
SIAM J. IMAGING SCIENCES c© 2010 Society for Industrial and Applied Mathematics
Vol. 3, No. 3, pp. 363–389

Multigrid Algorithm for High Order Denoising∗

Carlos Brito-Loeza† and Ke Chen‡

Abstract. Image denoising has been a research topic deeply investigated within the last two decades. Excellent
results have been obtained by using such models as the total variation (TV) minimization by Rudin,
Osher, and Fatemi [Phys. D, 60 (1992), pp. 259–268], which involves solving a second order PDE. In
more recent years some effort has been made [Y.-L. You and M. Kaveh, IEEE Trans. Image Process.,
9 (2000), pp. 1723–1730; M. Lysaker, S. Osher, and X.-C. Tai, IEEE Trans. Image Process., 13
(2004), pp. 1345–1357; M. Lysaker, A. Lundervold, and X.-C. Tai, IEEE Trans. Image Process., 12
(2003), pp. 1579–1590; Y. Chen, S. Levine, and M. Rao, SIAM J. Appl. Math., 66 (2006), pp. 1383–
1406] in improving these results by using higher order models, particularly to avoid the staircase
effect inherent to the solution of the TV model. However, the construction of stable numerical
schemes for the resulting PDEs arising from the minimization of such high order models has proved
to be very difficult due to high nonlinearity and stiffness. In this paper, we study a curvature-
based energy minimizing model [W. Zhu and T. F. Chan, Image Denoising Using Mean Curvature,
preprint, http://www.math.nyu.edu/∼wzhu/], for which one has to solve a fourth order PDE. For
this model we develop two new algorithms: a stabilized fixed point method and, based upon this, an
efficient nonlinear multigrid (MG) algorithm. We will show numerical experiments to demonstrate
the very good performance of our MG algorithm.

Key words. denoising, variational models, regularization, fourth order partial differential equations, multilevel
methods

AMS subject classifications. 68U10, 65F10, 65K10

DOI. 10.1137/080737903

1. Introduction. Image denoising is a basic but very important image processing task
that has been extensively investigated for many years. Although there exist different types of
noise, here we study only algorithms for removing additive, zero-mean Gaussian noise. This
can be modeled as

(1.1) z(x, y) = u(x, y) + η(x, y),

where z = z(x, y) is the known noisy image, u = u(x, y) is the unknown true image, and
η = η(x, y) is the unknown additive noise, all of which are defined on a domain Ω ⊆ R

2. The
task of removing noise can be accomplished in traditional ways such as linear filters, which,
though very simple to implement, may cause the restored image to be blurred at the edges. A

∗Received by the editors October 14, 2008; accepted for publication (in revised form) May 18, 2010; published
electronically August 19, 2010.

http://www.siam.org/journals/siims/3-3/73790.html
†Centre for Mathematical Imaging Techniques and Department of Mathematical Sciences, The University of

Liverpool, Peach Street, Liverpool L69 7ZL, United Kingdom (cbrito@liverpool.ac.uk).
‡Corresponding author. Centre for Mathematical Imaging Techniques and Department of Mathematical Sci-

ences, The University of Liverpool, Peach Street, Liverpool L69 7ZL, United Kingdom (k.chen@liverpool.ac.uk,
http://www.liv.ac.uk/∼cmchenke/cmit).

363

http://www.math.nyu.edu/~wzhu/
http://www.siam.org/journals/siims/3-3/73790.html
mailto:cbrito@liverpool.ac.uk
mailto:k.chen@liverpool.ac.uk
http://www.liv.ac.uk/~cmchenke/cmit

364 CARLOS BRITO-LOEZA AND KE CHEN

much better technique is to use nonlinear PDEs as anisotropic diffusion filters because they
apply different strengths of diffusivity to different locations in the image.

Usually anisotropic filters are implemented as second order PDEs; see, for instance, [41,
39]. The main drawback of these models is that they convert smooth functions into piecewise
constant functions in a phenomenon known as the staircase effect, which causes images to
look blocky. Although some effort has been made to numerically reduce the staircase effect in
second order models (see, for instance, [37, 43, 23] and the references therein), some researchers
trying to avoid this problem have turned to higher order models. In this direction are, for
instance, the works presented in [55, 36, 35, 56]. However, very few papers have touched on
fast solvers for these high order models, and this work aims to partially fill this gap.

The outline of this paper is as follows. In section 2 we introduce the model to be solved.
In section 3 we review the existing numerical methods for solving this model. In section 4 the
numerical discretization of the resulting Euler–Lagrange (EL) equation is described. We use
section 5 to introduce our two new algorithms for solving this EL equation: a stabilized fixed
point (SFP) method and a nonlinear multigrid (MG) method. We introduce some early work
on using MG algorithms for similar problems and explain the main difficulties to be overcome.
We also use this section to present a detailed local Fourier analysis of the linearized problem
to have an insight into the performance of the nonlinear MG algorithm. A complexity analysis
is presented as well. In section 6, we present numerical evidence to show the very good and
fast performance of the MG algorithm and explain how it is affected by variations on the
different parameters of the model and the numerical equation. Finally, in section 7 we discuss
how our algorithms can be adapted to solve similar high order problems, and we present our
conclusions in section 8.

2. High order denoising model. Additive noise in images is seen as random high fre-
quency oscillations. Therefore energy minimization–based techniques represented as

(2.1) min
u

{
E(u) ≡ αR(u) +

∫
Ω
|u− z|2 dxdy

}

attempt to damp such oscillations by the regularization term R(u), and the key for noise
removal is to select a suitable R(u) capable of efficiently measuring oscillations. Different high
order approaches for R(u) have been proposed. For example, [55, 35, 36, 13] all use second
order information (i.e., second order derivatives), so it is expected for them to be able to
model noise better than those using only first order information such as the well-known total
variation (TV) model [41, 18].

Curvature-based denoising model. In this paper, we study the model of [56] resulting
from selecting R(u) =

∫
ΩΦ(κ) dxdy with κ the curvature of the image and Φ defined as either

Φ(κ) = |κ| or Φ(κ) = κ2 or, as in [56], as a combination of both.
To minimize (2.1) one could be tempted to use optimization algorithms such as Newton’s

method. There is, however, a problem with this approach; after computing the first order
condition, the resulting algebraic system of equations is highly nonlinear and has a reduced
domain of convergence, causing Newton’s method to fail since it requires a very good initial
guess to guarantee convergence. This fact is not surprising since a similar problem was re-
ported in [51, 20, 17] when solving the very similar formulation of the TV denoising model.

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 365

Multilevel optimization methods of [14], on the other hand, still need to be tested for high
order problems.

Our approach, instead, is to minimize (2.1) by solving its EL equation. This method has
proved to deliver quality restoration results in a wide variety of image processing applications;
see [18, 3, 50] for references. The EL equation we aim to solve is

(2.2) α∇ ·
(
∇Φ′(κ)
|∇u|β

− ∇u · ∇Φ
′(κ)

(|∇u|β)3
∇u
)
+ u− z = 0 in Ω

with Neumann boundary condition ∇u · �ν = 0 on ∂Ω. Note that we already have applied
regularization to avoid division by zero by replacing |∇u| with |∇u|β =

√
|∇u|2 + β. For

simplicity from now on we will write the derivative of Φ(κ) as just Φ′ instead of Φ′(κ).
A remark is in order here: In [56] an image is understood as a surface represented by

(x, y, u(x, y)) where initially u(x, y) = z. In this representation, the curvature term κ that
appears in (2.2) is therefore the curvature of the image surface and is defined by κ ≡ κS =
∇ · ∇u√

|∇u|2+1
. One can adopt the more common understanding of an image as a collection of

level sets and still obtain the same PDE but this time with κ ≡ κLS = ∇ · ∇u
|∇u| standing for

the curvature at every level line or isophote of the image; see [18, 3]. Note that when κLS is
regularized using a β-parameter as above, κLS = ∇ · ∇u

|∇u|β equals κS for β = 1.

The selection of β is actually of great importance in numerical implementations since for
β � 1 the anisotropy of (2.2) is increased, making this model less suitable for MG algorithms.
Regardless of this fact, the MG algorithm we develop here is in this sense very general, allowing
us to select a relatively small value for β or β = 1 and still obtain very good performance.
Moreover, an interesting discussion about the correct value of β for a similar second order
problem can be found in [2]. There, the authors showed that there is a range of values of β
for which the model delivers a good reconstruction; these values are not necessarily extremely
small.

3. Review of numerical methods. We start this section by remarking that to solve (2.2)
only an explicit time-marching (and slow) scheme has been proposed [56]. Before introducing
our numerical algorithm, we will briefly explain the main difficulties and explore possible
options based upon ideas developed in [37, 36, 49]. To this end, first rewrite the EL equation
as

(3.1) α∇ ·
(
D1(u)∇Φ′ −D2(u)∇u

)
+ u− z = 0,

where

D1(u) =
1

|∇u|β
and D2(u) =

∇u · ∇Φ′

(|∇u|β)3
(3.2)

are diffusion coefficients whose numerical values dependmainly on the values of their respective
denominators. Due to noise present in u and the edges of u itself, D1 and D2 are usually
discontinuous coefficients on Ω, causing (3.1) to be highly anisotropic.

In the literature we can find similar PDEs having only D1-type coefficients (for example,
the TV denoising PDE of [41]), and such PDE models represent a class of challenging problems

366 CARLOS BRITO-LOEZA AND KE CHEN

in developing fast and stable numerical algorithms; see [14, 15, 19, 20, 31, 37, 51, 42] and the
references therein. The PDE (3.1) is even more challenging since it contains both D1- and
D2-type coefficients. For example, fixing β = 10−4 in a plain region of the image yields
D1 ∼ O(102) compared to D2 ∼ O(106). Hence, depending upon the smoothness of the image
and the level of noise, this phenomenon can produce a very unbalanced discrete operator.

Solving (3.1) with an explicit method as in [56] has the drawback that the time step needs
to be selected extremely small for stability reasons. To implement this method, first (3.1) is
transformed into the parabolic form

(3.3)
∂u

∂t
= α∇ · V (u) + u− z ≡ r(u),

with V = (D1(u)∇Φ′ − D2(u)∇u) and initial condition u(x, y, 0) = z(x, y), and then (3.3)
is evolved in time until reaching steady state using the easy to implement, but very slow to
converge, explicit Euler method described below:

(3.4) uk+1
i,j = uki,j +Δt r(u)ki,j , with k = 0, 1, . . . and Δt the time step.

One way to accelerate the convergence of the explicit method could be by multiplying
r(u) by |∇u|. This results in the scheme ∂u

∂t = |∇u|ki,jr(u)ki,j, where, again, an explicit Euler
scheme can be used for the time derivative. This idea was applied to similar PDEs in [37, 16]
with some success but failed to deliver considerable acceleration of the explicit method when
it was applied to (3.1).

In summary, the above two explicit methods have the inconvenience of having to obey a
severe restriction on the time step. Usually Δt ∼ O((Δx)4) for fourth order PDEs, which in
our case implies that both schemes are practically of no use for processing large images.

An alternative option could be to find a suitable change of variables, obtaining an easier-
to-solve system of second order equations. This was done in [36, 49] for harmonics maps,
letting the authors solve the problem indirectly. Unfortunately, this does not seem to be
straightforward here. A last option based upon convexity splitting ideas [27, 28] will be
studied in section 5.3.

4. Numerical implementation. We proceed to outline the discretization scheme that we
use. From now on, we assume1 a continuous domain Ω = [0,m]×[0, n] and let (hx, hy) represent
a vector of finite mesh sizes; then we define the infinite grid by Gh = {(x, y) : x = xi = ihx,
y = yj = jhy; i, j ∈ Z}, Ωh = Ω∩Gh, and denote by uh = uh(x, y) = uh(xi, yj) = uh(ihx, jhy)
the discrete version of any function u defined on Ωh. For simplicity we will assume thatm = n,
h = hx = hy, and u and z will take on scaled values in the interval [0, 1]. We will use (·)ψ to
denote the derivative with respect to any variable ψ.

To approximate ∇ · V = (V 1)x + (V 2)y for any V = (V 1, V 2) at some pixel (i, j) we use
central differences between ghost half-points as follows:

(4.1) ∇ · Vi,j =

(
V 1
i+ 1

2
,j
− V 1

i− 1
2
,j

)
h

+

(
V 2
i,j+ 1

2

− V 2
i,j− 1

2

)
h

,

1The choice of Ω = [0, m]× [0, n] ensures that h = 1 on the finest grid without loss of generality.

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 367

where h × h is the size of one cell on the cell-centered grid Ωh. When appropriate we use
min-mod derivatives as defined in the following since, as noted in [41, 18], they help to recover
sharp edges:

(4.2) min-mod (a, b) =

(
sgn a+ sgn b

2

)
min(|a|, |b|).

To compute V 1
i+ 1

2
,j
and V 1

i− 1
2
,j
at the half-points, we proceed in the following way:

Curvature by

κi,j =
(ux)i+ 1

2
,j

|∇u|i+ 1
2
,j

−
(ux)i− 1

2
,j

|∇u|i− 1
2
,j

+
(uy)i,j+ 1

2

|∇u|i,j+ 1
2

−
(uy)i,j− 1

2

|∇u|i,j− 1
2

.

Partial derivatives in x by the central differencing of two adjacent whole pixels:

(ux)i+ 1
2
,j = (ui+1,j − ui,j)/h,

(ux)i− 1
2
,j = (ui,j − ui−1,j)/h,

(Φ′
x)i+ 1

2
,j =

(
Φ′
i+1,j − Φ′

i,j

)
/h,

(Φ′
x)i− 1

2
,j =

(
Φ′
i,j − Φ′

i−1,j

)
/h,

|∇u|i+ 1
2
,j =

√
((ux)i+ 1

2
,j)

2 + ((uy)i,j+ 1
2
)2 + β.

Partial derivatives in y by the min-mod of (·)y’s at two adjacent whole points:

(uy)i+ 1
2
,j = min-mod

(
1
2h(ui+1,j+1 − ui+1,j−1),

1
2h(ui,j+1 − ui,j−1)

)
,

(uy)i− 1
2
,j = min-mod

(
1
2h(ui,j+1 − ui,j−1),

1
2h(ui−1,j+1 − ui−1,j−1)

)
,

(Φ′
y)i+ 1

2
,j = min-mod (ζ, ϑ) with

ζ = 1
2h

(
Φ′
i+1,j+1 − Φ′

i+1,j−1

)
and ϑ = 1

2h

(
Φ′
i,j+1 − Φ′

i,j−1

)
,

(Φ′
y)i− 1

2
,j = min-mod (ζ, ϑ) with

ζ = 1
2

(
Φ′
i,j+1 − Φ′

i,j−1

)
and ϑ = 1

2

(
Φ′
i−1,j+1 − Φ′

i−1,j−1

)
,

|∇u|i− 1
2
,j =

√
((ux)i− 1

2
,j)

2 + ((uy)i,j− 1
2
)2 + β.

By a similar procedure we can obtain the approximations for V 2
i,j+ 1

2

and V 2
i,j− 1

2

. Finally,

the Neumann’s boundary condition on ∂Ω is treated as

(4.3) ui,0 = ui,1, ui,n+1 = ui,n, u0,j = u1,j, um+1,j = um,j .

5. A nonlinear MG for a fourth order denoising model. To the best of our knowledge
no MG method has been reported for the solution of a similar high order denoising problem
which presents at the same time the challenges of dealing with nonlinearity, anisotropy, and
high order derivatives. This situation is not surprising since the application of either standard
linear or nonlinear MG with the typical known components does not converge. In section 5.3
we shall introduce a new nonstandard smoother for a full approximation scheme (FAS) MG
algorithm.

368 CARLOS BRITO-LOEZA AND KE CHEN

5.1. Early works and numerical difficulties. Before moving to the development of such
an FAS algorithm, we will briefly pause to review some early works on MG algorithms, most
of them mainly in the context of image processing techniques. Our intention is to highlight
the main difficulties in developing optimal MG algorithms for such problems.

We start with nonlinear isotropic problems where the functionals to be minimized have
mostly been regularized using Tikhonov’s idea with

∫
Ω |∇u|2 and therefore their correspond-

ing EL equations include Laplacian-like differential operators with the nonlinearity coming
from the fitting term. It is well known that these strongly elliptic operators are suitable for
MG algorithms, and very good performance can be obtained without very much effort. The
approach used in these cases is usually to linearize the problem and apply a linear MG for the
inner iterations (see, e.g., [31, 46, 25, 34]). In [45], however, a nonlinear MG was reported.

On linear anisotropic problems, interesting discussions about MG algorithms have been
presented in [29, 19, 1, 40, 7], but we will not dig deep into this subject.

More interesting are nonlinear anisotropic problems where some work has been done as
well. For example, the following works developed MG algorithms for image processing prob-
lems: [32] on image registration, [4, 38] on image segmentation, and [42, 43, 15, 30] on image
denoising. All of the above, however, solve second order PDEs.

In particular, previous image denoising works are of interest since they give us a glimpse
of the difficulties encountered in developing optimal MGs for this kind of problem. All of the
image denoising works [42, 43, 15, 30] reported difficulties in obtaining optimal performance
of geometric MG algorithms when the anisotropy of the problem associated with the TV
regularizer

∫
Ω |∇u| reached high levels. The anisotropy of denoising problems is mainly due

to the value of the regularization parameter β, the level of noise η, and the smoothness of u
itself, meaning that the stronger the edges present in u are, the more anisotropic the PDE that
needs to be solved is. In [30], to overcome this problem, β was initially selected very large,
and a continuation method with β → 0 was implemented. At every step of this continuation
method an MG cycle was used to solve the problem. In [42, 43, 15], a different approach
was taken: A small increment on the number of smoothing steps ν of the MG algorithm was
applied, and β no less than 10−2 was used.

For the curvature-based model we study here, the first issue is the level of discontinuity
of the coefficients D1 and D2 in (3.1). That is, if they are moderately discontinuous, then
the nonlinear operator can be fairly approximated on coarser grids. However, for strongly
discontinuous coefficients (say β � 1), the performance of the MG algorithm will be strongly
affected. Notice that in image denoising problems, since every image is different and because of
noise, we do not have a priori information about which variables (if any) are strongly coupled
and in which direction; hence standard methods such as line relaxation and semicoarsening
are not useful here.

To overcome this challenge, some authors have proposed using algebraic multigrid (AMG)
methods, where the coarsening is adapted to the structure of the domain itself. Here, because
the domain of every image is different, this type of coarsening has to be adaptive, making it
computationally very expensive; see [22, 47] and the references therein. In [54] a geometric MG
algorithm with adaptive coarsening for the anisotropic Cahn–Hilliard equation was developed
by the authors using the simple rule of coarsening only where discontinuities were not present.
We believe this technique can be adapted to MG algorithms for image denoising by coarsening

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 369

only at plain regions of the image, and although it looks promising, some tests need to be
carried out to confirm its effectiveness. In this paper we adopted the geometric MG scheme
with standard coarsening due to its simplicity and focus on nonstandard smoothers.

A second issue for our model is the transportation of the error from one grid to another.
Geometric MG algorithms assume that the error is smooth enough so it can be well approxi-
mated onto the next coarser grid by using a simple transportation operator. Designing good
smoothers for anisotropic equations is, however, a very difficult task. We tackle this problem
in section 5.3 by introducing a new adaptive fixed point algorithm which performs very well in
homogeneous regions of the image domain, reducing the high frequency components of the er-
ror, and which can guarantee—up to some degree—its smoothness close to the inhomogeneous
regions (edges).

Finally, MGs for high order problems other than those for the biharmonic equation [47]
are difficult to find, even more so if the problem is anisotropic or nonlinear. High order brings
numerical difficulties of which one needs to be aware. For example, in [48] an AMG was
proposed for anisotropic second and fourth order equations. In [33], however, it was argued
that discretizations of high order problems might not satisfy the M -matrix condition for MG
convergence [47]; hence the authors suggested using geometric MG algorithms instead of an
AMG for these problems. It [33], the authors also reported having observed that an inaccurate
approximation of high order derivatives at coarse levels can produce such poor representations
of positive definite operators that they are no longer positive definite on coarser grids, causing
the MG algorithm to fail to converge.

From the above discussion, we see that there are many difficulties to overcome when
developing MG algorithms for nonlinear high order anisotropic problems; the curvature-based
denoising model falls into this class. Of primary importance is to guarantee the smoothness
of the error. As we shall show, standard smoothers do not work for (2.2); hence we will focus
our efforts on developing a good smoother for this problem and will test it within the standard
framework of a nonlinear MG algorithm.

5.2. The MG algorithm. In this section, we introduce a nonlinear MG algorithm for
the fast solution of the high order denoising formulation (2.2). To this end, we denote the
nonlinear operator equation by

(5.1) (Nu)i,j ≡ α∇ ·
(
D1(u)i,j(∇Φ′)i,j −D2(u)i,j(∇u)i,j

)
+ ui,j = zi,j

and construct a hierarchy of discretizations by approximating the operator (Nu)i,j at different
grid levels. As is common practice, we denote by Nhuh = zh the discrete equation defined
on the finest grid Ωh of size h, to be denoted by ΩhL , and similarly by N2hu2h = z2h the
same on the coarser grid Ω2h which is obtained by standard coarsening, to be denoted by
ΩhL−1

. We can continue applying this process until we generate a sequence of L coarse levels
ΩhL,ΩhL−1

, . . . ,Ωh0 with h� = 2L−�h. We state our MG method in Algorithm 1.

Algorithm 1 (nonlinear multigrid method).
Select an initial guess uh on the finest grid h.
Set k = 0 and err = tol + 1.

370 CARLOS BRITO-LOEZA AND KE CHEN

While err < tol

uk+1
h ← FAS (ukh, N

k
h , zh, ν0, ν1, ν2, ζ, α, γ)

err = ‖E(ukh)− E(uk−1
h)‖2, k = k + 1

End

Here FAS denotes the cycle of going through all fine grids (smoothing the iterates and
passing on the residual information to the next grid) to the coarsest grid, solving the equation
on the coarsest grid accurately, and coming through all coarse grids (interpolating to the next
grid and smoothing the iterates again) back to the finest grid, as shown below [8, 47, 21].

Algorithm 2 (FAS cycle). uh ← FAS (uh, Nh, zh, ν0, ν1, ν2, ζ, α, γ).

1. If Ωh = coarsest grid, solve Nhuh = zh accurately (i.e., ν0 iterations by the SFP
method) and return. Else continue with step 2.

2. Presmoothing: Do ν1 steps of uh ← SFP (uh, zh, ζ, α, γ, ν1).
3. Restrict to the coarse grid, u2h ← R2h

h uh.
4. Set the initial solution for the next level, ū2h ← u2h.
5. Compute the new right-hand side z2h ← R2h

h (zh −Nhuh) +N2hu2h.
6. Implement u2h ← FAS2h(u2h, N2h, z2h, ν0, ν1, ν2, ζ, α, γ).
7. Add the residual correction, uh ← uh + Ih2h(u2h − ū2h).
8. Postsmoothing: Do ν2 steps of uh ← SFP(uh, zh, ζ, α, γ, ν2).

In Algorithm 2 we represented by SFP the smoother operator. We will explain its construc-
tion in section 5.3, analyze its properties through local Fourier analysis (LFA) in section 5.4,
and refine it by making it adaptive in section 5.5 and presenting its final form in Algorithm 6.
For the restriction and interpolation operators R2h

h and Ih2h, respectively, full weighting (FW)
and bilinear interpolation operators for cell-centered grids are used; see [11, 47] for details.

We remark again that Algorithm 1 needs a new smoother for it to converge since all simple
and known smoothers do not lead to convergence.

5.3. The smoother—A new SFP method. Fixed point methods are usually fast algo-
rithms, hence the wish to develop one for our curvature-based model (3.1). Unfortunately
standard ways of implementing this kind of algorithm simply do not work. For instance,
following [51, 50, 42], a possible scheme would be

(5.2) −α∇ ·
(
(D2(u))

k+1
i,j (∇u)k+1

i,j

)
+ uk+1

i,j = −α∇ ·
(
(D1(u))

k
i,j(∇Φ′)ki,j

)
+ zi,j.

This scheme is, however, neither stable nor convergent, the reason being that D2 can easily
change its sign so neither positive definiteness nor diagonal dominance can be guaranteed for
schemes of the form A(uk)uk+1 = f(uk, z). In [11], the same sort of problem was observed
in trying to develop a fixed point method for a fourth order PDE with structure similar to
that of (3.1), already giving an indication that standard fixed point methods for this type of
equation do not converge!

In this section, we discuss how to develop a working fixed point algorithm for (3.1) that
not only is much faster than the explicit time-marching methods reviewed in section 3, but
also has proved to be always convergent as a stand-alone algorithm in all of the simulations we
have carried out. Our aim, however, goes further and is oriented to developing an even faster

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 371

MG algorithm; with this in mind we will not use our fixed point algorithm as a stand-alone
method but as a smoother for such a nonlinear MG algorithm.

To develop a working fixed point algorithm for (3.1), we will first analyze unconditionally
stable time-marching schemes based on convexity-splitting ideas developed in [27, 28] (the
idea was also adapted for a different imaging problem by Bertozzi, Esedoḡlu, and Gillet [6]).
The resulting semi-implicit scheme (5.3) improves the stability of time-marching schemes in
such a way that stability of (5.3) is guaranteed for all possible time steps. To put it simply,
we solve

(5.3)
uk+1
i,j − uki,j

Δt
= r(u)ki,j + γN k

i,j − γN k+1
i,j ,

where r(u) is as in (3.3), γ > 0 is an appropriate constant whose value depends on the
selection of N and needs to be sufficiently large to bring the required stability to the new
algorithm, and N = N (u) is the differential operator arising from the minimization of a
convex functional such as

∫
Ω |∇u| or

∫
Ω |∇u|2. If r(u) can be split into two parts (convex and

nonconvex), then the convex part is treated implicitly and the nonconvex part explicitly. For
more insight into convexity-splitting schemes and their implementation, we refer the reader
to [6, 52, 44, 11, 27, 28].

Based on the convexity-splitting scheme (5.3), we will refine the fixed point method (5.2)
to make it stable. To start we introduce the stabilizing terms γN k+1 and γN k and add them
to both sides of (5.2), respectively. Thus, our new proposed SFP algorithm for a general N
takes the form
(5.4)

−γN k+1
i,j − α∇ ·

(
(D2(u))

k+1
i,j (∇u)k+1

i,j

)
+ uk+1

i,j = −γN k
i,j − α∇ ·

(
(D1(u))

k
i,j(∇Φ′)ki,j

)
+ zi,j .

Now we address the selection of N since it plays an important role in the performance of
this new SFP scheme. We consider three possible options:

(5.5) N =

⎧⎨
⎩

u,
u,
T V(u) = ∇ · ∇u

|∇u| .

In our experiments the first option, N = u, delivered very poor performance, because
a very large γ needs to be selected, resulting in very slow convergence. The second option,
N = u, has been preferred by some authors for time-evolution schemes such as (5.3) in
other contexts; see, for instance, [6, 44]. The third option, N = T V(u), is our recommended
choice, as we illustrate the advantages of this selection using the two examples in Figure 1.
First, Figure 1(a) shows the performance for the first 10 iterations of our SFP algorithm for
denoising a smoothly varying image (with no visible jumps in it); for this problem, option
2 is almost the same as option 3 in performance. However, Figure 1(b) shows that option
3 is clearly better for denoising an image with a lot of jumps (edges). We also tried other
refinements of option 3 with T VM (u) = ∇ · ∇u

|∇u|M for M = 2, 3. Then we found that the

resulting SFP method is more sensitive to the selection of γ.

372 CARLOS BRITO-LOEZA AND KE CHEN

0 2 4 6 8 10
10

−2

10
−1

10
0

SFP iterations

Relative Residual

SNR=10

Noisy Image

20 40 60 80 100 120

20

40

60

80

100

120

with TV

with Laplacian

(a)

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

SFP iterations

Relative Residual

Noisy Image

20 40 60 80 100 120

20

40

60

80

100

120

with TV

with Laplacian

(b)

Figure 1. Illustration of the importance of the selection of the right N . (a) For smooth images, both
N = Δu and N = T V(u) work fine. (b) For very jumpy images (with many strong edges), N = T V(u) works
much better.

Once the best N has been selected—in this case option 3—it is useful to rewrite (5.4) the
following way:

−∇ ·
(
Ck+1
i,j (u)(∇u)k+1

i,j

)
+ gki,j(u) + uk+1

i,j = zi,j,(5.6)

where the diffusion coefficient is defined as Ck+1
i,j ≡ γ(D1(u))

k+1
i,j − α(D2(u))

k+1
i,j and the

nonlinear term gki,j(u) ≡ ∇ ·
(
γ
(∇u)ki,j
|∇u|ki,j

+α
(∇Φ′)ki,j
|∇u|ki,j

)
. To solve (5.6) we considered the following

two different methods:
1. The first is a nonlinear Gauss–Seidel–Picard (GSP) method. That is, we represent

the system of algebraic equations (5.6) as N�(u1,1, . . . , um,n) = 0 with = 1, . . . , nm
and unknowns u1,1, . . . , um,n and apply nonlinear iterations. For instance, a nonlinear
Gauss–Seidel iteration to solve the unknown at grid point (i, j) from the th equation
reads as

N�(u
k+1
1,1 , . . . , u

k+1
i−1,j , u

k+1
i,j , uki+1,j, . . . , u

k
n,m) = 0, i = 1, . . . ,m, j = 1, . . . , n.(5.7)

Then, at every kth step and (i, j) grid point, a nonlinear equation needs to be solved.
To do this, we apply a number of local iterations over a linearized system using Picard’s
method; i.e., to compute the value of uq+1

i,j (where q is the superscript for the local
iterations), the nonlinear terms C·,· and gi,j are evaluated using values of u from the

previous qth step, leaving an easy-to-solve linear system in uq+1
i,j (see Algorithm 3).

Algorithm 3 (SFP1). uh ← SFP1 (uh, zh, ν, ζ, α, γ).
For k = 1 to ν,

For i = 1 to m; For j = 1 to n,
For q = 1 to ζ,

uq+1
i,j =

uki+1,jC
q

i+ 1
2
,j
+ uk+1

i−1,jC
q

i− 1
2
,j
+ uki,j+1C

q

i,j+ 1
2

+ uk+1
i,j−1C

q

i,j− 1
2

+ zi,j − gqi,j
1 + Cq

i+ 1
2
,j
+Cq

i− 1
2
,j
+ Cq

i,j+ 1
2

+ Cq
i,j− 1

2

(5.8)

End

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 373

Set uk+1
i,j = uζ+1

i,j

End; End
End

We will name this SFP algorithm solved by GSP the SFP1 method. We remark that for
(5.8), due to the costly updating of the nonlinear terms, the total cost of this method will be
very large if more than one inner iteration is selected, i.e., if q > 1.

2. The second method is a global linearization of the fixed point method (5.6) by freezing
all C·,·’s and gi,j at the kth step to obtain

uk+1
i,j S

k
i,j − uk+1

i+1,jC
k
i+ 1

2
,j
− uk+1

i−1,jC
k
i− 1

2
,j
− uk+1

i,j+1C
k
i,j+ 1

2

− uk+1
i,j−1C

k
i,j− 1

2

= fki,j,(5.9)

where Ck
i+ 1

2
,j
= γ(D1(u))

k
i+ 1

2
,j
+α(D2(u))

k
i+ 1

2
,j
and the other coefficients are computed

in a similar way, Ski,j = 1 + Ck
i+ 1

2
,j
+ Ck

i− 1
2
,j
+ Ck

i,j+ 1
2

+ Ck
i,j− 1

2

, and fki,j = zi,j − gki,j .
Denote the resulting system by A(uk)uk+1 = fki,j, and note that A is positive definite
and diagonally dominant. If SFP is intended to be used as a stand-alone algorithm,
then at each kth iteration, the system can be solved using, for instance, PCG or linear
MG. However, in the context of a nonlinear MG with SFP used as smoother, we found
that partially solving the system with a few Gauss–Seidel or SOR iterations works
better; we name this SFP algorithm, solved up to some accuracy by any of the above
linear solvers, the SFP2 method. Algorithm 4 describes the particular case when
lexicographic Gauss–Seidel (GSLEX) is used as the inner solver.

Algorithm 4 (SFP2). uh ← SFP2 (uh, zh, ν, ζ, α, γ).
For k = 1 to ν,

Compute Ck
i+ 1

2
,j
, Ck

i− 1
2
,j
, Ck

i,j+ 1
2

, Ck
i,j− 1

2

For q = 1 to ζ,
For i = 1 to m; For j = 1 to n,

uq+1
i,j =

uqi+1,jC
k
i+ 1

2
,j
+ uq+1

i−1,jC
k
i− 1

2
,j
+ uqi,j+1C

k
i,j+ 1

2

+ uq+1
i,j−1C

k
i,j− 1

2

+ fki,j

1 + Ck
i+ 1

2
,j
+ Ck

i− 1
2
,j
+ Ck

i,j+ 1
2

+ Ck
i,j− 1

2

(5.10)

End; End.
End

End

5.4. Local Fourier analysis (LFA). As stated in [47], LFA is a very useful tool for the
quantitative analysis of MG methods. Theoretically LFA is designed to study linear problems
with constant coefficients on an infinite grid. Regardless of this strong limitation, LFA is
still a recommended tool [8, 34, 1, 53] for the analysis of discrete nonlinear operators like
(5.1). To this end, the first step is to neglect boundary conditions and to extend the discrete
operator to an infinite grid; the second step assumes that any discrete nonlinear operator
can be linearized locally (by freezing coefficients) and can be replaced locally by an operator
with constant coefficients [47]. This method has been successfully applied to obtain a bet-
ter understanding of MG algorithms applied to nonlinear problems or linear problems with
discontinuous coefficients [1, 34, 15, 10, 4].

374 CARLOS BRITO-LOEZA AND KE CHEN

LFA for the SFP1 method. The local iterations of the SFP1 method allow the stencil
representation

1

h2

⎡
⎢⎣

0 0 0
−Cq

i− 1
2
,j

S
q
i,j 0

0 −Cq
i,j+ 1

2

0

⎤
⎥⎦uq+1 = zi,j − gqi,j −

1

h2

⎡
⎢⎣

0 −Cq
i,j− 1

2

0

0 0 −Cq
i+ 1

2
,j

0 0 0

⎤
⎥⎦uq,(5.11)

with C·,·,Si,j, and gi,j defined as before. To apply LFA to (5.11) we start by defining ūi,j
as the true solution of (5.6) at the grid point (i, j) and the error functions ξq+1

i,j and ξqi,j, as

is common practice, by ξq+1
i,j = ūi,j − uq+1

i,j and ξqi,j = ūi,j − uqi,j. Then, we expand them in
Fourier components as

(5.12) ξq+1
i,j =

m/2∑
φ1,φ2=−m/2

ψq+1
φ1,φ2

eiθ1x/heiθ2y/h and ξqi,j =

m/2∑
φ1,φ2=−m/2

ψqφ1,φ2e
iθ1x/heiθ2y/h,

where θ = (θ1, θ2) ∈ Θ = (−π, π]2, θ1 = 2πφ1/m, θ2 = 2πφ2/m, and i =
√
−1. The next step

is to approximate gqi,j using a first order Taylor expansion as follows:

(5.13) gi,j(u
q) ≈ gi,j(ū) + ci,j(u

q
i,j − ūi,j) = gi,j(ū)− ci,jξqi,j

with ci,j ≡ ∂g
∂u(ūi,j), which is reasonable when uqi,j is sufficiently close to ūi,j, i.e., when the

algorithm has almost converged to the true solution.
Now we face the problem of approximating the Cq·,· coefficients. Here using a Taylor

expansion does not help much, so we decided to freeze the coefficients (make them constant)
and look at the predicted rates for the worst possible scenario, i.e., when the coefficients are
very anisotropic. We also note that, as remarked before, the present analysis is valid when
the algorithm has almost reached convergence. At this stage, the change in the values of the
coefficients is almost null (they remain almost constant), and the edges in the image have
reached their sharpest form; i.e., the coefficients are very anisotropic in these regions. These
two observations back up our decision to use constant coefficients in the LFA analysis.

Based on these assumptions, we can substitute (5.12)–(5.13) into (5.8) to obtain the error
equation

− S
k
i,jξ

q+1
i,j +Ck

i+ 1
2
,j
ξqi+1,j + Ck

i− 1
2
,j
ξq+1
i−1,j + Ck

i,j+ 1
2
ξqi,j+1 + Ck

i,j− 1
2
ξq+1
i,j−1 + ci,jξ

q
i,j = 0,(5.14)

where the superscript k on the coefficients is just to indicate that they were computed (frozen)
at the kth outer iteration. Then, the local amplification factor is given by

S̃h(θ)i,j
(SFP1)

=

∣∣∣Ck
i+ 1

2
,j
eiθ1 + Ck

i,j+ 1
2

eiθ2 + ci,jh
2
∣∣∣∣∣∣Ski,j − Cki− 1

2
,j
e−iθ1 − Ck

i,j− 1
2

e−iθ2

∣∣∣ ,(5.15)

and the smoothing factor at each (i, j) grid point of the image is given as μi,j
(SFP1) =

sup{|S̃h(θ)i,j
(SFP1)| : θ ∈ Θhigh = [−π, π)2\[−π

2 ,
π
2)

2}.

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 375

A close examination of (5.15) reveals that μi,j will increase in inhomogeneous regions of
the image due to the values of the C·,·’s there but, more importantly, that the SFP1 scheme
might not be a good smoother if ci,jh

2 is large enough, a situation which is likely to happen
in an MG algorithm at the coarse levels. Fortunately, a number of experiments showed that,
provided enough noise has been removed, the value of gi,j(u) barely changes across iterations,
indicating that ci,j is also very small and suggesting the need for a good initial guess for this
method. This, however, does not represent much of a problem since a simple convolution step
or a full MG is enough to provide the required good initial guess.

Thus we see that ci,jh
2 has a negligible effect on the smoothing properties of the SFP1

method if the above condition is satisfied. In contrast, the coefficients C·,· as well as parameters
α, β, γ will affect the performance of this smoother.

LFA for the SFP2 method. From (5.8)–(5.10) is not difficult to see the strong similarity
between SFP1 and SFP2. Other than the continuous updating of gqi,j in SFP1, they differ
only when the coefficients are updated. Thus we can represent the local (inner) iterations of
SFP2 as

1

h2

⎡
⎢⎣

0 0 0
−Ck

i− 1
2
,j

S
k
i,j 0

0 −Ck
i,j+ 1

2

0

⎤
⎥⎦uq+1 = fki,j −

1

h2

⎡
⎢⎣

0 −Ck
i,j− 1

2

0

0 0 −Ck
i+ 1

2
,j

0 0 0

⎤
⎥⎦uq.(5.16)

Hence using the same definitions for ξq+1
i,j and ξqi,j as before, the SFP2 error equation is given

by

− S
k
i,jξ

q+1
i,j + Ck

i+ 1
2
,j
ξqi+1,j + Ck

i− 1
2
,j
ξq+1
i−1,j + Ck

i,j+ 1
2
ξqi,j+1 + Ck

i,j− 1
2
ξq+1
i,j−1 = 0,(5.17)

and the SFP2 local amplification factor by

S̃h(θ)i,j
(SFP2)

=

∣∣∣Ck
i+ 1

2
,j
eiθ1 + Ck

i,j+ 1
2

eiθ2
∣∣∣∣∣∣Ski,j − Cki− 1

2
,j
e−iθ1 − Ck

i,j− 1
2

e−iθ2

∣∣∣ ,(5.18)

with μi,j
(SFP2) = sup{|S̃h(θ)i,j

(SFP2)| : θ ∈ Θhigh}.
LFA experiments for both methods. Numerical simulations carried out over different

images with fixed α, β and different noise levels yielded results very much related to noise
levels. In Table 1, we present the worst values across Ωh, i.e., μ̄ = sup {μi,j : (i, j) ∈ Ωh} for
two different noise levels in the problem of Figure 3(a).

From analyzing Table 1, some interesting conclusions may be established. For instance,
μ̄ is smaller for less noisy images, but, more importantly, the values of μi,j are unevenly
distributed within Ω. That is, by defining ΩE as the set embracing all regions with sharp
gradients and similarly ΩS = Ω \ ΩE as the set for smooth regions, we see from Table 1 that
using the same number of relaxation steps for ΩS and ΩE may not be the best strategy since μ̄
is very different in both regions. In other words, ΩE demands more relaxation steps, although
in most images it usually represents only a small portion of Ω; see Figure 2. Hence, we can
use LFA to guide us in constructing a more effective smoother than SFP1 and SFP2.

376 CARLOS BRITO-LOEZA AND KE CHEN

Table 1
The values of μ̄ for ΩE and ΩS for two different levels of noise.

Noise level Image status SFP1 SFP2
ΩE ΩS ΩE ΩS

SNR = 25
Noisy 0.7431 0.7120 0.7166 0.6953

Noise removed 0.6245 0.4879 0.6176 0.4765

SNR = 3.5
Noisy 0.9214 0.8821 0.8996 0.8589

Noise removed 0.7818 0.5309 0.7779 0.5243

50 100 150 200 250

50

100

150

200

250

(a)

50 100 150 200 250

50

100

150

200

250

(b)

50 100 150 200 250

50

100

150

200

250

(c)

50 100 150 200 250

50

100

150

200

250

(d)

Figure 2. Example of the behavior of the smoothing amplification factor μi,j . (a) Noisy image. (b)
Smoothing rates computed for (a) presented as an image. Large values of μi,j (red points) are everywhere. (c)
Partially denoised image after some iterations of the SFP1 method. (d) Computed values of μi,j for (c). Clearly
the larger values of μi,j , around 0.625 for this example, group along edges.

5.5. An adaptive smoother (A-SFP). Here we propose an improved smoother which
has an adaptive number of local smoothing steps depending on the structure of the image.
This A-SFP smoother will be based on SFP2 since it is less costly than and has smoothing
properties similar to those of SFP1. The LFA from section 5.4 shows that if we use the same
number of smoothing steps for ΩE and ΩS, there is the risk of the residual not being smooth
enough in ΩE. This was confirmed in our experiments, where we noticed that the intergrid
transfer operators were not working properly very close to the edges due to this fact.

To solve this problem two methods are usually considered: (1) Construct adaptive high
order intergrid transfer operators as in [1]; (2) apply extra smoothing steps only in ΩE as in
[5, 9] in an adaptive way.

We selected the second option, the reason being that, on the one hand, our method needs
only a little modification and the overall increment on the computational cost of the MG algo-
rithm is very small, and, on the other hand, constructing a successful adaptive interpolation
operator is not an easy task and many different ways to do it need to be tested (see [1, 24] for
comments on this respect). Further, these methods can be computationally costly, and their
storage requirements are high [24].

To select the regions where extra relaxation will be applied, we propose approximating ΩE
on each Ωh� by an index set Qh� whose entries point to pixels requiring additional smoothing
steps. An easy way to construct such an index set for grid Ωh� is shown in Algorithm 5. Other
more accurate methods using edge-detection techniques may be used as well. Basically this
algorithm is used in the first leg of the very first FAS cycle (after step 2 in Algorithm 2). The
scalar entry δ, in Algorithm 5, indicates the percentage of the domain to be overrelaxed, i.e.,

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 377

edges. Since edges usually represent a small portion of the whole image, we suggest using
δ < 0.2.

Algorithm 5 (computation of the index set Qh� for ΩE on grid Ωh�).
1. Set [m n] = size(uh�), and let the number of required pixels s be the integer part of
δmn.

2. For i = 1 to m, For j = 1 to n,
|∇uh�|i,j =

√
(uh�i+1,j

− uh�i−1,j
)2+(uh�i,j+1

− uh�i,j−1
)2/2h;

End, End.
3. Set the set Qh� as the index set of the largest s entries of matrix |∇uh� |.
Because the size of each Qh� is relatively small, the extra storage added to the FAS

algorithm is practically negligible. Once the indicator vector has been constructed, we can
use it to implement our adaptive smoother, as shown in Algorithm 6.

Algorithm 6 (A-SFP). uh� ←A-SFP (uh� , zh� , ζ, h�, α, γ, ν, δ, ω).
1. Obtain Qh� by using Algorithm 5 with input δ and uh� .
2. Apply ν smoothing steps of Algorithm 4, and name the outcome ūh� , i.e.,
ūh� ← SFP2 (uh� , zh� , ν, ζ, α, γ).

3. If Qh� is nonempty, i.e., size(Qh�) �= ∅,
Using ūh� as input to Algorithm 4, apply ων relaxation steps over those (i, j) grid

points from the set Qh�; i.e., solve (5.10) only if (i, j) ∈ Qh� .
Take the updated ūh� as the new output uh�.

Else
Take uh� = ūh� as the output.

End

5.6. Two-grid analysis. The two-grid analysis is a tool which helps us to understand the
convergence properties of an MG algorithm. Before proceeding to use such a tool for our
Algorithm 2, we will start by explaining its basic principles; a more detailed explanation can
be found in [47, 53]. The notation we will use throughout this section is the following: Lh
and L2h will represent the linearized operator (5.9) on grids Ωh and Ω2h of size h and 2h,
respectively; an important assumption is that L−1

2h exists. Similarly, we will represent by Sh
the smoother operator, i.e., the SFP1 algorithm. In this way, the iteration operator for the
(h, 2h) two-grid cycle is given by

(5.19) M2h
h = Sν2h K

2h
h Sν1h with K2h

h = Ih − Ih2hL−1
2hR

2h
h Lh.

It is important to note thatM2h
h above needs to be computed at each (i, j)-location, but in

trying to keep notation simple we have not expressed this dependence explicitly. To calculate
convergence factors forM2h

h one needs to analyze how the operators Ih2h, L
−1
2h , R

2h
h , and Lh act

on the Fourier components Bh(θ
(0,0), ·) = eiθ1x/heiθ2y/h with θ(0,0) = (θ1, θ2); to this end we

use the fact that quadruples of Bh(θ
(0,0), ·) coincide in Ω2h with the respective grid function

B2h(2θ
(0,0), ·). Then, for any low frequency θ ∈ Θlow = [−π

2 ,
π
2)

2 we consider the frequencies

θ(0,0) = (θ1, θ2), θ(1,1) = (θ̄1, θ̄2), θ(1,0) = (θ̄1, θ2), θ(0,1) = (θ1, θ̄2),(5.20)

where

(5.21) θ̄i =

{
θi + π if θi < 0,
θi − π if θi ≥ 0.

378 CARLOS BRITO-LOEZA AND KE CHEN

After defining α = (α1, α2), the corresponding four components B(θα, ·) are called har-
monics of each other, and for θ = θ(0,0) ∈ Θlow they generate the four-dimensional space of
harmonics Eθ

h = span[B(θα, ·) : α ∈ {(0, 0), (1, 1), (1, 0), (0, 1)}]. Hence, assuming that Ih2h,
L−1
2h , R

2h
h , and Lh can be approximated on Ωh and Ω2h and Eθ

h remains invariant under Sh,
the two-grid operator M2h

h can be represented on Eθ
h for each θ ∈ Θlow by the 4× 4 matrix

M̂2h
h (θ) = Ŝh(θ)

ν2K̂2h
h (θ)Ŝh(θ)

ν1 with K̂2h
h (θ) = Îh − Îh2h(θ)L̂−1

2h (θ)R̂
2h
h (θ)L̂h(θ),(5.22)

where the hat notation, as in Îh2h, stands for the approximation of each matrix in Eθ
h , with

each defined by

Îh = diag{1, 1, 1, 1} ∈ C
4×4,(5.23)

L̂2h(θ) = L̃2h(2θ
(0,0)) ∈ C

1×1,

L̂h(θ) = diag{L̃h(θ(0,0)), L̃h(θ
(1,1)), L̃h(θ

(1,0)), L̃h(θ
(0,1))} ∈ C

4×4,

R̂2h
h (θ) = [R̃2h

h (θ(0,0)) R̃2h
h (θ(1,1)) R̃2h

h (θ(1,0)) R̃2h
h (θ(0,1))] ∈ C

1×4,

Îh2h(θ) =
1

4
[Ĩh2h(θ

(0,0)) Ĩh2h(θ
(1,1)) Ĩh2h(θ

(1,0)) Ĩh2h(θ
(0,1))]T ∈ C

4×1,

respectively, where the tilde notation, as in L̃2h(2θ
(0,0)), represents the corresponding symbol

[47, 53] of each matrix. Based on the above, we can calculate the asymptotic convergence
factor of M2h

h as follows:

ρloc(M
2h
h)i,j = sup{ρloc(M̂2h

h) : θ ∈ Θlow,θ /∈ Λ},(5.24)

where Λ = {θ ∈ Θlow : L̃h(θ) = 0 or L̃2h(θ) = 0}. Again we will have different values
for ρloc(M

2h
h)i,j depending on the (i, j)-location, so we define ρ̄loc as the the maximum of

ρloc(M
2h
h) over all (i, j) and take this value as the asymptotic convergence factor of M2h

h .
In Algorithm 2 the transfer operators we use are standard full weighting and bilinear

interpolation, and their symbols [47, 53] are defined by

R̃2h
h (θα) =

1

4
(1 + cos(θα1))(1 + cos(θα2)) and Ĩh2h(θ

α) = (1 + cos(θα1))(1 + cos(θα2)).

The symbols for the linearized operators, on the other hand, are obtained from (5.9), and
they are defined by

L̃h(θ
α) = −Ski,j + Ck

i+ 1
2
,j
eiθ

α
1 + Ck

i− 1
2
,j
e−iθα1 + Ck

i,j+ 1
2
eiθ

α
2 + Ck

i,j− 1
2
e−iθα2 ,

L̃2h(θ
α) = −(Ski,j)2h + (Ck

i+ 1
2
,j
)2h e

i2θα1 + (Ck
i− 1

2
,j
)2h e

−i2θα1 + (Ck
i,j+ 1

2
)2h e

i2θα2

+(Ck
i,j− 1

2
)2h e

−i2θα2 ,

where in the last equation (Ski,j)2h and (Ck·,·)2h are the frozen coefficients at coarse grid Ω2h.

Due to the high nonlinearity of (3.1), analyzing the behavior of ρloc(M̂
2h
h)i,j for this equa-

tion is challenging. Consequently, we consider freezing nonlinear coefficients in (3.1) to lin-
earize it first (hence our SFP1), and therefore M̂2h

h is derived from a linear PDE. From (5.22),

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 379

50 100 150 200 250

50

100

150

200

250

(a)

0 1 2 3 4 5 6 7 8 9 10
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

MG iteration

R
el

. R
es

id
ua

l

(b)

Figure 3. (a) Denoised image. (b) MG iteration history with ν1 = ν2 = 3 and the GSP method as smoother.

we see that the final value of ρloc(M̂
2h
h)i,j will depend on the product of three different fac-

tors: the presmoothing steps Ŝh(θ)
ν1 , the postsmoothing steps Ŝh(θ)

ν2 , and the coarse grid
operator K̂2h

h (θ). In particular, the operator K̂2h
h (θ) will be affected by the level of noise,

the value of the parameters α, β, γ, and how well the two operators L̂h(θ) and L̂−1
2h (θ) are

approximated at coarse levels. It is also assumed that the residual and errors are smooth
enough so the restriction and interpolation operators can do their job properly. The pre- and
postsmoothing steps are also influenced by the same factors, and for them we already know
that their value will increase if one of the following situations happens: noise increases, the
value of either α or γ increases, or β decreases.

We are now ready to apply two-grid analysis to a real example, and to this end we select
the problem of Figure 3(a) to carry out our tests. Numerical simulations using α = 1/250, β =
10−2, γ = 150, 15% of noise added to the image, ν1 = ν2 = ζ = 3, and SFP1 as smoother
yielded the value ρ̄loc = 0.1289 for this problem. This result is perfectly in accordance with the
performance of our MG algorithm in solving this problem since it predicts a relative residual
of 0.128910 = 1.26×10−9, which is congruent with the residual of 5.7×10−9 that we obtained
experimentally after 10 FAS cycles; see Figure 3(b).

Note that the problem of Figure 3 was designed (by keeping the noise level low and
few edges) to satisfy the requirements of LFA analysis, that is, moderately discontinuous
coefficients. Although we do not expect this analysis to be accurate for large levels of noise,
we believe we have gathered enough information from LFA to expect a good performance of
our MG algorithm.

For the same problem with the same parameters as above but this time using SFP2 as
smoother, ρ̄loc = 0.1256. However, in our experiment, a relative residual of 4.9 × 10−11 was
obtained after the same number (10) of FAS cycles, i.e., an extra reduction of two orders
of magnitude of the residual value! This experiment confirms that SFP2 has smoothing
properties that are similar to or perhaps slightly better than those of SFP1.

5.7. Complexity analysis. The main cost of our MG method is the cost of the smoothing
steps. Let z ∈ R

m×n. The cost of each outer iteration of the smoother consists of the cost

380 CARLOS BRITO-LOEZA AND KE CHEN

of each inner step, which is equal to 13 flops per grid point if GSLEX is being used (or 15
flops if PCG is used instead), plus the cost of the discretization, which equals 195 flops per
grid point. For instance, if ζ steps of GSLEX are used, this makes the cost of every outer
iteration equal to (195+13ζ)N , where N = nm is the total number of grid points. The other
costs to be considered are rhs, which stands for the cost associated with the construction of
the right-hand side of the residual equation at the next coarser level (steps 3, 4, and 5 of
Algorithm 2), and irc, representing the interpolation plus residual correction procedure (step
7 of Algorithm 2). On Ω2h there are 1/4 the number of grid points that there are on Ωh, and
in general if p = 2l, there are p−2 = (1/4)l as many grid points on Ωph as there are on Ωh.
Hence an upper bound on the cost of one FAS cycle is therefore

lim
L→∞

⎛
⎜⎝(1 + δω)(ν1 + ν2)(195 + 13ζ)N︸ ︷︷ ︸

pre- + postsmoothing

+306N︸ ︷︷ ︸
rhs

+ 4N︸︷︷︸
irc

⎞
⎟⎠ L∑

k=0

(1/4)k

= (1 + δω)(ν1 + ν2)(195 + 13ζ)
N

0.75
+ 413.3N.(5.25)

Clearly our MG algorithm has the complexity of O(N).

Notice that this bound is strongly dominated by the cost of smoothing, while the contri-
bution from rhs and irc is relatively negligible. For instance, selecting δ = 0.2, ω = 2, ν1 =
ν2 = 10, and ζ = 2, we see that the cost of smoothing is 20 times that of the latter or, put
precisely, the cost of 8250.6N

∑L
k=0(1/4)

k versus 413.3N
∑L

k=0(1/4)
k .

6. Numerical results and experiments. In this section we present some results obtained
with our MG algorithm to show that its convergence properties are good, that the quality of
restoration by the high order model is good as well, and that it is much faster than previous
explicit methods. We also present some analysis to show how our MG algorithm is affected by
changes in the values of parameters α, γ, h, β and the level of noise. In our tests, Φ(κ) = κ2

was selected since visually it gives more pleasant results. For the selection of the initial guess
u0h, there is no restriction whatsoever; we tested with u0h = z, u0h = 0, and u0h = G � z with
G a Gaussian convolution operator. For all these options our MG algorithm converged, but
convergence was slightly faster if the convolved initial guess was used; furthermore, the cost
of convolution is very low.

Convergence tests. To illustrate the convergence performance of our MG algorithm, we
present in Figure 4 the residual (R) and relative residual (RR) iteration results after 10 FAS
cycles when solving the three test problems of Figure 10 with signal-to-noise ratio (SNR) of 3.5.
Here the residual R = ‖Nuk − z‖2, and the relative residual RR = ‖Nuk − z‖2/‖Nu0 − z‖2
will be tested shortly. The MG algorithm was run with the following parameters: α = 1/200,
β = 10−2, γ = 100, ν1 = ν2 = 10, ζ = 2, δ = 0.2, ω = 2. Clearly our MG algorithm shows
very fast convergence in both cases. At the coarsest level we use ν0 = 250 or stop when the
residual is less than 1× 10−6; all tests in this section follow this approach.

Computational cost and speed comparison. From section 3, the only available methods
for (2.2) are the explicit time-marching method and its improved version; here we hope to
compare our algorithm with them.

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 381

0 2 4 6 8
10

−10

10
−5

10
0

FAS−CYCLES

R
el

. R
es

id
u

al

(a)

0 2 4 6 8
10

−10

10
−5

10
0

FAS−CYCLES

R
el

. R
es

id
u

al

(b)

0 2 4 6 8
10

−10

10
−5

10
0

FAS− CYCLES

R
el

. R
es

id
u

al

(c)

Figure 4. (a) Lena problem. (b) Peppers problem. (c) Brain problem.

Table 2
Performance comparison of our smoothers as solvers with the corresponding MG algorithms. Clearly the

MGs are faster. Here “steps” indicates outer steps, and “cost” is the overall cost in terms of WUs.

Size Type SFP1 MG(SFP1) SFP2 MG(SFP2) A-SFP MG(A-SFP)

1282
Steps 982 8 517 10 361 8
Cost 25776 14335 16106 6460 13694 5530

2562
Steps 1576 8 632 10 412 7
Cost 25216 14335 19689 6460 15623 4464

5122
Steps 1747 7 854 9 563 6
Cost 27952 12543 26605 5815 21347 3998

To proceed, we introduce our work unit definition and test problem: If we define a work
unit (WU) as the cost of the Gauss–Seidel updating, i.e., 1 WU = 13 flops, then the cost of
discretization, which is the same for every method, is 195/13 = 15 WU, and updating with
PCG is 15/13 ≈ 1.15 WU. On the other hand, our test problem here consisted of denoising
the problem of Figure 10(a) with α = 1/200, β = 10−2, γ = 100, SNR = 3.5 until reaching a
relative residual below 10−9.

First, we compare to the Euler explicit time-marching method. Updating the unknowns
with this method has a cost of only 5 flops; however, at every step all derivatives, coefficients,
etc. need to be updated, increasing the total cost for each explicit step to 195+5 flops = 15.4
WU. Being that the explicit method takes tens of thousands of iterations to converge, our
MG algorithm is roughly two orders of magnitude less costly and faster than this method.

Second, the potentially competitive methods compared to our MG algorithms are the
proposed smoothers used as solvers. Below we shall compare our smoothers SFP1, SFP2, and
A-SFP when used as standalone methods with the corresponding MG(SFP1), MG(SFP2),
and MG(A-SFP), which are three different MGs with the framework of Algorithm 2 but with
a different selection of smoothers. We show the test results in Table 2.

There, the number of inner and outer iterations of each algorithm was optimized to de-
liver the best cost-effective result. In that way, SFP1 was solved using only one inner step,
SFP2 using 14 PCG steps to drop the tolerance to 10−6, and A-SFP with two GSLEX steps.
Similarly, MG(SFP1) used 40/1 (outer/inner steps), MG(SFP2) used 10/14, and MG(A-SFP)
used 10/2. In both A-SFP and MG(A-SFP), additional iterations over ΩE with δ = 0.2 and
ω = 2 were used.

382 CARLOS BRITO-LOEZA AND KE CHEN

128 256 512
1

1.5

2

2.5

3

3.5
x 10

4

Image Size

C
o

st
 −

 W
U

SFP1
SFP2(GSLEX)
SFP2(PCG)
A−SFP

(a)

128 256 512
2000

4000

6000

8000

10000

12000

14000

16000

Image Size

C
o

st
 −

 W
U

MG(SFP1)
MG(SFP2(GSLEX))
MG(SFP2(PCG))
MG(A−SFP)

(b)

Figure 5. (a) Reduction in the relative residual per WU for each method. (b) Increase in the cost per size
of the image in pixels2 for each method.

Table 3
Test results from checking stopping criteria.

FAS cycles PSNR Energy Residual RR

0 49.38 223.4 20.655 1

1 62.257 190.92 0.02419 10−3

2 62.259 190.91 0.00386 10−4

3 62.259 190.91 0.00074 10−5

4 62.259 190.90 0.00014 10−6

5 62.259 190.90 0.00002 10−7

From Table 2, we can confirm that MG(A-SFP) is the most cost-efficient algorithm with
its WUs 5–7 times less than the unilevel smoother related methods.

Further, in Figure 5, we show the good scaling with respect to increasing problem sizes
with MG(A-SFP) (which is a usual advantage of an MG method). There we compare the
cost per pixel point of MG(A-SFP) with those of the SFP1, SFP2, and A-SFP methods for
image sizes of n = 128, 256, 512 (with n2 pixels in each case). Clearly one observes that
MG(A-SFP) is scalable with respect to WUs, while the unilevel methods are not.

Stopping criteria. We already have shown the convergence properties of our MG algorithm,
and now we clarify the stopping criteria. Although R and RR defined above can be used to
stop the algorithm, we found it more useful to use the energy values to execute this task. Our
observations indicate that the peak SNR (PSNR) stops increasing when the change in the
energy between two consecutive iterations is below 10−1. Therefore, in practice, we suggest
stopping our MG algorithm when ‖E(uk)−E(uk−1)‖2 < tol with tol = 10−1. This is roughly
equivalent to stopping the algorithm when RR < 10−4. To help the reader understand our
motives we show in Table 3 the data obtained from solving the benchmark problem with our
MG algorithm using the following parameters : α = 1/200, β = 10−2, γ = 100, ν1 = ν2 = 10,
ζ = 2, SNR = 3.5, and size = 2562.

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 383

0 2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

FAS−CYCLES

R
el

. R
es

id
u

al

size = 1282

size = 2562

size = 5122

size = 10242

Figure 6. Mesh size h-dependence test.

0 2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

FAS−CYCLES

R
el

. R
es

id
u

al

SNR = 3.5
SNR = 5
SNR = 10
SNR = 20

Figure 7. SNR-dependence test.

Computational analysis. Here we analyze how the performance of our MG algorithm is
affected when the value of any of α, β, γ, size, SNR is changed while values of the rest are
kept fixed.

h-dependence test. In Figure 6 we illustrate the h-dependence of our MG algorithm, i.e.,
its performance with respect to different sizes of the image. The MG algorithm was run with
the parameters α = 1/200, β = 10−2, γ = 100, ν1 = ν2 = 10, ζ = 2, SNR = 3.5 for all tests.
Clearly the performance of our MG algorithm not only is not decimated but gets better as
the size of the image increases. One possible explanation for this unusual behavior is that
SFP1 and SFP2 are h-dependent due to the C·,·’s depending on h. This means that when
h increases, the values of the coefficients decrease, making Si,j the dominant term, hence
obtaining better smoothing at coarser levels; see Table 1. In other words, the bigger the size
of the image, the more h grows at coarse levels and hence the better the efficiency is.

Noise level test. In Figure 7 the RR history against MG iterations (FAS cycles) is presented
for different noise levels. The MG algorithm was run with the parameters α = 1/200, β =
10−2, γ = 100, ν1 = ν2 = 10, ζ = 2, and size = 2562 for all tests. Although convergence is
slower for noisier images in general, the number of FAS cycles does not increment very much.

γ-dependence test. In Figure 8, dependence on the stabilization parameter γ is presented.
The MG algorithm was run with the fixed parameters α = 1/200, β = 10−2, ν1 = ν2 = 10,
ζ = 2, SNR = 3.5, and size = 2562 for all tests, and γ was varied from 100 to 160. As can be
seen, a bad selection of γ tends to reduce the performance of the MG algorithm. The right
value can be selected by the L-curve approach [50] and is dependent upon the level of noise
and the values of α and β.

α-dependence test. In Figure 9 we show how the MG algorithm is affected by selecting
different values for the regularization parameter α. The MG algorithm was run with the fixed
parameters β = 10−2, γ = 100, ν1 = ν2 = 10, ζ = 2, SNR = 3.5, and size = 2562 for all tests,
and α was varied from 0.001 to 0.1. Usually, the value of α needs to be increased as the level
of noise gets higher. This has the effect of making the D(u)-coefficients more discontinuous,
affecting, as we have already mentioned, both the approximation of the nonlinear operator on

384 CARLOS BRITO-LOEZA AND KE CHEN

0 2 4 6 8 10 12
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

FAS−CYCLES

R
el

. R
es

id
u

al

γ = 100
γ = 120
γ = 140
γ = 160

Figure 8. γ-dependence test.

0 2 4 6 8 10 12 14
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

FAS−CYCLES

R
el

. R
es

id
u

al

α = 0.001
α = 0.005
α = 0.01
α = 0.05
α = 0.1

Figure 9. α-dependence test.

Table 4
Test results from varying α.

α FAS cycles PSNR

0.001 5 56.8

0.005 8 62.3

0.01 10 62.1

0.05 12 57

0.1 14 52

coarse grids and the smoothing factor. Nonetheless, the performance of our MG algorithm is
still quite good, obtaining very low residuals with few MG cycles.

The results shown in the Figure 9 need to be carefully interpreted. Although they show
that the performance of the MG algorithm is worse for large α, it is also true that such large
values are not used in practice. The purpose of α is to select the amount of noise to be
removed, so there is no point in choosing either a very large or very small α. In Table 4 we
illustrate the effect that different values of α have on the PSNR and the number of FAS cycles
used by our algorithm to solve the problem. The maximum PSNR was for small α = 0.005,
and only 8 FAS cycles were needed.

β-dependence test. The most critical parameter affecting the performance of our MG
algorithm is definitively β. On the benchmark problem we ran the MG algorithm with the
fixed parameters α = 1/200, γ = 100, ν1 = ν2 = 10, ζ = 2, SNR = 3.5, and size = 2562 for
all tests, while β was varied from 1 to 10−2.

The results are presented in Table 5 and show a much better performance of our MG for
large β, which is not surprising since β strongly influences the values of the D(u)-coefficients.
Theoretically when κ is the curvature of level sets, β should be as small as possible; however,
in practice this is not only not necessary but also not recommended from a practical point
of view. This has been discussed, for instance, in [2] for the TV denoising model, where it
was shown that a smaller β does not necessarily lead to a better reconstruction. For the
curvature-based model a similar argument applies, and β = 10−2 is a fair selection which

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 385

Table 5
Results of a fixed α and varying β.

β α FAS cycles PSNR

1 1/200 3 48

10−1 1/200 4 55.9

10−2 1/200 10 60.5

10−3 1/200 25 60.6

Table 6
Fixing β first and then optimizing α.

β α FAS cycles PSNR

1 1 3 59.3

10−1 1/40 5 59.9

10−2 1/200 10 60.5

10−3 1/200 25 60.6

provides a good balance of quality of reconstruction and our MG algorithm performance.
Table 5 shows that decreasing β from 10−2 to 10−3 for fixed α does not improve the PSNR

in a meaningful way, but there is a huge difference in the number of FAS cycles used by our
algorithm to solve both problems.

Table 6 presents the PSNR values obtained using different values of β—with α selected
to deliver the best possible PSNR for each β value—and the number of FAS cycles used by
our MG algorithm to converge.

Quality of restoration test. We show some qualitative results in Figure 10. The added
Gaussian noise is large so that all of the images in the left column have SNR = 3.5. As can
be appreciated, the resulting denoised images do not show the undesirable staircase effect, as
expected, and noise is mostly removed.

7. Generalization. Fast algorithms for solving high order PDEs are in high demand. In
the image processing community researchers have realized that using high order models yields
better results than using second order models. Two good examples are the curvature-based
denoising model we studied here and the elastica inpainting model [16]. For the resulting
PDEs from these high order models only explicit or semi-implicit time-marching methods
have been reported in the literature. One of the advantages of our SFP1 and SFP2 algorithms
is that they can be very easily generalized to solve other PDEs similar to (2.2). That is,
we can implement fast fixed point algorithms for other models by splitting their differential
operators and adding up suitable stabilizing terms. Then these fixed point algorithms can
be used as smoothers in an MG context. For instance, we already have successfully applied
this idea to solving the fourth order PDE of the Euler’s elastica digital inpainting model; see
[11] for reported results. We also have encouraging results from using this method for solving
a three-dimensional denoising problem also known as surface fairing that has been studied
by Elsey and Esedoḡlu [26]. For this we have implemented only the two-dimensional case or
curve denoising.

8. Conclusions. In this paper, we introduced two algorithms (SFP and MG) for solving
the curvature-based denoising model [56], which is high order and capable of effective noise
removal. The resulting EL equation is of fourth order, anisotropic, and highly nonlinear, so
conventional algorithms struggle to find the solution quickly and efficiently. In contrast, our
MG algorithm is shown to be fast and robust up to some degree to changes in the noise level
and parameters.

We explained that a fixed point method using the Vogel and Oman idea [51] is unstable and
simply does not work for this curvature-based formulation. We then showed how to stabilize
this fixed point method and developed a stabilized fixed point method, giving evidence through

386 CARLOS BRITO-LOEZA AND KE CHEN

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a)

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(b)

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(c)

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(d)

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(e)

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(f)

Figure 10. Image denoising examples obtained with our MG algorithm. (a), (c), and (e) are noisy images.
(b), (d), and (f) are denoised images.

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 387

local Fourier analysis of its smoothing properties. Based on this, we developed a fast nonlinear
MG method. Finally, a generalization of our algorithms to similar problems was discussed. A
recent generalization to color images was done in [12].

REFERENCES

[1] R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr., and J. W. Painter, The multi-grid method for the
diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Statist. Comput., 2 (1981),
pp. 430–454.

[2] U. M. Ascher, E. Haber, and H. Huang, On effective methods for implicit piecewise smooth surface
recovery, SIAM J. Sci. Comput., 28 (2006), pp. 339–358.

[3] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing. Partial Differential Equa-
tions and the Calculus of Variations, Appl. Math. Sci. 147, Springer-Verlag, New York, 2002.

[4] N. Badshah and K. Chen, Multigrid method for the Chan-Vese model in variational segmentation,
Commun. Comput. Phys., 4 (2008), pp. 294–316.

[5] D. Bai and A. Brandt, Local mesh refinement multilevel techniques, SIAM J. Sci. Statist. Comput., 8
(1987), pp. 109–134.

[6] A. L. Bertozzi, S. Esedoḡlu, and A. Gillet, Inpainting of binary images using the Cahn-Hilliard
equation, IEEE Trans. Image Process., 16 (2007), pp. 285–291.

[7] J. H. Bramble and X. J. Zhang, Uniform convergence of the multigrid V-cycle for an anisotropic
problem, Math. Comp., 70 (2001), pp. 453–470.

[8] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977), pp. 333–
390.

[9] A. Brandt, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Gesellschaft für
Mathematik und Datenverarbeitung (GMD), St. Augustin, Germany, 1984.

[10] C. Brito-Loeza and K. Chen, Multigrid method for a modified curvature driven diffusion model for
image inpainting, J. Comput. Math., 26 (2008), pp. 856–875.

[11] C. Brito-Loeza and K. Chen, Fast numerical algorithms for Euler’s elastica inpainting model, Int. J.
Mod. Math., 5 (2010), pp. 157–182.

[12] C. Brito-Loeza and K. Chen, On high-order denoising models and fast algorithms for vector-valued
images, IEEE Trans. Image Process., 19 (2010), pp. 1518–1527.

[13] T. Chan, A. Marquina, and P. Mulet, High-order total variation-based image restoration, SIAM J.
Sci. Comput., 22 (2000), pp. 503–516.

[14] T. F. Chan and K. Chen, An optimization-based multilevel algorithm algorithm for total variation image
denoising, Multiscale Model. Simul., 5 (2006), pp. 615–645.

[15] T. F. Chan, K. Chen, and J. L. Carter, Iterative methods for solving the dual formulation arising
from image restoration, Electron. Trans. Numer. Anal., 26 (2007), pp. 299–311.

[16] T. F. Chan, S. H. Kang, and J. Shen, Euler’s elastica and curvature-based inpainting, SIAM J. Appl.
Math., 63 (2002), pp. 564–592.

[17] T. F. Chan and P. Mulet, On the convergence of the lagged diffusivity fixed point method in total
variation image restoration, SIAM J. Numer. Anal., 36 (1999), pp. 354–367.

[18] T. F. Chan and J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic
Methods, SIAM, Philadelphia, 2005.

[19] T. F. Chan and W. L. Wan, Robust multigrid methods for nonsmooth coefficient elliptic linear systems,
J. Comput. Appl. Math., 123 (2000), pp. 323–352.

[20] T. F. Chan, H. M. Zhou, and R. H. Chan, Continuation method for total variation denoising problems,
in Proceedings of the SPIE Symposium on Advanced Signal Processing Algorithms, Vol. 2563, SPIE,
Bellingham, WA, 1995, pp. 314–325.

[21] K. Chen, Matrix Preconditioning Techniques and Applications, Cambridge Monogr. Appl. Comput.
Math. 19, Cambridge University Press, Cambridge, UK, 2005.

[22] K. Chen and J. Savage, An accelerated algebraic multigrid algorithm for total variation denoising, BIT,
47 (2007), pp. 277–296.

388 CARLOS BRITO-LOEZA AND KE CHEN

[23] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration,
SIAM J. Appl. Math., 66 (2006), pp. 1383–1406.

[24] J. E. Dendy, Jr., Black box multigrid, J. Comput. Phys., 48 (1998), pp. 366–386.
[25] M. Donatelli, A multigrid for image deblurring with Tikhonov regularization, Numer. Linear Algebra

Appl., 12 (2005), pp. 715–729.
[26] M. Elsey and S. Esedoḡlu, Analogue of the total variation denoising model in the context of geometry

processing, Multiscale Model. Simul., 7 (2009), pp. 1549–1573.
[27] D. J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, in Computational

and Mathematical Models of Microstructural Evolution, J. W. Bullard et al., eds., Materials Research
Society, Warrendale, PA, 1998, pp. 39–46.

[28] D. J. Eyre, An Unconditionally Stable One-Step Scheme for Gradient Systems, manuscript, 1998; avail-
able online from http://www.math.utah.edu/∼eyre/research/methods/stable.ps.

[29] R. Fischer and T. Huckle, Multigrid solution techniques for anisotropic structured linear systems,
Appl. Numer. Math., 58 (2008), pp. 407–421.

[30] C. Frohn-Schauf, S. Henn, and K. Witsch, Nonlinear multigrid methods for total variation image
denoising, Comput. Vis. Sci., 7 (2004), pp. 199–206.

[31] S. Henn and K. Witsch, A multigrid approach for minimizing a nonlinear functional for digital image
matching, Computing, 64 (2000), pp. 339–348.

[32] L. Homke, A multigrid method for anisotropic PDEs in elastic image registration, Numer. Linear Algebra
Appl., 13 (2006), pp. 215–229.

[33] S. L. Keeling and G. Haase, Geometric multigrid for high-order regularizations of early vision problems,
Appl. Math. Comput., 184 (2007), pp. 536–556.

[34] H. Kostler, K. Ruhnau, and R. Wienands, Multigrid solution of the optical flow system using a
combined diffusion- and curvature-based regularizer, Numer. Linear Algebra Appl., 15 (2008), pp. 201–
218.

[35] M. Lysaker, A. Lundervold, and X.-C. Tai, Noise removal using fourth-order partial differential
equation with applications to medical magnetic resonance images in space and time, IEEE Trans.
Image Process., 12 (2003), pp. 1579–1590.

[36] M. Lysaker, S. Osher, and X.-C. Tai, Noise removal using smoothed normals and surface fitting,
IEEE Trans. Image Process., 13 (2004), pp. 1345–1357.

[37] A. Marquina and S. Osher, Explicit algorithms for a new time dependent model based on level set
motion for nonlinear deblurring and noise removal, SIAM J. Sci. Comput., 22 (2000), pp. 387–405.

[38] G. Papandreou and P. Maragos, Multigrid geometric active contour models, IEEE Trans. Image
Process., 16 (2007), pp. 229–240.

[39] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans.
Pattern Anal. Mach. Intell., 12 (1990), pp. 629–639.

[40] A. Reusken and M. Soemers, On the robustness of a multigrid method for anisotropic reaction-diffusion
problems, Computing, 80 (2007), pp. 299–317.

[41] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys.
D, 60 (1992), pp. 259–268.

[42] J. Savage and K. Chen, An improved and accelerated non-linear multigrid method for total-variation
denoising, Int. J. Comput. Math., 82 (2005), pp. 1001–1015.

[43] J. Savage and K. Chen, On multigrids for solving a class of improved total variation based staircasing
reduction models, in Image Processing Based on Partial Differential Equations, X.-C. Tai, K.-A. Lie,
T. F. Chan, and S. Osher, eds., Springer-Verlag, Berlin, 2007, pp. 69–94.

[44] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion, J. Sci. Comput.,
19 (2003), pp. 439–456.

[45] R. S. Spitareli, R. March, and D. Arena, A multigrid finite-difference method for the solution of
Euler equations of the variational image segmentation, Appl. Numer. Math., 39 (2001), pp. 181–189.

[46] M. Sturmer, H. Kostler, and U. Rude, A fast full multigrid solver for applications in image process-
ing, Numer. Linear Algebra Appl., 15 (2008), pp. 187–200.

[47] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, San Diego, 2001.
[48] P. Vanek, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for second and

fourth order elliptic problems, Computing, 56 (1996), pp. 179–196.

http://www.math.utah.edu/~eyre/research/methods/stable.ps

MULTIGRID ALGORITHM FOR HIGH ORDER DENOISING 389

[49] L. A. Vese and S. J. Osher, Numerical methods for p-harmonic flows and applications to image pro-
cessing, SIAM J. Numer. Anal., 40 (2002), pp. 2085–2104.

[50] C. Vogel, Computational Methods for Inverse Problems, Frontiers Appl. Math. 23, SIAM, Philadelphia,
2002.

[51] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput.,
17 (1996), pp. 227–238.

[52] B. P. Vollmayr-Lee and A. D. Rutenberg, Fast and accurate coarsening simulation with an uncon-
ditionally stable time step, Phys. Rev. E, 68 (2003), 066703.

[53] R. Wienands and W. Joppich, Practical Fourier Analysis for Multigrid Methods, Chapman &
Hall/CRC, Boca Raton, FL, 2005.

[54] S. Wise, J. Kim, and J. Lowengrub, Solving the regularized, strongly anisotropic Cahn–Hilliard equa-
tion by an adaptive nonlinear multigrid method, J. Comput. Phys., 226 (2007), pp. 414–446.

[55] Y.-L. You and M. Kaveh, Fourth-order partial differential equations for noise removal, IEEE Trans.
Image Process., 9 (2000), pp. 1723–1730.

[56] W. Zhu and T. F. Chan, Image Denoising Using Mean Curvature, preprint, http://www.math.nyu.edu/
∼wzhu/.

http://www.math.nyu.edu/~wzhu/
http://www.math.nyu.edu/~wzhu/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

