−1,j + Ci,je

(k)
i,j+1 + Di,je

(k+1)
i,j−1 − Si,je

(k+1)
i,j = 0, (18)

9

where e(k)i,j = φi,j − φ
(k)
i,j and e(k+1)

i,j = φi,j − φ
(k+1)
i,j .

Local Fourier Analysis. Define a general Fourier component by

Fθ1,θ2(xi, yj) = exp
(

2πi
θ1i
n

)
· exp

(
2πi

θ2 j
m

)
= exp

(
i
α1xi
hx

)
· exp

(
i
α2yj

hy

)
,

where α1 = 2θ1π
n and α2 = 2θ2π

m and i is the imaginary unit. Note that α1, α2 ∈ [−π, π]. If we
assume for simplicity that the image is square and hence n = m, we first expand

e(k+1)
i,j =

n/2

∑
θ1,θ2=−n/2

ψ
(k+1)
θ1,θ2

Fθ1,θ2(xi, yj), e(k)i,j =
n/2

∑
θ1,θ2=−n/2

ψ
(k)
θ1,θ2

Fθ1,θ2(xi, yj),

in Fourier components and define the smoothing rate µ̂i,j by [34, 16]

µ̂i,j = max
θ1,θ2

µ(θ1, θ2) = max
θ1,θ2

∣∣∣∣∣∣ψ
(k+1)
θ1,θ2

ψ
(k)
θ1,θ2

∣∣∣∣∣∣ ,

in the high-frequency range where (α1, α2) = (2θ1π
n , 2θ2π

n) ∈ [−π, π)2\[−π
2 , π

2)
2. Since µ̂i,j is pixel

dependent (non-linear problems), we may also call it the amplification factor associated with (i, j).

Smoothing rates. For the GSLEX I-II, NEWT I-II smoothers, using (17) and (18), we obtain error
amplification at pixel (i, j)

µ̂i,j = max
θ1,θ2

µ(θ1, θ2) = max
α1,α2

∣∣∣∣∣ Ai,jeiα1 + Ci,jeiα2

Bi,je−iα1 + Di,je−iα2 − Si,j

∣∣∣∣∣ ,

and similarly for the GSLINE I-II smoothers we have

µ̂i,j = max
θ1,θ2

µ(θ1, θ2) = max
α1,α2

∣∣∣∣∣ Ci,jeiα2

Ai,jeiα1 + Bi,je−iα1 + Di,je−iα2 − Si,j

∣∣∣∣∣ . (19)

Comparison of smoothing rates for all smoothers. We consider two different measures of the
smoothing rates; the maximum and average over all pixels (i, j). We define these in the obvious
way as

µ̃max = max
i,j

µ̂i,j = max
i,j

max
θ1,θ2

µ(θ1, θ2) and µ̃avg =
∑i,j µ̂i,j

n2 =
∑i,j maxθ1,θ2 µ(θ1, θ2)

n2 .

Each of the smoothers was implemented in Algorithm 1 on the image in Figure 1(a) with a V-cycle
(γ = 1) and using a 1024× 1024 resolution image as the finest grid and a 32× 32 image as the
coarsest grid and in Table 1 we give µ̃max and µ̃avg for the Rada-Chen and Spencer-Chen models.

In the spirit of previous works [3], for any of these smoothers, one would quote µ̃avg, and although
this appears to be an excellent rate in all cases, it is the rate µ̃max that determines the multigrid
convergence [27]. We therefore choose to focus on µ̃max. Table 1 shows us that µ̃max is better for
the global smoothers compared to the local smoothers, this is in agreement with the results in
[3]. However, the maximum smoothing rate of all of the smoothers is bad and so they cannot be
implemented in a successful multigrid scheme. We look to improve the maximum smoothing rate
of one of the better schemes to obtain a smoother which can be implemented successfully. In the

10

Smoother
Rada-Chen Spencer-Chen

µ̃max µ̃avg µ̃max µ̃avg

GSLINE-I 0.9997 0.4800 0.9990 0.4586
GSLINE-II 0.9997 0.3782 1.0000* 0.4893
GSLEX-I 0.9978 0.5807 0.9927 0.5269
GSLEX-II 1.0000* 0.5244 0.9996 0.5512
NEWT-I 0.9985 0.5642 0.9595 0.4839
NEWT-II 0.9999 0.5749 0.9950 0.5133

Table 1: Smoothers and the associated maximum and average smoothing rates for the Rada-Chen and Spencer-Chen
models. * due to rounding.

next section we will see that the problem is due to discontinuous coefficients in the numerical
schemes, and so we look to [2, 17] which recommend the use of line smoothers rather than a
pixel-by-pixel update approach. We therefore choose the GSLINE-I smoother and review its
performance for the Rada-Chen model in detail to see if we can improve the maximum smoothing
rate of 0.9997. The same approach will be applied to the Spencer-Chen model and the results will
be quoted at the end of the next section.

Algorithm 1. In future discussions, when we compare other algorithms with Algorithm 1, this
will be the FAS algorithm with GSLINE-I as smoother.

4. Non-linear multigrid Algorithm 2

We now consider how to improve the smoothers above to obtain a smoothing rate which is
acceptable. This leads to our new hybrid smoothers and the resulting multigrid Algorithms 2 and
3.

4.1. An idea of adaptive iterative schemes

To gain more insight into the rates in Table 1, we first look only at those pixels (i, j) which have
a large amplification factor. In Figure 1(a) we show the original image on which the rate was
measured and in Figure 1(b) the corresponding binary plot of those pixels where the amplification
factor is above 0.6. We see that the smoother performs poorly at the edges of objects in the image,
a phenomenon also observed in [11] where it was determined that the rate is poor due to the
restriction and interpolation operators performing poorly at these points.

There are two approaches that have been taken to address the poor smoothing rate at edges;
the first is the use of adaptive high order intergrid transfer operators [11] and the second is to
apply extra smoothing steps at those edge points [8, 10, 11]. We prefer the second approach as
the intergrid operators perform well generally and for ease of implementation in the current
framework the second approach is best. The conventional solution when doing extra smoothing
steps would be to simply implement the same smoother many more times at those edge pixels to
obtain a lower smoothing rate, however we shall develop a different scheme to be used at these
pixels which has an improved smoothing rate. In any case, we must first identify those pixels
which contribute large amplification factors without needing to calculate µ̂i,j each time, which
would be computationally expensive. In Table 2 we have selected the pixels in the image from

11

(a) (b) (c)

Figure 1: (a) Original image, (b) Pixels with a smoothing rate over 0.6 are indicated in white, (c) Pixels in white are
those where one of the Ai,j, Bi,j, Ci,j or Di,j values differs from the others by a factor of 50% or more.

Figure 1(a) which give 10 of the largest amplification factors and list the values of Ai,j, Bi,j, Ci,j and
Di,j at these pixels.

i j µ̂i,j Ai,j Bi,j Ci,j Di,j

46 23 0.9997 202 202 137391 35
45 23 0.9995 202 202 77788 35
25 23 0.9931 209 220 5545 36
42 112 0.9889 2263 1802 78959 842
44 82 0.9605 20 626 558 22

i j µ̂i,j Ai,j Bi,j Ci,j Di,j

44 112 0.9591 79987 6659 168919 6736
97 103 0.9551 3228 105968 72894 3203
80 60 0.9312 7937 424357 400718 27651
73 90 0.8756 29221 1426471 170469 21920
73 105 0.8750 321703 24343 242663 32126

Table 2: The pixels with 10 of the largest smoothing rates with the corresponding values of Ai,j, Bi,j, Ci,j and Di,j.

A pattern emerges that at these edge pixels (jumps) at least one of the values of Ai,j, Bi,j, Ci,j and
Di,j is significantly different to the others, Figure 1(c) shows those pixels where they differ by 50%
(i.e. max(Ai,j, Bi,j, Ci,j, Di,j)/ min(Ai,j, Bi,j, Ci,j, Di,j) > 1.5).

Definition 1. We can identify the edge pixels as those where at least one of Ai,j, Bi,j, Ci,j or Di,j differs
significantly from the others, this is precisely the set of jumps in the coefficients of (6), we denote this set by
D. For the set of pixels where Ai,j, Bi,j, Ci,j or Di,j are relatively similar we denote it as Ω\D.

We compare the maximum and average smoothing rates over D and Ω\D below:

Smoother µ̃maxD µ̃avg D µ̃max Ω\D µ̃avg Ω\D
GSLINE-I 0.9997 0.5121 0.7705 0.4386

(20)

We see that the maximum amplification factor over Ω\D of 0.7705 would mean that the number
of iterations required to reduce the high-frequency errors by 90% reduces from 7675 to 9. We now
focus on reducing the amplification factor for the pixels of D.

Classifying the jumps. There are 14 possible cases to consider where one of the coefficients
Ai,j, Bi,j, Ci,j or Di,j is relatively larger (L) or smaller (S) than the others, these are all shown below:

Case # Ai,j Bi,j Ci,j Di,j

1 S L L S
2 S L S L
3 L S L S
4 L S S L
5 L L S S
6 S S L L
7 L S S S

Case # Ai,j Bi,j Ci,j Di,j

8 S S L S
9 S L S S
10 S S S L
11 L L S L
12 L S L L
13 L L L S
14 S L L L

(21)

12

We can now label each pixel in D as one of the cases from 1 to 14. The choice of label L or S for a
coefficient will be dependent on the coefficients at each pixel. Typically, if the largest coefficient is
50% larger than the smallest we group the coefficients as large or small by K-means or some other
classification method. For a pixel in D, we now look to adapt the iterative scheme (15) for each
of these cases to give a scheme which has a better smoothing rate than implementing GSLINE-I
directly. In the interests of brevity, we consider Case 1 in detail and will generalise the results to
other cases next.

4.1.1 An adapted iterative scheme and its LFA form

Our aim is to propose a new iteration scheme which leads to a smaller smoothing rate by the LFA.
For Case 1 pixels, Ai,j and Di,j are relatively small and Bi,j and Ci,j are relatively large. We can
rewrite (15) as

Bi,jφi−1,j + Ci,jφi,j+1 − Si,jφi,j = fi,j − Ai,jφi+1,j − Di,jφi,j−1,

by moving the small terms to the right hand side. We now look to solve φi−1,j, φi,j+1 and φi,j as a
coupled system. We can rewrite this scheme, with the iteration number indicated, as

Bi,jφ
(k+1)
i−1,j + Ci,jφ

(k+1)
i,j+1 − Si,jφ

(k+1)
i,j = fi,j − Ai,jφ

(k)
i+1,j − Di,jφ

(k)
i,j−1. (22)

The amplification factor for such a scheme is

µ̂i,j = max
θ1,θ2

µ(θ1, θ2) = max
α1,α2

|Ai,jeiα1 + Di,je−iα2 |
|Si,j − Bi,je−iα1 − Ci,jeiα2 | , (23)

derived as in §3.4. In fact, we see the following improvements to the maximum and average
smoothing rates for all of the Case 1 pixels by using the adapted iterative scheme (22) rather than
the GSLINE-I smoother in (13)

µ̃max = 0.9863, µ̃avg = 0.7174 =⇒ µ̃max = 0.7324, µ̃avg = 0.3013

Reducing the smoothing rate from 0.9863 to 0.7324 is dramatic; exemplified by the fact that to
reduce high-frequency errors by 90% for Case 1 pixels with GSLINE-I we would have required
167 iterations but now we need just 8. Hence, now we know that the scheme (22) gives us a better
smoothing rate than GSLINE-I at these pixels.

4.1.2 Adapted schemes for all cases of (21) and their rates by LFA

Using the central idea of lagging the small terms in (21) (between 1 and 3 terms), we can derive
adapted schemes for all cases in the same manner as for Case 1 previously. In Table 3 we give the
comparison of the maximum smoothing rate of GSLINE-I, µGSLINE, with the maximum smoothing
rate of the adapted schemes µadapted1 .

The results from Table 3 fall into 3 categories:

♠-cases, where only one term is lagged and the improvements are remarkable. This gives a
promising indication that the lagging of particular terms in certain cases can improve the
smoothing rate. This motivates our next step.

♦-cases, where either 2 or 3 terms are lagged. We see either only a minor improvement to
an already high rate or the rate has actually worsened.

13

Case # µGSLINE µadapted1

1 0.9863 0.7324 ♦
2 0.6259 0.8515 ♦
3 0.9900 0.7418 ♦
4 0.6408 0.7415 ♦
5 0.7105 1.0000 �
6 0.9524 1.0000 �
7 0.9592 0.9536 ♦

Case # µGSLINE µadapted1

8 0.9997 0.9569 ♦
9 0.9481 0.9426 ♦
10 0.8935 0.9640 ♦
11 0.2693 0.2693 ♠
12 0.7729 0.2663 ♠
13 0.9865 0.2704 ♠
14 0.5993 0.2706 ♠

Table 3: Comparison of the maximum amplification factors using GSLINE-I and the adapted iterative schemes for each
case. The �-cases are the decoupled cases which give a rate of precisely 1, as remarked, the ♦-cases have minor
or no improvement in the smoothing rate and the ♠-cases have a good final rate.

�-cases, where 2 terms are lagged and we see the worst results: a smoothing rate of 1.0000
is attained for cases 5, 6 in Table 3. Below we prove analytically that for Case 6 pixels the
smoothing rate when using the adapted scheme will always be precisely 1.

Case 6 pixels have the LFA form µ̂i,j = maxα1,α2

|Ai,jeiα1+Bi,je−iα1 |
|Si,j−Ci,jeiα2−Di,je−iα2 | , and we see a decoupling

in the maximisation with respect to α1 and α2 which allows us to rewrite this as

µ̂i,j =
max

α1

∣∣∣Ai,jeiα1 + Bi,je−iα1

∣∣∣
min

α2

∣∣∣Si,j − Ci,jeiα2 − Di,je−iα2

∣∣∣ =
max

α1

∣∣∣(Ai,j + Bi,j) cos(α1) + i(Ai,j − Bi,j) sin(α1)
∣∣∣

min
α2

∣∣∣ [Ai,j + Bi,j + Ci,j(1− cos(α2)) + Di,j(1− cos(α2))
]
+ i(Ci,j − Di,j) sin(α2)

∣∣∣
=

√
max

α1

[
A2

i,j + B2
i,j + 2Ai,jBi,jcos(2α1)

]
√

min
α2

[[
Ai,j + Bi,j + Ci,j(1− cos(α2)) + Di,j(1− cos(α2))

]2
+ (Ci,j − Di,j)2 sin(α2)2

] =
(Ai,j + Bi,j)

2

(Ai,j + Bi,j)2 = 1,

attained at (α1, α2) = (−π, 0) ∈ [−π, π)2\[−π
2 , π

2)
2. Similarly we have µ̂i,j = 1 for Case 5

too.

We claim that it is necessary to have both of α1 and α2 in the numerator or denominator of
the LFA formulation to ensure a low smoothing rate. We note that for Cases 5 and 6 this is
not the case.

We now focus on improving the ♦-cases and the Case 8 in particular and its LFA to motivate us
on how to proceed i.e. to see whether an alternative adaptation to the iterative scheme gives a
better smoothing rate. The results apply to � cases also.

Improving the adapted scheme for Case 8. A pixel which is labelled as Case 8 is one where
Ai,j, Bi,j, Di,j are relatively small and Ci,j is relatively large. Using the previous method we would
devise a scheme where the terms with coefficients Ai,j, Bi,j, Di,j would be lagged at time step k and
the term with coefficient Ci,j would be updated to time step k + 1. We pick the particular Case 8
pixel from Table 2 which has the worst smoothing rate and in Figure 2 we look at the smoothing
rate for the scheme (15) with different coefficients lagged.

This shows that the best rate is achieved when just the smallest of the coefficients (Di,j) is lagged.
Even the lagging of two of the smallest coefficients gives an improvement on lagging all three.
This gives some indication that the smoothing rate is best when the smallest coefficient is lagged
and this has proven to be the case in every one of the many examples which the authors have
tried. It would be an interesting piece of future work to prove that this must be true analytically.

14

D C D and C B B and D B and C B,C and D A A and D A and C A,C and D A and B A,B and D A,B and C

Lagged Coefficients

0

0.2

0.4

0.6

0.8

1

Sm
oo

thi
ng

 R
ate

Figure 2: Comparison of the smoothing rate for the Case 8 pixel with the worst smoothing rate when different coefficient
terms are lagged. In this case, Ai,j = 202, Bi,j = 202, Ci,j = 137391 and Di,j = 35 (Table 2).

Hence we propose to lag just the smallest of the coefficients (Di,j) in a modified scheme for all
cases.

4.1.3 Improved adapted schemes for all cases

We re-consider the ♦ and � cases which have more than one relatively small coefficient. Lagging
only the smallest coefficient, the LFA forms simplify to those of Cases 11–14 and we expect major
improvements. In Table 4 we compare the maximum smoothing rate of GSLINE-I, µGSLINE, for
these cases with the maximum smoothing rate of an improved, adapted iterative scheme which
lags only the smallest coefficient µadapted2 .

Case # µGSLINE µadapted2

1 0.9863 0.4467
2 0.6259 0.4398
3 0.9900 0.4280
4 0.6408 0.4468
5 0.7105 0.4659
6 0.9524 0.4547
7 0.9592 0.4789

Case # µGSLINE µadapted2

8 0.9997 0.4779
9 0.9481 0.4716
10 0.8935 0.4749
11 0.2693 0.2693
12 0.7729 0.2663
13 0.9865 0.2704
14 0.5993 0.2706

Table 4: Comparison of the maximum amplification factors using GSLINE-I and the adapted iterative schemes for each
case with just the smallest coefficient term lagged.

As expected, there is a significant improvement in the smoothing rate in all cases when we lag just
the smallest coefficient, it also makes implementation faster as we now consider just 4 cases of
possible lagged coefficients rather than 14 and therefore have only 4 iterative schemes to consider.
Taking our guidance from these results, we propose two hybrid smoothers which both perform
standard smoothing iterations on pixels of Ω\D and perform non-standard adapted iterative
schemes on the pixels in D.

Based on the above pixel-wise motivating tests, we now present two iterative strategies for our new
smoothers. The first smoother is natural: for each pixel (i, j), in D, all of the directly connected
neighbouring pixels are collectively updated except the term with the smallest coefficient. That is,

15

Hybrid Smoother 1 uses block structure Vanka-type smoothing schemes [32, 35] to update the
pixels in D. The potential drawback is that previously updated pixels may enter to the next group
of (potentially multiple) updates, making subsequent analysis intractable. Hence our second
smoother, denoted by ‘Hybrid Smoother 2’, incorporates partial line smoothing operations at
pixels in D and only pixels that are the same line as (i, j) are updated. This line by line approach
facilitates subsequent analysis.

4.2. Hybrid Smoother 1

Our first hybrid smoother updates blocks of pixels at each update, these blocks may overlap. This
is an overlapping block smoother of Vanka-type [32, 35]. Once again we start with the set D of
pixels with jumping coefficients. For brevity, we will detail the derivation of the iterative scheme
for pixels in D for which Ai,j is smallest. We will then state the schemes for the other laggings
(derived in the same manner).

Ai,j lagged. The lagging of coefficient Ai,j in equation (15) gives rise to the iterative scheme

Ai,jφ
(k)
i+1,j + Bi,jφ

(k+1)
i−1,j + Ci,jφ

(k+1)
i,j+1 + Di,jφ

(k+1)
i,j−1 − Si,jφ

(k+1)
i,j = fi,j, (24)

We are solving for φi−1,j, φi,j+1, φi,j−1 and φi,j simultaneously and as we have only one equation,
we need three more. We get these by considering (15) at the pixels (i− 1, j) and (i, j + 1) and
(i, j− 1), which gives us the three equations

Bi,jφi,j − Si−1,jφi−1,j = fi−1,j − Bi−1,jφi−2,j − Ci−1,jφi−1,j+1 − Di−1,jφi−1,j−1,

Ci,jφi,j − Si,j+1φi,j+1 = fi,j+1 − Ai,j+1φi+1,j+1 − Bi,j+1φi−1,j+1 − Ci,j+1φi,j+2,

Di,jφi,j − Si,j−1φi,j−1 = fi,j−1 − Ai,j−1φi+1,j−1 − Bi,j−1φi−1,j−1 − Di,j−1φi,j−2,

which have been rearranged to have the φi−1,j, φi,j+1, φi,j−1 and φi,j terms on the left hand side. So,
using these along with (24) we obtain the system (25).

Scheme with Ai,j lagged:

−Si,j Bi,j Ci,j Di,j
Bi,j −Si−1,j 0 0
Ci,j 0 −Si,j+1 0
Di,j 0 0 −Si,j−1

 ·

φi,j
φi−1,j
φi,j+1
φi,j−1

 =

fi,j − Ai,jφi+1,j

fi−1,j − Ci−1,jφi−1,j+1 − Di−1,jφi−1,j−1 − Bi−1,jφi−2,j
fi,j+1 − Ai,j+1φi+1,j+1 − Bi,j+1φi−1,j+1 − Ci,j+1φi,j+2
fi,j−1 − Ai,j−1φi+1,j−1 − Bi,j−1φi−1,j−1 − Di,j−1φi,j−2

. (25)

This system is strictly diagonally dominant and follows the guidance in [34] that collective update
schemes are better for jumping coefficients. This system also has an arrow structure in the matrix
and can be solved very quickly (in 24 operations).

4.2.1 The adapted iterative schemes for other cases

Below are the adapted iterative schemes for the cases when Bi,j, Ci,j or Di,j are lagged, derived in
the same manner as previously when Ai,j was lagged.

Scheme with Bi,j lagged:

−Si,j Ai,j Ci,j Di,j
Ai,j −Si+1,j 0 0
Ci,j 0 −Si,j+1 0
Di,j 0 0 −Si,j−1

 ·

φi,j
φi+1,j
φi,j+1
φi,j−1

 =

fi,j − Bi,jφi−1,j

fi+1,j − Ci+1,jφi+1,j+1 − Di+1,jφi+1,j−1 − Ai+1,jφi+2,j
fi,j+1 − Ai,j+1φi+1,j+1 − Bi,j+1φi−1,j+1 − Ci,j+1φi,j+2
fi,j−1 − Ai,j−1φi+1,j−1 − Bi,j−1φi−1,j−1 − Di,j−1φi,j−2

. (26)

16

Scheme with Ci,j lagged:

−Si,j Ai,j Bi,j Di,j
Ai,j −Si+1,j 0 0
Bi,j 0 −Si−1,j 0
Di,j 0 0 −Si,j−1

 ·

φi,j
φi+1,j
φi−1,j
φi,j−1

 =

fi,j − Ci,jφi,j+1

fi+1,j − Ci+1,jφi+1,j+1 − Di+1,jφi+1,j−1 − Ai+1,jφi+2,j
fi−1,j − Ci−1,jφi−1,j+1 − Di−1,jφi−1,j−1 − Bi−1,jφi−2,j
fi,j−1 − Ai,j−1φi+1,j−1 − Bi,j−1φi−1,j−1 − Di,j−1φi,j−2

. (27)

Scheme with Di,j lagged:

−Si,j Ai,j Bi,j Ci,j
Ai,j −Si+1,j 0 0
Bi,j 0 −Si−1,j 0
Ci,j 0 0 −Si,j+1

 ·

φi,j
φi+1,j
φi−1,j
φi,j+1

 =

fi,j − Di,jφi,j−1

fi+1,j − Ci+1,jφi+1,j+1 − Di+1,jφi+1,j−1 − Ai+1,jφi+2,j
fi−1,j − Ci−1,jφi−1,j+1 − Di−1,jφi−1,j−1 − Bi−1,jφi−2,j
fi,j+1 − Ai,j+1φi+1,j+1 − Bi,j+1φi−1,j+1 − Ci,j+1φi,j+2

. (28)

4.2.2 Implementing Hybrid Smoother 1

To minimise grid sweeps and ensure that all pixels are covered, we use the following pseudo-
algorithm for Hybrid Smoother 1:

I Perform GSLINE-I on all lines in the image.

II For each pixel in D, perform the appropriate scheme of (25)–(28).

We justify the choice of GSLINE-I in step I as it is the recommended smoothing scheme for a
problem with jump coefficients [34]. Note that the schemes in II can overlap the same pixels
several times due to the collective updates.

Algorithm 2. In future discussion, when we use the Hybrid Smoother 1 in the Full Approximation
Scheme, we will call this Algorithm 2.

4.3. Hybrid Smoother 2

Our second hybrid smoother first groups pixels in D by whether Ai,j, Bi,j, Ci,j or Di,j are the
smallest and then by the line they are on. We then perform partial line updates on these groups for
Ai,j, Bi,j, Ci,j or Di,j in sequence along with individual pixel updates on the other pixels, this avoids
the overlap encountered in Hybrid Smoother 1. We note that for pixels in Ω\D the LFA tells
us that the smoothing rate is acceptable (maximum 0.7705) and therefore we design a smoother
which performs cheap GSLEX-I iterations at the pixels of Ω\D and performs the lagged scheme
on the other pixels. We focus initially on how we propose implementing this for the pixels in D
with Ai,j lagged and then we generalise the idea to the laggings of Bi,j, Ci,j and Di,j.

Scheme with Ai,j lagged. Suppose we focus on a pixel (i, j) ∈ D which has coefficient Ai,j the
smallest. If we lag the Ai,j the smoothing rate at this pixel is

µ̂i,j = max
(α1,α2)∈[−π,π)2\[− π

2 , π
2)

2

∣∣∣∣∣ Ai,jeiα1

Bi,je−iα1 + Ci,jeiα2 + Di,je−iα2 − Si,j

∣∣∣∣∣
which is precisely the smoothing rate for a line smoother updating from the top row to the bottom
row. In the majority of cases, if Ai,j is the smallest, we find that many adjacent pixels on that line
also have Ai,· the smallest. So we can perform a partial line smoothing on these pixels.

17

In this new strategy, the only technical issue to address is that, at a pixel (i, j) in set D, the lagged
coefficient (here Ai,j) must be a previously updated pixel in this iteration otherwise we cannot avoid
multiple updates (as with smoother 1) within one smoothing iteration.

Our proposed solution is to view a group of adjacent pixels in set D whose smallest coefficient is
Ai,j (shown as stared pixels in Figure 3) and sit on a line as a superpixel and to update together
with their Ai,j terms lagged. If the superpixel is comprised of a single pixel, we set its immediate
neighbour pixel (here (i, j + 1)) as a starred pixel so the group is of size 2. All other pixels in set D
or not are treated as normal pixels (non-starred) and are relaxed by the GSLEX-1 formula. Hence
in each smoothing step, starred and non-starred pixels are only updated once. In Figure 3 we
illustrate how this proposed algorithm would update the pixels, steps I–V represent one iteration
of the smoother on the 5× 5 grid. The starred pixels represent those pixels whose Ai,j is the
smallest. The algorithm proceeds as follows:

I We identify the pixels in D which have Ai,j the smallest (indicated by a star).

II Perform GSLEX-I on all pixels starting from the first one until we meet a superpixel;

III Perform a collective partial line update on a superpixel (i.e. adjacent starred pixels).

IV If a single starred pixel is found, pair with with a non-starred neighbour and update the
superpixel of 2 pixels as with III.

V Repeat Steps II-IV until we finish all pixels.

I locating ? II III II repeated IV 2 pixels II till end

Figure 3: Illustration of the hybrid algorithm for a pixel grid. Each image represents one step of the algorithm, grey
cells are yet to be updated. The star pixels are pixels in D with Ai,j smallest. Green represents the update by
GSLEX-I and the yellow pixels are the partial line smoothing updates of a superpixel.

4.3.1 The adapted iterative schemes for other cases

We previously focussed on the case for Ai,j being lagged and now discuss other components of
our iterative scheme to cover the cases of Bi,j, Ci,j and Di,j being lagged. Crucially, to ensure that
the scheme agrees with the LFA we must change the direction of update between the schemes for
updating Ai,j, Bi,j, Ci,j and Di,j. For example, if we are lagging Bi,j pixels we must update from
the bottom-right corner to the top-left moving along rows right to left and from the bottom row to
the top row.

These sweeps in other directions are required to help those pixels in D that were treated as
non-starred pixels due to their smallest coefficients not aligned with each other. That is to say,
each of 4 sweeps takes care of one type of alignment of the smallest coefficients (of course there
are no other directions to consider). Consequently after all 4 sweeps, the compounded smoothing
rate at each pixel is small because we have ensured that one of the 4 multiplying factors is small
while the other three are no more than 1.

18

The broad algorithm (I–V) is the same in these cases as for the case of Ai,j lagged; we identify the
pixels which are of that case, perform GSLEX-I on all others and partial line updates on identified
pixels.

Hence our smoother 2 has 4 sweeps, each repeating the above I–V and differing only in update
order and assignment of starred pixels, in one iteration, as shown in Figure 4 where we display
the order in which the pixels and superpixels should be updated for each lagging.

21
16
11
6
1

22
17
12
7
2

23
18
13
8
3

24
19
14
9
4

25
20
15
10
5

A Lagged

5
10
15
20
25

4
9
14
19
24

3
8

13
18
23

2
7

12
17
22

1
6
11
16
21

B Lagged

5
4
3
2
1

10
9
8
7
6

15
14
13
12
11

20
19
18
17
16

25
24
23
22
21

C Lagged

21
22
23
24
25

16
17
18
19
20

11
12
13
14
15

6
7
8
9

10

1
2
3
4
5

D Lagged

Figure 4: Illustration of our Hybrid algorithm 2 (consisting of 4 sweeps in one iteration) for a pixel grid. Here each
lagged case shows the sequential order in which we update pixels and superpixels (based on alignment of the
smallest A, B, C, D coefficients).

4.3.2 Implementing Hybrid Smoother 2

To ensure all laggings are considered, we sweep for Ai,j, Bi,j, Ci,j and Di,j in this order, performing
steps (I–V) on each sweep. These schemes are performed on all pixels in D and we see from
Table 4 that the maximum smoothing rate over D falls from 0.9997 to 0.4789. Therefore to reduce
high-frequency errors by 90%, with GSLINE-I this would have needed 7675 iterations but with the
adapted iterative schemes we need only 4.

As stated, to ensure that all cases are considered, we design a hybrid smoother for which one
outer iteration includes four sweeps of the image domain. In the first sweep we lag Ai,j, then
in the second Bi,j and so on. We note, for example, that in the sweep with Ai,j lagged, then the
pixels with coefficient Bi,j smallest have a poor smoothing rate, however on the Bi,j sweep the rate
is good for these pixels and poor for those where we have Ai,j smallest. However, as the effects
compound multiplicatively, after each outer iteration, the smoothing rate at pixels in D is good
and for Ω\D is also good as these have had 4 GSLEX-I iterations.

We now consider the smoothing rates we can attain with this smoother. Firstly, for the Rada-Chen
model [31], using (20) we see that the maximum smoothing rate in each outer iteration of the
smoother on Ω\D is approximately 0.77054 = 0.3524. By performing the adapted iterative schemes
on D we have a maximum smoothing rate of 0.4789 (Table 4) in a single sweep. We know that the
rate for GSLEX-I is poor for these pixels in D (close to 1) so the main reduction in error occurs
when we perform the adapted scheme with the appropriate lagging. Therefore the maximum
smoothing rate in one outer iteration of the smoother is approximately 0.4789, which is very good.
One consideration we must make is that the domain is covered 4 times in each outer iteration,
which could be computationally intensive for a large number of smoothing steps. Typically we
find that for non-linear problems the number of overall sweeps of the grid is around 10-20 (see, for
example, [11, 39]) for the smoother, therefore we suggest 2 outer iterations (8 grid sweeps) which
gives an impressive smoothing rate and is acceptable computationally.

Adaptive iterative schemes applied to the Spencer-Chen model [33]. We applied Hybrid

19

Smoother 2 to the Spencer-Chen model. In this case using just GSLINE-I we have a maxi-
mum smoothing rate of 0.9990 but using the new smoother, the maximum smoothing rate falls to
0.5032. Therefore, to reduce errors by 90% we need 4 iterations rather than 2302. This is a further
indication that the technique of using the partial line smoothers at the pixels with jumps in the
coefficients is a good way to reduce the maximum smoothing rate of the smoother and the idea
transfers to other models.

Improved smoothing rates for other images. We now show how the maximum smoothing rate for
Hybrid Smoother 2 is smaller than GSLINE-I for several images with different levels of Gaussian
noise. We compare to GSLINE-I as this is the recommended standard smoother for problems
with jumping coefficients. We denote the corresponding maximum smoothing rates as µGSLINE−I
and µGSHYBRID respectively. Results obtained previously are just for the clean image in Figure
1(a). Here we compare the smoothing rates for noisy versions of this image and also of those in
Figure 5.

Image µGSLINE−I µHYBRID

Figure 1(a) + 1% Noise 0.9743 0.4891
Figure 1(a) + 5% Noise 0.9851 0.4815
Problem 1 0.9960 0.4532
Problem 1 + 1% Noise 0.9900 0.4749
Problem 1 + 5% Noise 0.9991 0.4789

Image µGSLINE−I µHYBRID

Problem 2 0.9999 0.4736
Problem 2 + 1% Noise 0.9988 0.4886
Problem 2 + 5% Noise 0.9934 0.4518
Problem 3 0.9999 0.4829
Problem 3 + 1% Noise 0.9999 0.4863
Problem 3 + 5% Noise 0.9999 0.4841

Table 5: Comparison of the maximum smoothing rates for GSLINE-I and Hybrid Smoother 2 for various images.

Algorithm 3. In future discussion, we refer to the Full Approximation Scheme using Hybrid
Smoother 2 as Algorithm 3.

5. Numerical Experiments

In this section we show two types of numerical experiments: comparisons with the current best
methods and analysis of the complexity of Algorithms 2 and 3. Results have been obtained for
many artificial and real images but we restrict to the images shown in Figure 5. We show real
images as these are of most interest for the application of selective segmentation. The Rada-Chen

Problem 1 Problem 2 Problem 3

Figure 5: The test images used in this section for the experiments.

and Spencer-Chen models we look at are non-convex and we therefore need the initialisation to be

20

close to the final solution. Thankfully this can be achieved by setting the initial contour as the
boundary of the polygon formed from the user selected points in S . For examples of such user
defined points, see Figure 7.

Parameter Choices. The values of c1 and c2, being the average intensities inside and outside of the
contour, are updated at the end of each multigrid iteration - the initial values are set to the average
inside and outside the initial contour. We fix µ = 1/2, λ1 = λ2 = 10−4, ν = 1 (for the Rada-Chen
model) and θ = 1 (for the Spencer-Chen model). In all experiments we use a V-cycle, i.e. fix γ = 1.

Number of Smoothing Steps. To decide how many smoothing steps were required in Algorithms
1, 2 and 3, we performed experiments to see how the number of smoothing steps impacted
the number of multigrid cycles for convergence. As the number of smoothing steps increases,
the number of cycles decreases and plateaus. We fix the number of smoothing steps for each
algorithm as the number required for the number of multigrid cycles to first plateau. In Figure 6
we demonstrate how the number of multigrid cycles required for convergence changes with the
number of smoothing steps and how we choose the optimal number of pre- and post-smoothing
steps (ν1 and ν2). In all tests we use 100 iterations of the exact solver (AOS) on the coarsest level.
Using this technique, we fix the smoothing steps for Algorithms 1, 2 and 3 as ν1 = ν2 = 5, 3 and 3

1 2 3 4 5

Smoothing Steps

0

2

4

6

8

10

M
G

 C
y
c
le

s

Figure 6: The number of smoothing steps plotted against the number of multigrid cycles required to achieve convergence
for Algorithm 3 on Problem 1. Guided by this, we choose 3 smoothing steps as the gain plateau’s at this point.

respectively.

5.1. Comparison of Algorithm 2 and Algorithm 3 with AOS

In this section we compare the speed of the proposed Algorithms 2 and 3 with AOS. We use the
image from Problem 1 and scale this to different resolutions. The methods both use the standard

stopping criteria ||φ
(k+1)−φ(k) ||2
||φ(k) ||2

< η, where η is a small tolerance parameter. In Table 6 we see that

Algorithm 2 is faster to reach the stopping criteria (with η = 10−4) than Algorithm 3 and that both
are faster than AOS at all resolutions tested. We see that we have marginal gains for the lower
resolutions and that as the image size grows larger, performance is significantly better. One key
aspect of Algorithms 2 and 3 is that we have the expected ratio for an O(N) method (in 2D) of 4
and hence an optimal complexity multigrid method. We also see that the multigrid method has a
stable number of overall iterations, whereas with the AOS method, the iteration number grows
as the image size grows. Finally, we see that, although it converges faster overall, the cost per
MG cycle is larger for Algorithm 2 than 3. This is due to a higher number of grid sweeps being

21

required in the smoothing steps, however we believe that with improved and optimised coding of
the smoother the performance of Algorithm 2 can be increased to achieve far faster convergence
than that of Algorithm 3.

Image size Number of
Unknowns, N

AOS Algorithm 2 Algorithm 3

Iter CPU Time (s) Iter CPU Time (s) CPU Ratio Iter CPU Time (s) CPU Ratio
256 × 256 65536 32 3.2 4 3.1 - 4 8.8 -
512 × 512 262144 39 17.3 5 11.6 3.7 3 15.0 1.7

1024 × 1024 1048576 48 123.5 5 44.0 3.8 3 43.8 2.9
2048 × 2048 4194304 60 759.2 5 174.2 4.0 3 174.1 4.0
4096 × 4096 16777216 75 8632.4 5 725.9 4.2 3 688.2 4.0
8192 × 8192 67108864 - - 5 2952.2 4.1 3 2766.9 4.0

Table 6: For an image of size N = m× n, we show a comparison of the number of iterations and the associated CPU
times to achieve the same results for the Rada-Chen model for AOS and Algorithms 2 and 3. ‘-’ indicates that
the runtime exceeded 24 hours.

5.2. Comparison of Algorithms 1, 2 and 3

We now look to see the practical gains from improving the smoother, i.e. the improved smoothing
rate of Algorithm 3 should translate into a faster convergence rate [27].

Definition 2. In both Algorithms 2 and 3 we must identify the set D, being pixels at which the coefficients
vary significantly. To do this we compute the minimum multiplicative factor between the largest and smallest
of the coefficients Ai,j, Bi,j, Ci,j, Di,j (see §4.1). We will denote the minimum multiplicative factor by q.

For completion, we will compare Algorithms 2 and 3 to Algorithm 1 for a range of q values. The
algorithms are both used to segment the image in Figure 1(a), with fine grid 10242 and coarse grid
322 and η = 10−4 (all parameters are as earlier in §5).

Level set energies. In Table 7 we give the energy of the level set at the end of each multigrid cycle
for the Rada-Chen model for Algorithms 1, 2 and 3 for various q values. The rows are ordered in
descending order.

Smoother
Iteration

1 2 3 4 5 6 7
Algorithm 1 2.4687 1.9333 1.9271 1.9253 1.9247 1.9241 1.9236
Algorithm 2 (q = 16) 2.4684 1.9333 1.9264 1.9244 1.9238 - -
——–"——– (q = 8) 2.4683 1.9321 1.9251 1.9242 1.9235 - -
——–"——– (q = 4) 2.4683 1.9302 1.9242 1.9237 1.9226 - -
——–"——– (q = 2) 2.4563 1.9269 1.9214 1.9207 1.9199 - -
Algorithm 3 (q = 16) 2.4300 1.9185 1.9180 - - - -
——–"——– (q = 8) 2.4253 1.9171 1.9166 - - - -
——–"——– (q = 4) 2.4184 1.9167 1.9164 - - - -
——–"——– (q = 2) 2.4136 1.9165 1.9163 - - - -

Table 7: Level set energies (×105) after each multigrid iteration of Algorithms 1, 2 and 3 (for varying q) on the image
in Figure 1(a) + 10% Gaussian noise. A dash indicates convergence before iteration number was reached.

Firstly, we see that Algorithm 3 converges in 3 cycles, where Algorithm 2 converges in 5 and
Algorithm 1 converges in 7 cycles. Secondly, we notice that the energy is smallest for Algorithm

22

3 and Algorithm 2 gives a lower energy than Algorithm 1 (for all q values). Finally, we notice
that as q gets smaller (and the number of pixels in D increases), the energy of the level set at
each cycle is smaller. This is all in agreement with the theoretical understanding of the smoothers,
that they should give a small rate on the pixels in D, and by increasing the size of D convergence
improves.

Recommended Algorithm. The CPU-timings for Algorithm 3 are the best of the three algorithms
(Table 6). The level set energies are the lowest for Algorithm 3 (Table 7) also at each iteration.
It performs the best at tackling the PDEs which have many discontinuous coefficients and the
experimental results are in agreement with the theory in §4.3. We therefore recommend Algorithm
3 to achieve a fast solution to the Rada-Chen and Spencer-Chen selective segmentation models.

Algorithm 3 Results. In Figure 7 we briefly show the results of Algorithm 3 applied to the test
images for the Rada-Chen model shown in Figure 1(a) and Figure 3 with η = 10−4.

Figure 7: Algorithm 3 Results; user selections and segmentation results.

5.3. Complexity of Algorithm 3

We analyse Algorithm 3 to estimate the complexity of each multigrid cycle. We show analytically
and experimentally that Algorithm 3 is O(N) as is expected for a multigrid method. We start with
analysis of the complexity of the smoother, restriction operator, interpolation operator and coarse
grid solver and then use the actual CPU-times in Table 6 to confirm the predicted complexity.

Analytical complexity. Consider first only the fine grid with N = nm pixels. Hybrid smoother 2
uses GSLEX-I on K pixels and partial line smoothers on L segments, containing the remaining
N−K pixels. GSLEX-I requires 13K operations. The partial line smoothers requireO(Li) operation,
where Mi is the size of the line segment for i ∈ [0, L]. Suppose the number of operations for
each partial line smoothing is κMi. We can therefore bound the complexity of the smoothing as
13K + κ ∑L

i=0 Mi. We know that K ≤ N and we perform 4 grid sweeps for every ν1 pre-smoothing
steps and ν2 post-smoothing steps. For simplicity, assume a square image (i.e. n = m) and so for
smoothing one one level we have

4(ν1 + ν2)

(
13K + κ

L

∑
i=0

Mi

)
≤ 4(ν1 + ν2)(13N + κnL) ≤ 4(ν1 + ν2)(13 + κ)N

23

operations. With a V- cycle over T grids, the number of operations is

4(ν1 + ν2)(13 + κ)N(1 +
1
4
+

1
16

+ · · ·+ 1
22(T−1)

) < 4(13 + κ)N
ν1 + ν2

1− 2−2 =
16(13 + κ)(ν1 + ν2)

3
N

The restriction operator has complexity at most 15N on the finest grid and with M grids there are
M− 1 restrictions, hence a complexity of less than 20N. Interpolation has complexity at most 5N
on the finest grid and hence all interpolation operators contribute at most 20

3 N operations. Finally,
with AOS as the coarse grid solver each iteration needs 448N · 2−2(M−1) operations, this is clearly
bounded by 448N. Therefore the overall maximum complexity of Algorithm 3 is

16(13 + κ)(ν1 + ν2)

3
N + 20N +

20
3

N + 448νAOSN ≤
[

16(13 + κ)(ν1 + ν2)

3
+ 448νAOS

]
N,

with νAOS the number of AOS iterations performed - as desired, the algorithm is O(N).

Experimental complexity. In Table 6 we show the ratio of the CPU times for Algorithm 3 on Ωh

when compared with the time on Ω2h. We see that the ratio is around 4 which linearly follows the
increase in pixel number. Hence we see experimental confirmation of our analytical result that
Algorithm 3 is an O(N) method.

6. Conclusions

Image segmentation models provide a set of challenging and non-linear PDEs with non-smooth
coefficients. Direct application of multigrid solvers with standard smoothers such as Gauss-Seidel
and line smoothers leads to poor or no convergence. This paper has investigated the reasons why
smoothers become ineffective due to non-smoothness of coefficients and proposed two hybrid
smoothers that are aware of jumps and add extra local smoothing using non-standard iterative
schemes. We find that both smoothers lead to convergent multigrid algorithms, however we
recommend one smoother above the other as results are best experimentally and are shown
to be good theoretically. Experiments confirm that the proposed new algorithm, outperforms
the current fast methods. It also has optimal complexity and therefore is suitable for solving
selective segmentation models for large images. Moreover, the ideas used in the design of the new
smoother can be applied to other segmentation models and potentially non-smooth PDEs from
other applications.

Acknowledgements

The first author wishes to thank the UK EPSRC / the Smith Institute and the Liverpool Heart and
Chest Hospital for supporting the work through an Industrial CASE award. The second author is
grateful to UK EPSRC for grants EP/K036939/1 and EP/N014499/1.

References

[1] R. Adams and L. Bischof. Seeded region growing. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(6):641–647, 1994.

24

[2] R. E. Alcouffe, A. Brandt, Joel E. Dendy Jr., and J. W. Painter. The multi-grid method for the
diffusion equation with strongly discontinuous coefficients. SIAM Journal on Scientific and
Statistical Computing, 2(4):430–454, 1981.

[3] N. Badshah and K. Chen. Multigrid method for the Chan-Vese Model in variational segmen-
tation. Communications in Computational Physics, 4(2):294–316, 2008.

[4] N. Badshah and K. Chen. On two multigrid algorithms for modeling variational multiphase
image segmentation. IEEE Transactions on Image Processing, 18(5):1097–1106, 2009.

[5] N. Badshah and K. Chen. Image selective segmentation under geometrical constraints using
an active contour approach. Communications in Computational Physics, 7(4):759–778, 2010.

[6] N. Badshah, K. Chen, H. Ali, and G. Murtaza. A coefficient of variation based image selective
segmentation model using active contours. East Asian J. Appl. Math., 2:150–169, 2012.

[7] Egil Bae and X. C. Tai. Efficient global minimization for the multiphase chan-vese model of
image segmentationm. In X. C. Tai, Knut-Andreas Lie, T. F Chan, and S. Osher, editors, Energy
Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer
Science 5681, pages 28–41, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[8] D. Bai and A. Brandt. Local mesh refinement multilevel techniques. SIAM Journal on Scientific
and Statistical Computing, 8(2):109–134, 1987.

[9] A. Brandt. Multi-Level Adaptive Solutions to Boundary-Value Problems. Mathematics of
Computation, 31(138):333–390, 1977.

[10] A. Brandt and Oren E. Livne. Multigrid techniques: 1984 guide with applications to fluid dynamics,
volume 67. SIAM, 2011.

[11] C. Brito-Loeza and K. Chen. Multigrid algorithm for high order denoising. SIAM Journal on
Imaging Sciences, 3(3):363–389, 2010.

[12] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic Active Contours. International
Journal of Computer Vision, 22(1):61–79, 1997.

[13] T. F. Chan, K. Chen, and X. C. Tai. Nonlinear multilevel schemes for solving the total variation
image minimization problem. In X. C. Tai, Knut-Andreas Lie, T. F Chan, and S. Osher, editors,
Image Processing Based on Partial Differential Equations: Proceedings of the International Conference
on PDE-Based Image Processing and Related Inverse Problems, CMA, Oslo, August 8–12, 2005,
pages 265–288, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[14] T. F. Chan, Selim Esedoglu, and Mila Nikolova. Algorithms for Finding Global Minimizers of
Image Segmentation and Denoising Models. SIAM Journal on Applied Mathematics, 66(5):1632–
1648, 2006.

[15] T. F. Chan and L. A. Vese. Active contours without edges. IEEE Transactions on Image Processing,
10(2):266–277, 2001.

[16] K. Chen. Matrix Preconditioning Techniques and Applications. Cambridge University Press, 2005.

[17] K. Chen, Y. Dong, and M. Hintermüller. A nonlinear multigrid solver with line gauss-
seidel-semismooth-newton smoother for the fenchel pre-dual in total variation based image
restoration. Inverse Problems and Imaging, 5(2):323–339, 2011.

[18] Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3. JHU Press, 2012.

25

[19] C. Gout, C. Le Guyader, and L. A. Vese. Segmentation under geometrical conditions using
geodesic active contours and interpolation using level set methods. Numerical Algorithms,
39(1-3):155–173, 2005.

[20] Van E. Henson. Multigrid methods nonlinear problems: an overview. In Computational
Imaging, volume 5016, pages 36–48, 2003.

[21] M. Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models. Interna-
tional Journal of Computer Vision, 1(4):321–331, 1988.

[22] M. Klodt, F. Steinbrücker, and Daniel Cremers. Moment Constraints in Convex Optimization
for Segmentation and Tracking. Advanced Topics in Computer Vision, pages 1–29, 2013.

[23] C. Le Guyader and C. Gout. Geodesic active contour under geometrical conditions: Theory
and 3D applications. Numerical Algorithms, 48(1-3):105–133, 2008.

[24] Xue-lei Lin, Xin Lu, Micheal K Ng, and Hai-Wei Sun. A fast accurate approximation method
with multigrid solver for two-dimensional fractional sub-diffusion equation. Journal of
Computational Physics, 323:204–218, 2016.

[25] Fang Lu, Fa Wu, Peijun Hu, Zhiyi Peng, and Dexing Kong. Automatic 3D liver loca-
tion and segmentation via convolutional neural networks and graph cut. arXiv preprint
arXiv:1605.03012, 2016.

[26] D. Mumford and J. Shah. Optimal approximation of piecewise smooth functions ans associ-
ated variational problems. Commu. Pure and Applied Mathematics, 42:577–685, 1989.

[27] Artem Napov and Yvan Notay. Smoothing factor, order of prolongation and actual multigrid
convergence. Numerische Mathematik, 118(3):457–483, 2011.

[28] Thi Nhat Anh Nguyen, Jianfei Cai, Juyong Zhang, and Jianmin Zheng. Robust interactive
image segmentation using convex active contours. IEEE transactions on image processing : a
publication of the IEEE Signal Processing Society, 21(8):3734–43, 2012.

[29] S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1):12–49, 1988.

[30] L. Rada and K. Chen. A new variational model with dual level set functions for selective
segmentation. Communications in Computational Physics, 12(1):261–283, 2012.

[31] L. Rada and K. Chen. Improved Selective Segmentation Model Using One Level-Set. Journal
of Algorithms & Computational Technology, 7(4):509–540, 2013.

[32] C. Rodrigo, F. J Gaspar, and F. J Lisbona. On a local fourier analysis for overlapping block
smoothers on triangular grids. Applied Numerical Mathematics, 105:96–111, 2016.

[33] J. Spencer and K. Chen. A Convex and Selective Variational Model for Image Segmentation.
Communications in Mathematical Sciences, 13(6):1453–1472, 2015.

[34] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2001.

[35] S Pratap Vanka. Block-implicit multigrid solution of navier-stokes equations in primitive
variables. Journal of Computational Physics, 65(1):138–158, 1986.

[36] L. A. Vese and T. F. Chan. A multiphase level set framework for image segmentation using
the MS model. International Journal of Computer Vision, 50(3):271–293, 2002.

26

[37] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based on
immersion simulations. IEEE Trans. Pattern Analysis Machine Intell., 13(6):583–598, 1991.

[38] W. L. Wan and T. F. Chan. Robust multigrid methods for nonsmooth coefficient elliptic linear
systems. Journal of Computational and Applied Mathematics, pages 323–352, 2000.

[39] J. P. Zhang, K. Chen, and B. Yu. A 3D multi-grid algorithm for the CV model of variational
image segmentation. International Journal of Computer Mathematics, 89(2):160–189, 2012.

[40] Yunrong Zhu. Analysis of a multigrid preconditioner for Crouzeix-Raviart discretization
of elliptic partial differential equation with jump coefficients. Numerical Linear Algebra with
Applications, 21(1):24–38, 2014.

27

