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Abstract. Based on the Fenchel pre-dual of the total variation model, a non-
linear multigrid algorithm for image denoising is proposed. Due to the struc-

ture of the differential operator involved in the Euler-Lagrange equations of

the dual models, line Gauss-Seidel-semismooth-Newton step is utilized as the
smoother, which provides rather good smoothing rates. The paper ends with

a report on numerical results and a comparison with a very recent nonlinear
multigrid solver based on Chambolle’s iteration [6].

1. Introduction. Image restoration is a fundamental problem in image process-
ing, and over the years various techniques for solving associated variational prob-
lems have been developed. Due to the potential non-uniqueness of the solution
and the numerical instability from ill-conditioning, image restoration is an ill-posed
problem and requires appropriate regularization for stabilization. Among the many
techniques, total variation (TV) regularization as proposed by Rudin, Osher and
Fatemi [22] is one of the most well-known ones. In this approach, the image u is
restored by solving the minimization problem

(1) min
u∈BV (Ω)

1

2

∫
Ω

|Ku− z|2dx+ α

∫
Ω

|Du|,

where Ω ⊂ R2 is an open and bounded image domain with a Lipschitz-continuous
boundary ∂Ω, K is a linear and continuous blurring operator from L2(Ω) to L2(Ω),
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i.e., K ∈ L(L2(Ω)), which we assume to be known, and α > 0 is a regularization
parameter controlling the trade-off between fitting the degraded image z ∈ L2(Ω)
and a smoothness requirement due to the total variation regularization. By BV (Ω)
we denote the space of functions of bounded variation, i.e. u ∈ BV (Ω) if u ∈ L1(Ω)
and the BV -seminorm∫

Ω

|Du| = sup

{∫
Ω

u div~v dx : ~v ∈ (C∞0 (Ω))2, ‖~v‖∞ ≤ 1

}
is finite. The space BV (Ω) endowed with the norm ‖u‖BV (Ω) = ‖u‖L1(Ω) +

∫
Ω
|Du|

is a Banach space; see, e.g., [13].
The non-differentiability of the TV-term

∫
Ω
|Du| is responsible for preserving

edges in images, but at the same time, it poses significant numerical challenges.
In the recent past, various research efforts have been undertaken to overcome this
difficulty; see, e.g., [10, 5, 8, 24, 4, 21, 20, 23, 16, 17] as well as the monograph [31]
and the many references therein.

The first order condition or Euler-Lagrange equation of (1) leads to a differential
inclusion which, in a regularized form, becomes a system of nonlinear partial dif-
ferential equations (PDEs). For their numerical solution, multigrid (MG) methods
appear to be ideal candidates as they are known to be efficient numerical techniques
for solving partial differential equations; see, e.g., [14, 27, 32]. The convergence
behavior of MG techniques usually depends on the type and structure of the dif-
ferential operator. For linear elliptic second order operators the method has been
analyzed and applied successfully, e.g., in [14] and the references therein. Nonlinear
variants can be found in [3, 14], for instance. In the multigrid literature, the dif-
ferential operator is usually assumed to enjoy differentiability properties, whereas
the system resulting from the Euler-Lagrange equation of (1) is non-differentiable.
This necessitates appropriate reformulations of the PDE system and extensions of
smoothing steps in order to account for the non-differentiability.

In [29] a multigrid (MG) solver acting on the primal problem (1) was proposed.
In that paper it is noted that a straightforward application of a (nonlinear) MG
method to a smoothed version of the Euler-Lagrange system does not work well due
to the discontinuity in the diffusion coefficient. Rather the authors propose to resort
to a flux-formulation similar to flow through a porous medium with fixed porosity
(which amounts to a reformulation of the usual “lagged diffusivity” formulation
[30]). It appears that this format improves over the straightforward application of
MG. Several discretization and smoothing operations for yet a primal version of
multigrid for total variation regularization were investigated in [12]. In [28] multi-
grid respectively multilevel techniques are used as preconditioners of the conjugate
gradient method applied to the subproblem of a “lagged diffusivity” iteration for
solving the total variation regularized problem.

Recently, dual formulations of the total variation problem and associated solution
algorithms became popular; see, e.g., [4, 7, 16, 17]. Furthermore, the multigrid
algorithm is introduced to solve the dual problem which is a quadratic minimization
under a convex constraint, see [26, 25]. In [6], a nonlinear multigrid algorithm was
proposed to solve the dual formulation of (1) formally given by

(2) −∇(αdiv(~ω)− z) + |∇(αdiv(~ω)− z)|l2~ω = 0,

where ~ω = (ω1, ω2) is the dual variable. The restored image is obtained as u =
z−αdiv(~ω). In this algorithm, the semi-implicit time-marching scheme of [4] (which
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we call Chambolle’s iteration or method in what follows) is utilized in the smooth-
ing step of the multigrid method. It is known that the convergence rate of the
smoothing step is at best linear (in the primal variable) and does not exhibit a
resolution independent convergence behavior. Moreover, the dual variable is not
necessarily unique at the solution due to the non-trivial kernel of the generalized
divergence operator, the adjoint of the derivative in the TV-term. As a consequence
of these facts, the efficiency of the multigrid iteration appears to be compromised.
Moreover, for practical purposes it turns out that |∇(αdiv(~ω) − z)|l2 close to zero
is problematic due to the non-differentiability of the total variation term. This af-
fects the efficiency of the smoother. As a remedy, in [6] (like in the Newton-type

scheme [7]) |∇(αdiv(~ω) − z)|l2 is replaced by
√
|∇(αdiv(~ω)− z)|2 + β with suffi-

ciently large β > 0 to maintain an acceptable smoothing rate and, thus, turning a
non-differentiable term into a C∞-term. The choice of β implies a decision between
a good smoothing rate versus the quality of the reconstruction. In particular, large
β leads to artifacts in homogeneous image regions.

In this paper we aim at the introduction of a nonlinear multigrid algorithm in the
framework of the dual problem, which overcomes the above mentioned limitations.
In fact, the Fenchel pre-dual of (1) is known to be a convex quadratic problem sub-
ject to bound-constraints [16]. Since the objective function of the pre-dual problem
involves the divergence operator, which has a nontrivial kernel, we propose two
models with different regularization terms, respectively, to avoid the nonuniqueness
of the dual solution. Then, based on these two models we utilize the nonlinear multi-
grid algorithm to solve the pertinent Euler-Lagrange equations. Compared to the
smoothed model in [6], our two models are much closer to the original nonsmooth
total variation formulation. Moreover, one of the models allows for the application
of so-called semismooth Newton solvers [15] in the associated function space setting
resulting in a resolution independent solution algorithm. Combined with a nonlin-
ear multigrid algorithm, we propose a line Gauss-Seidel-semismooth-Newton step as
the smoother, which provides better smoothing rates than the smoother suggested
in [6]. Line smoothing is necessary due to the structure of the differential operator
involved in the Euler-Lagrange equations.

The outline of the rest of the paper is as follows. In Section 2 we recall some
basic facts from convex analysis and state the pre-dual of (1) in the sense of Fenchel.
Section 3 is devoted to the description of our nonlinear multigrid algorithm. Sec-
tion 4 gives numerical results to demonstrate the performance of the new method.
Moreover, we compare our method with the one in [6]. Finally, conclusions are
drawn in Section 5.

2. Pre-dual problem of total variation model for image restoration. We
start by recalling the Fenchel duality concept in infinite dimensional spaces in a
form that is convenient for our work; see, e.g., [11] for details. For this purpose
let V and Y be Banach spaces with topological duals V ∗ and Y ∗, respectively.
Let F : V → R ∪ {∞} and G : Y → R ∪ {∞} be convex, lower semi-continuous
functionals such that there exists v0 ∈ V with F(v0) < ∞, G(Λv0) < ∞, G is
continuous at Λv0, and Λ ∈ L(V, Y ) is a continuous linear operator from V to Y .
Then we have

(3) inf
u∈V
F(u) + G(Λu) = sup

p∈Y ∗
−F∗(Λ∗p)− G∗(−p),
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where the conjugate of F is defined by F∗ : V ∗ → R ∪ {∞}

(4) F∗ = sup
v∈V
〈v, v∗〉V,V ∗ −F(v),

and analogously for G∗ : Y ∗ → R ∪ {∞}.
In order to compute the Fenchel dual of (1) formally, we set Λ = ∇,

F(u) =
1

2

∫
Ω

|Ku− z|2 dx and G(~p) = α

∫
Ω

|~p|l2 dx.

Based on the definition of the Fenchel conjugate (4), we get

F∗(u∗) =
1

2
‖u∗ +K∗z‖2B −

1

2

∫
Ω

z2 dx and G∗(~p∗) = I{~w:|~w|l2≤α}(~p
∗),

where ‖v‖2B = 〈v,B−1v〉 with B = K∗K, which is assumed to be invertible, and IS
is the indicator function of the set S. Here, 〈·, ·〉 denotes a duality pairing. Hence,
in view of (3) the formal dual of (1) is given by
(5)

min
~p

1

2
‖div~p+K∗z‖2B subject to (s.t.) |~p|l2 ≤ α almost everywhere (a.e.) in Ω.

Assuming sufficient regularity of u, observe that |~p|l2 ≤ α in Ω results from ~p(x) ∈
αB(0, 1), where B(0, 1) denotes the closed unit ball in R2, whenever ∇u(x) = 0
and |~p(x)|l2 = α for |∇u(x)|l2 > 0. In [16], the following result concerning (5) was
established.

Theorem 2.1. The Fenchel dual of

(6) min
~p∈H0(div)

1

2
‖div~p+K∗z‖2B s.t. |~p|l2 ≤ α a.e. in Ω

is given by (1), where H0(div) = {~v ∈ L2(Ω) : div~v ∈ L2(Ω), ~v · ~n = 0 on ∂Ω} with
~n is the outer unit normal to ∂Ω, and L2(Ω) = L2(Ω) × L2(Ω). Alternatively, (6)
can be regarded as the pre-dual of (1).

Since the kernel of the divergence operator is nontrivial, we add a dual regular-
ization term with associated regularization parameter µ > 0 to enforce uniqueness
of the solution of the pre-dual. Here, we consider the following two variants:

(7) min
~p∈H1

0(Ω)

1

2
‖div~p+K∗z‖2B +

µ

2

∫
Ω

|~∇~p|2l2 dx s.t. |~p|l2 ≤ α a.e. in Ω,

and

(8) min
~p∈H0(div)

1

2
‖div~p+K∗z‖2B +

µ

2

∫
Ω

|~p|2l2 dx s.t. |~p|l2 ≤ α a.e. in Ω,

where H1
0(Ω) = H1

0 (Ω) × H1
0 (Ω), which is dense in H0(div). Note that the regu-

larization in (7) lifts ~p into H1
0(Ω) whereas the second regularization maintains the

function space regularity of the original pre-dual problem (6). Like in [17] we are
able to find the effect of the dual regularization in (8) in the primal problem. In
fact, the total variation term

∫
Ω
|Du| in (1) is approximated by

∫
Ω

Φµα(∇u) dx with

Φµα(~w)(x) :=

{
|~w(x)|l2 − µα

2 if |~w(x)|l2 ≥ µα,
1

2µα |~w(x)|2l2 if |~w(x)|l2 < µα.

Observe that Φµα(~w) is a Huber-type function (see [19]) which smoothes the total
variation regularization only locally. For the first regularization the effect in the
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primal problem is non-local in the sense that the regularity of the dual variable ~p
increases from H0(div) to H1

0(Ω).
In [16], see also [17], it was shown that the penalized version of (8) given by

(9) min
~p∈H0(div)

1

2
‖div~p+K∗z‖2B +

µ

2

∫
Ω

|~p|2l2 dx+
γ

2

∫
Ω

max(0, |~p|l2 − α)2 dx,

with a penalty parameter γ > 0 and the max-term penalizing violations of the point-
wise a.e. constraints in (8) can be solved by a semismooth Newton iteration acting
on the Euler-Lagrange equation. It is well-known that γ → ∞ enforces the con-
straint |~p|l2 ≤ α. Moreover, it can be shown that ‖max(0, |~pγ |l2−α)‖L2(Ω) ≤ Cγ−

1
2

for some constant C > 0 (independent of γ), where ~pγ denotes the solution of
(9). The semismooth Newton iteration converges locally at a superlinear rate in
function space and, as a consequence, exhibits an (image) resolution independent
convergence behavior in the discrete setting. This suggests to utilize such a semis-
mooth Newton solver as the smoothing iteration for the nonlinear multigrid method
given below.

Motivated by (9), we approximate (7) by

(10) min
~p∈H1

0(Ω)

1

2
‖div~p+K∗z‖2B +

µ

2

∫
Ω

|~∇~p|2l2 dx+
γ

2

∫
Ω

max(0, |~p|l2 − α)2 dx,

The Euler-Lagrange equations for (10) and (9), respectively, read:

(11) − µ~∆~̄p−∇(K∗K)−1div~̄p+ γmax(0, |~̄p|l2 − α)~̄q = ∇(K∗K)−1K∗z,

or

(12) µ~̄p−∇(K∗K)−1div~̄p+ γmax(0, |~̄p|l2 − α)~̄q = ∇(K∗K)−1K∗z,

where

~̄q(x) ∈

{
{ ~̄p
|~̄p|l2

(x)} if |~̄p(x)|l2 > 0,

B(0, 1) if |~̄p(x)|l2 = 0.

Here, ~̄p denotes the unique solution of (10) or (9), respectively.
In the next section, we introduce a nonlinear multigrid algorithm to solve (11) and

(12) in the denoising case, i.e., for K equal to the identity operator. The restored
image is obtained by ū = div~̄p+ z. Variants of nonlinear multigrid methods in the
deblurring case, i.e. for K not the identity, might be conceivable but go beyond the
scope of the present work.

3. Nonlinear multigrid method for the dual problem. For (11) and (12) in
the denoising case, i.e., K = id yielding

(13) − µ~∆~p−∇div~p+ γmax(0, |~p|l2 − α)~q = ∇z,
and

(14) µ~p−∇div~p+ γmax(0, |~p|l2 − α)~q = ∇z,
we introduce a nonlinear multigrid scheme for restoring high resolution images ef-
ficiently. From now on we proceed in discrete terms, but, for the sake of simplicity
and readability, we keep the notation from the continuous context.

Assume that the discrete image domain Ω contains (m− 1)× (n− 1) pixels, and
define the discrete gradient operator ∇ : R(m−1)×(n−1) → R2(m−1)×(n−1) by

∇z :=

[
∇xz
∇yz

]
Inverse Problems and Imaging Volume 5, No. 2 (2011), 323–339
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for z ∈ R(m−1)×(n−1) with ∇x,∇y : R(m−1)×(n−1) → R(m−1)×(n−1) corresponding
to the discrete derivative in the x- and y-direction, respectively. Furthermore, we

have the divergence operator div = −∇> and ~4 : R2(m−1)×(n−1) → R2(m−1)×(n−1)

given by

~4~p :=

[
4p1

4p2

]
with ~p =

[
p1

p2

]
∈ R2(m−1)×(n−1), p1, p2 ∈ R(m−1)×(n−1) and 4 : R(m−1)×(n−1) →

R(m−1)×(n−1). For convenience, we denote the discretized versions of (13) and (14)
by

A1(~p) := −µ~4~p−∇div~p+ γMα ? ~p = ~r,(15)

A2(~p) := µ~p−∇div~p+ γMα ? ~p = ~r,(16)

with ~r = ∇z, respectively. Here, Mα is a 2(m− 1)× (n− 1)-matrix with (Mα)i,j =

(Mα)m−1+i,j = max(0, 1 − α
|[~p]i,j |l22 ) and |[~p]i,j |l2 =

√
|(p1)i,j |2 + |(p2)i,j |2, and ?

denotes the Hadamard product. Then, the nonlinear full approximation scheme
(FAS) multigrid algorithm [32, 27, 9] for solving either (15) or (16) reads as follows.

FAS Multigrid Algorithm.

1: Initialize ~p1 ∈ R2(m−1)×(n−1). Set i ∈ {1, 2} and ~r1 = ∇z. Start from
finest level l = 1 and do j steps of a nonlinear multigrid V-cycle for solving
Ai(~p) = ~r1, which we call NMG(~p1, ~r1, 1).

2: One step of a V-cycle of our nonlinear multigrid procedure NMG(~pl, ~rl, l)
proceeds as follows:
• if l = L, the coarsest level, perform a high accuracy solve of ALi (~p) = ~rL

and let ~pL denote the corresponding solution.
• else, on level l, do

– Pre-smoothing: ~pl = Sν1l (~pl, ~rl).

– Restrict to the coarser grid: ~pl+1 = Rl+1
l ~pl.

– Compute ~rl+1 = Rl+1
l (~rl −Ali(~pl)) +Al+1

i (~pl+1).

– Set the initial solution on level l + 1 as ~̃pl+1 = ~pl+1.
– Call NMG(~̃pl+1, ~rl+1, l + 1).
– Interpolation the correction and compute the corrected approxima-

tion: ~pl = ~pl + P ll+1(~̃pl+1 − ~pl+1).

– Post-smoothing: ~pl = Sν2l (~pl, ~rl).

• end one step of NMG(~pl, ~rl, l)

Here P ll+1 denotes an interpolation operator from level l + 1 to level l, ν1 and ν2

are the numbers of the pre-smoothing steps and the post-smoothing steps on each
level l, respectively.

Next, we describe each element of the FAS multigrid algorithm for solving (13)
and (14) in detail.

3.1. Line Gauss-Seidel-Newton smoother. The convergence of the overall multi-
grid scheme hinges on the performance and reduction rates of the smoothing iter-
ation. For this reason, we first focus on the choice of the smoother in Sνil (~pl, ~rl)
with i = 1, 2. Note that according to [27] the h-ellipticity property of the discrete
differential operator is important when constructing a pointwise smoother. Since
∇div in (13) and (14) does not obey such a h-ellipticity property we have to proceed
differently, i.e. with an alternative to a pointwise smoother. In fact, as a remedy we
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propose to use a line Gauss-Seidel-Newton iteration as a smoother in our nonlinear
multigrid algorithm.

It is well-known that line relaxation is particularly efficient when solving
anisotropic problems due to its effectivity in the direction of strong coupling. As
the relevant term in our case is −∇div~p we clearly find that the directions of strong
coupling of p1 and p2 are different. In fact, for p1 the x-direction couples strongly,
whereas for p2 the y-direction is coupling strongly. Consequently, we utilize an
alternate line relaxation in our smoothing step. Below we exemplarily discuss the
x-line Gauss-Seidel-Newton iteration in detail. The y-direction relaxation can be
obtain similarly.

We discretize the Laplace operator by the standard five-point stencil with ho-
mogenous Dirichlet boundary conditions and use forward differences for the gradient
and corresponding discrete adjoint scheme for the divergence operator. Then, the
operators that appear in (13) and (14) can be written as

(∇v)i,j ≈

[
vi+1,j−vi,j

hx
vi,j+1−vi,j

hy

]
,

(div~p)i,j ≈
(p1)i,j − (p1)i−1,j

hx
+

(p2)i,j − (p2)i,j−1

hy
,

(∆v)i,j ≈
vi+1,j + vi−1,j − 2vi,j

h2
x

+
vi,j+1 + vi,j−1 − 2vi,j

h2
y

,

(∇div~p)i,j ≈

[
(p1)i+1,j+(p1)i−1,j−2(p1)i,j

h2
x

+
(p2)i+1,j+(p2)i,j−1−(p2)i,j−(p2)i+1,j−1

hxhy
(p2)i,j+1+(p2)i,j−1−2(p2)i,j

h2
y

+
(p1)i,j+1+(p1)i−1,j−(p1)i,j−(p1)i−1,j+1

hxhy

]
,

for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1,

where hx and hy are the widths of the subintervals in x-direction and y-direction,
respectively. Here (and in our numerics) we consider the image domain with bound-
ary given by Ω̄ = [0, 1]2. Corresponding to the assumption at the beginning of
Section 3, on the discrete level it contains (m+ 1)× (n+ 1) pixels in total. Hence,
we have hx = 1

m and hy = 1
n , and i = 0 ∧ i = m respectively j = 0 ∧ j = n belong

to pixels on the boundary ∂Ω, where the values of v are assumed to be known.
The x-line Gauss-Seidel iterations for the discretized versions of (13) and (14)

are denoted as

(17) AGS(~pk+1
·,1 , · · · , ~pk+1

·,j−1, ~p
k+1
·,j , ~pk·,j+1, · · · , ~pk·,n) = ~rk,

where ~p·,j is the jth row of ~p, and the indices k and k + 1 denote the current and
the new approximation, respectively. We note that these nonlinear equations for
the unknown ~pk+1

·,j = ((pk+1
1 )·,j , (p

k+1
2 )·,j)

> are non-smooth, i.e. not necessarily
Fréchet-differentiable. This is due to the presence of the maximum function. But
they can be solved efficiently by a semismooth Newton method, which converges
locally at a superlinear rate [17]. Applying a generalized Newton step to (17) with
initial value ~pk·,j yields

(18)

[
H11 H12

H21 H22

] [
(pt+1

1 )>·,j
(pt+1

2 )>·,j

]
=

[
F t1
F t2

]
,

where H21 = H>12.

Inverse Problems and Imaging Volume 5, No. 2 (2011), 323–339
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Remark 1. For the nonlinear equation (13), we have

H11 =



(dt1)1,j − µ+1
hxhy

− µ+1
hxhy

(dt1)2,j − µ+1
hxhy

. . .
. . .

. . .

− µ+1
hxhy

(dt1)m−1,j − µ+1
hxhy

− µ+1
hxhy

(dt1)m,j

 ,

H12 =


(dt2)1,j − 1

hxhy

. . .
. . .

(dt2)m−1,j − 1
hxhy

(dt2)m,j

 ,

H22 =



(dt3)1,j − µ
hxhy

− µ
hxhy

(dt3)2,j − µ
hxhy

. . .
. . .

. . .

− µ
hxhy

(dt3)m−1,j − µ
hxhy

− µ
hxhy

(dt3)m,j

 ,

F t1 =rk1 +
µ

hxhy

[
(pk+1

1 )·,j+1 + (pk1)·,j−1

]
+

1

hxhy

[
(pk+1

2 )·,j−1 − (pk2)·+1,j−1

]
+ γχti,j

α(pt1)i,j
|~pti,j |l2

,

F t2 =rk2 +
µ+ 1

hxhy

[
(pk+1

2 )·,j+1 + (pk2)·,j−1

]
+

1

hxhy

[
(pk1)·,j+1 − (pk+1

1 )·−1,j+1

]
+ γχti,j

α(pt2)i,j
|~pti,j |l2

,

where (dt1)i,j = 4µ+2
hxhy

+γχti,j
[
1− α(pt2)2i,j

|~pti,j |3l2

]
, (dt2)i,j = 1

h2 +γχti,j
α(pt1)i,j(p

t
2)i,j

|~pti,j |3l2
, (dt3)i,j =

4µ+2
hxhy

+ γχti,j
[
1− α(pt1)2i,j

|~pti,j |3l2

]
, and χti,j =

{
1, if |~pti,j |l2 > α,
0, else.

For the generalized Newton step for equation (14), we have

H11 =



(dt1)1,j − 1
hxhy

− 1
hxhy

(dt1)2,j − 1
hxhy

. . .
. . .

. . .

− 1
hxhy

(dt1)m−1,j − 1
hxhy

− 1
hxhy

(dt1)m,j

 ,
H12 =H12 for (13),

H22 =

 (dt3)1,j

. . .

(dt3)m,j

 ,
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F t1 =rk1 +
1

hxhy

[
(pk+1

2 )·,j−1 − (pk2)·+1,j−1

]
+ γχti,j

α(pt1)i,j
|~pti,j |l2

,

F t2 =rk2 +
1

hxhy

[
(pk1)·,j+1 − (pk+1

1 )·−1,j+1

]
+ γχti,j

α(pt2)i,j
|~pti,j |l2

,

where (dt1)i,j = µ+ 2
hxhy

+ γχti,j
[
1− α(pt2)2i,j

|~pti,j |3l2

]
, (dt2)i,j = 1

h2 + γχti,j
α(pt1)i,j(p

t
2)i,j

|~pti,j |3l2
, and

(dt3)i,j = µ+ 2
hxhy

+ γχti,j
[
1− α(pt1)2i,j

|~pti,j |3l2

]
.

In order to study the efficiency of the nonlinear multigrid algorithm with these
line Gauss-Seidel-Newton smoothers, in the following we use local Fourier analysis
to measure the largest amplification factor in the relaxation scheme (18).

3.1.1. The smoothing property analysis. The convergence behavior of a multigrid
algorithm depends strongly on the smoother. A convenient tool for the study of the
expected reduction or smoothing rate is Fourier analysis.

Since the smoothing rate of the nonlinear multigrid algorithm proposed in [6] is
mainly limited by the case when |(∇uk+1)i,j |l2 is close to zero, in this section we

mostly focus on this case, i.e., |~pk+1
i,j |l2 ≤ α (see the arguments right before Theorem

1). Then, we have max
(
0, 1 − α

|~pk+1
i,j |l2

)
= 0. In the following, for simplifying the

formulas, we assume that the numbers of the intervals in each row and each column
are equal to n, i.e., m = n and h := 1

n = hx = hy. The extension to m 6= n is
straightforward.

Define the local error functions by ek1 = p1 − pk1 and ek2 = p2 − pk2 , where ~p =
(p1, p2) is the solution of (13) or (14), and ~pk = (pk1 , p

k
2) is the result after k steps

of the line Gauss-Seidel iteration as defined in (17). Similar to the local Fourier
analysis in [32, 27, 9], let

ek1(i, j) =

n/2∑
θα,θβ=−n/2

(ck1)θα,θβψθα,θβ (i, j),

ek2(i, j) =

n/2∑
θα,θβ=−n/2

(ck2)θα,θβψθα,θβ (i, j),

where ψθα,θβ (i, j) = e
2πI(θαi+θβj)

n with I the imaginary unit. Then, the so-called
amplification matrix Mθα,θβ is defined as[

(ck+1
1 )θα,θβ

(ck+1
2 )θα,θβ

]
=Mθα,θβ

[
(ck1)θα,θβ
(ck2)θα,θβ

]
,

and the smoothing rate maxθα,θβ ρ(Mθα,θβ ) is the maximum spectral radius of

Mθα,θβ in the high frequency range (θα, θβ) ∈ [−n2 ,
n
2 ]2 \ [−n4 ,

n
4 ]2.

Substituting the local error functions into the x-line Gauss-Seidel iteration (17),
we obtain the following amplification matrices for (13) and (14), respectively:

M1
θα,θβ

=

[
4µ+2−2(µ+1) cos 2πIθα

n −µe
−2πIθβ

n 1−e
2πIθα
n −e

−2πIθβ
n +e

2πI(θα−θβ)

n

1−e
−2πIθα

n 4µ+2−(µ+1)e
−2πIθβ

n −2µ cos 2πIθα
n

]−1

·

[
µe

2πIθβ
n 0

e
2πIθβ
n −e

2πI(θβ−θα)

n (µ+1)e
−2πIθβ

n

]
,
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µ for M1
θα,θβ

, Line GS method Chambolle’s method

µh2 for M2
θα,θβ

, max
θα,θβ

ρ(M1
θα,θβ

) max
θα,θβ

ρ(M2
θα,θβ

) Original Modified

C for [6]
1 0.4880 0.5 0.8889 0.8000

1/2 0.5885 0.6667 0.9412 0.8889
1/4 0.7044 0.8 0.9697 0.9412

10−1 0.8398 0.9091 0.9877 0.9756
10−2 0.9796 0.9901 0.9988 0.9980
10−3 0.9979 0.9990 0.9999 0.9998

Table 1. Comparison of smoothing rates maxθα,θβ ρ(Mθα,θβ ) of
the line Gauss-Seidel (GS) iteration (17) with those of Chambolle’s
iteration (Table 4.1 and 4.2 in [6]).

and

M2
θα,θβ

=

[
µh2+2−2 cos 2πIθα

n 1−e
2πIθα
n −e

−2πIθβ
n +e

2πI(θα−θβ)

n

1−e
−2πIθα

n µh2+2−e
−2πIθβ

n

]−1

·

[
0 0

e
2πIθβ
n −e

2πI(θβ−θα)

n e
2πIθβ
n

]
.

It is easy to see that M1
θα,θβ

is independent of h, whereas M2
θα,θβ

is not. If we as-

sume that the image domain Ω is (0, 1)2, as we mentioned in the beginning of Section
3.1, increasing the image resolution has the same effect on M2

θα,θβ
as reducing µ

(for fixed h).

When |~pk+1
i,j |l2 > α, then the γ-terms in (13) and (14) are positive instead of zero,

which will increase the diagonal elements in the first matrix in Mi
θα,θβ

, i = 1, 2,

and, as a result, the smoothing rate improves, i.e., it becomes smaller.
The amplification matrices of the relaxation in x-direction and the one for the

y-direction are related by

My
θα,θβ

=

[
0 1
1 0

]
· Mx

θα,θβ
·
[

0 1
1 0

]
,

showing that the smoothing rate of the y-line Gauss-Seidel iteration is equal to that
of the x-line Gauss-Seidel iteration.

In Table 1 we list the smoothing rate maxθα,θβ ρ(Mθα,θβ ) of the line Gauss-Seidel
smoother for the nonlinear equations (13) and (14), respectively. Comparing the
results for the two models, we see that when using the line Gauss-Seidel iteration
for (13) we obtain a better smoothing rate than for (14). As we mention in Section
2, the dual regularization parameter µ is related to a (local) smoothing of the total
variation. It therefore has the same effect as C := |∇(div~ωk − z

α )|l2 = |∇uk|l2 in
the Fourier analysis of the multigrid method proposed in [6]. Hence, we are able to
compare the smoothing rate of our method with the one in Table 4.1 of [6] and find
that our method provides a better smoothing rate. Even when compared with the
improved method in Table 4.2 of [6] our method still exhibits a smaller rate.
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3.2. Restriction and interpolation. For the sake of completeness, in this section
we provide our choices for the restriction and interpolation operations in our multi-
grid algorithm. These operators are merely standard in the multigrid literature.

For the prolongation operator P ll+1 we use bilinear interpolation [32, 27], i.e.,

~pl2i−1,2j−1 = ~pl+1
i,j , 1 ≤ i ≤ ml+1 − 1, 1 ≤ j ≤ nl+1 − 1

~pl2i−1,2j =
1

2
(~pl+1
i,j + ~pl+1

i,j+1), 1 ≤ i ≤ ml+1 − 1, 1 ≤ j ≤ nl+1 − 2

~pl2i,2j−1 =
1

2
(~pl+1
i,j + ~pl+1

i+1,j), 1 ≤ i ≤ ml+1 − 2, 1 ≤ j ≤ nl+1 − 1

~pl2i,2j =
1

4
(~pl+1
i,j + ~pl+1

i,j+1 + ~pl+1
i+1,j + ~pl+1

i+1,j+1), 1 ≤ i ≤ ml+1 − 2, 1 ≤ j ≤ nl+1 − 2,

where ~pl+1 ∈ R2(ml+1+1)×(nl+1+1). The restriction operator Rl+1
l is the adjoint of

P ll+1, i.e., the full weighting operator [32, 27] defined by

~pl+1
i,j =

1

16
(~pl2i−2,2j−2 + 2~pl2i−2,2j−1 + ~pl2i−2,2j + 2~pl2i−1,2j−2 + 4~pl2i−1,2j−1 + 2~pl2i−1,2j

+ ~pl2i,2j−2 + 2~pl2i,2j−1 + ~pl2i,2j), 1 ≤ i ≤ ml+1 − 1, 1 ≤ j ≤ nl+1 − 1

with homogenous Dirichlet boundary condition.

3.3. Initialization. In our smoothing steps, for solving the nonlinear equations
(13) and (14) we utilize a semi-smooth Newton method, which converges superlin-
early provided that the initial value ~p1 is sufficiently close to the solution. In our
numerics we found the following initialization, which is related to the unconstrained
version of the dual problem, to work well: Consider problem (1) with K = id and
the associated Euler-Lagrange equation, which formally leads to

ū− z = div~̄p

with |~̄p|l2 ≤ α in Ω. Disregarding the pointwise constraint on ~̄p, we initialize our
algorithm by ~p1 = ∇q̄, where q̄ = q̄(ū) solves

−∆q = z − ū in Ω,

∂q

∂~n
= 0 on ∂Ω.

Note that ~p1 satisfies div ~p1 = ū − z ∈ L2(Ω) and ~p1 · ~n = 0 on ∂Ω. Thus, ~p1 ∈
H0(div); see Theorem 1 for the notations. In practice, we replace ū by ũ, a smoothed
version of z obtained from a convolution of Gaussian kernel and z. In our numerical
experiments, we use the 7-by-7 Gaussian kernel with standard variation 1. Then,
we set ~p1 := ∇q(ũ) yielding z − ũ = div ~p1 in Ω and ~p1 · ~n = 0 on ∂Ω.

In Table 2 we compare the above initialization strategy with an initialization uti-
lizing the full multigrid approach (i.e. coarse-to-fine mesh refinement only), which
is a popular choice in the literature. For a detailed discussion concerning the per-
formance of both initialization we refer to the next section.

4. Numerical results. In this section, we provide numerical results for studying
the behavior of our nonlinear multigrid method with respect to its image denoising
capabilities and the speed of convergence. Furthermore, we compare our method
with another nonlinear multigrid method based on Chambolle’s iteration proposed
in [6], the CCC-method for short. In all of our experiments reported on below
the image intensity range is [0,255]. Unless otherwise specified in our nonlinear
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(a) (b) (c)

(d) (e) (f)

Figure 1. Results of the method proposed in [6] and our method
for restoring the image corrupted by Gaussian noise with σ = 0.1:
(a) original image, (b) noisy image, (c) by the CCC method in [6]
with β = 10−2, (d) by the CCC-method in [6] with β = 10−6, (e)
by our method for the model (10), (f) by our method for the model
(9).

multigrid method, we utilize five complete line Gauss-Seidel iterations, i.e., one x-
line and one y-line Gauss-Seidel iteration, as pre-smoothing and post-smoothing on
each level, i.e., ν1 = 10 and ν2 = 10. The algorithm is stopped as soon as the initial
residual is reduced by a factor of 10−7. For comparing fairly, we run the CCC-
method under the same parameter selections for (ν1, ν2, α) and the same stopping
conditions.
Example 1. In the first experiment, we use a simple 127-by-127 gray-level image,
which is corrupted by Gaussian white noise with noise level σ = 0.1; see Figure
1. In Table 2 we list the number of cycles of nonlinear multigrid for reaching the
stop criterion (denoted by k), the CPU time (in seconds), and the PSNR-values
[2]. Although both methods denoise the image by solving the dual problem of the
total variation model (1), they utilize different ways to overcome the difficulty from
the constraint in (6). In the CCC-method, a fixed point type projection scheme
is utilized within a semi-implicit time-marching scheme [4] used as the smoother.
In order to avoid a smoothing rate close to 1 in homogeneous regions (where the
gradient is (close to) zero), the CCC-method uses the smoothing approximation∫

Ω

√
|∇u|2l2 + β with β > 0, to avoid the non-differentiable TV-term. As β ↓ 0,

the solution of the CCC-method approaches the one of (1). Moreover, the larger
β becomes the better the CCC-method converges. It is however known (compare
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Method k CPU time (s) PSNR (dB)
β = 10−2 17 4.47 33.2143

Method β = 10−4 68 15.70 34.6701
in [6] β = 10−6 147 35.16 34.8515

β = 10−8 177 48.50 34.8606
1 Our method from (10) 12 112.54 34.7986
1 Our method from (9) 14 115.87 34.7945

Our method from (10) 1 12.35 34.8008
Our method from (9) 1 11.34 34.8000
1(The full multigrid algorithm is utlized as initialization.)

Table 2. Comparison of different methods for denoising the image
in Figure 1.

plots (c) and (d) of Figure 1) that the quality of the reconstruction degrades for
large values of β.

In the following experiments, we set β = 10−6 in the CCC-method, which corre-
sponds to the case of C = 10−3 in the local Fourier analysis in the Tables 4.1 and
4.2 of [6]. Since the CCC-method relies on the formulation (2) and uses an iterative
fixed point algorithm as a smoother, it leads to a very slow convergence for high
precision requirements. From Table 2 we find that with β = 10−6 and 10 pre- and
post-smoother iterations the CCC-method still needs almost 150 nonlinear multi-
grid cycles. However, our method based on a penalization/regularization technique
to obtain the unconstrained minimization problems (10) and (9), respectively, uses
a line Gauss-Seidel-semismooth-Newton method as a smoother, where the pertinent
generalized Newton iteration converges locally at a superlinear rate. It is readily
seen that the solutions of (10) or (9) approximate the solution of the total varia-
tion model (1) as µ ↓ 0 and γ ↑ ∞. Hence, in our experiments we set µ = 10−3

(µh2 = 10−3 for (9)) and γ = 1012 for our method. In this case, with the initial-
ization introduced in Section 3.3, after one cycle of the nonlinear multigrid, our
method reaches the stopping condition. Although in each cycle our method needs
more computations, with significantly less iterations it is more efficient. As men-
tioned earlier, we also provide the results obtained when our method is equipped
with the full multigrid initialization. Due to the good approximation quality of
the initial point resulting from the new strategy introduced in Section 3.3 and the
fast (i.e. superlinear) local convergence of the semismooth Newton iteration, our
method requires less nonlinear multigrid cycles and, hence, less CPU-time (com-
pare the figure in the last four rows of Table 2). Because both methods (ours
with µ = 10−3 and γ = 1012 and the CCC-method with β = 10−6) solve the total
variation model (1), from Figure 1 (d), (e) and (f) and the PSNR-values listed in
Table 2 we see that the obtained results are very similar.
Example 2. In this example, we compare our method with the CCC-method
when restoring the degraded image with the different image resolution. This allows
us to study “mesh-(in)dependence” (i.e., resolution (in)dependence) effects. It is
interesting that our semismooth Newton solver in the smoothing step is known to
be mesh independent as it admits a function space analysis [17, 18], whereas the
fixed point iteration of [4] does not have such a behavior.
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size Our method for (10) Our method for (9) The CCC-method in [6]
k CPU PSNR k CPU PSNR k CPU PSNR

127 1 12.01 33.9553 1 9.42 33.9539 100 29.64 33.9500
255 1 44.89 31.8672 1 37.97 31.8662 217 252.23 31.8640
511 1 188.35 31.2693 1 163.00 31.2728 185 1128.3 31.2701

Table 3. Comparison of different methods for denoising the image
“Boat” with different size.

Figure 2. Test image “boat”.

The test image is the 511-by-511 gray-level image “Boat”, which can be down-
load from [1] (see Figure 2 for reference) and which is corrupted by Gaussian white
noise with a noise level of σ = 0.1. Then this image is resized to 255-by-255 and
127-by-127 by the nearest neighbor scheme. Notice that here we are not aiming at
quality aspects of downsampling, which would require an appropriate combination
of low-pass filtering and sub-sampling, rather we study algebraic aspect of mesh
independence of an iterative solver. As the total variation model (1) is indepen-
dent on the image resolution for fixed image domain Ω, we adjust α based on the
restoration runs for the 127-by-127 image by selecting the α-value giving the best
PSNR value. This way lead us to choose α = 0.04. This α-value is then kept for
restoring the other images at different resolutions. The approximation chosen in the
CCC-method exhibits a resolution dependence, i.e. it always takes pixel distance 1
whereas our method chooses 1/n, where n− 1-by-n− 1 is the actual image resolu-
tion). Thus, instead of keeping the same α when restoring the images at different
resolutions, we need set α = 0.04(n + 1). In Table 3 we list the number of cycles
of the nonlinear multigrid methods for reaching the stopping condition (denoted
by k), the CPU time (in seconds), and the PSNR-values for restoring the images
with different image resolutions. We can see that our method reaches the stopping
condition within one cycle of the nonlinear multigrid scheme, which is much less
than for the CCC-method. As expected, the PSNR-values of the restored images
are very similar, which is due to both methods solving the same total variation
model.
Example 3. Using the 127-by-127 test image of Example 2, we study the conver-
gent rates of our methods and the CCC-method. In order to study the influence
of the smoother on the convergent rate, we set the numbers of both the pre- and
post-smoothing steps equal to 30, and, for the ease of accessibility, calculate the ra-
tios of the residual after k + 2 cycles and the one after k cycles for k = 1, 3, . . . , 13;
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residualk+2/residualk
k Our method for (10) Our method for (9) The CCC-method in [6]
1 0.3075 0.3548 0.1842
3 0.4690 0.5994 0.4377
5 0.4983 1.1289 0.5728
7 0.4937 0.7484 0.6597
9 0.4873 0.7147 0.7186
11 0.4855 0.8024 0.7599
13 0.5102 0.8128 0.7883

Table 4. Comparison of different methods for convergent rate.

see the results in Table 4. We find that the ratio obtained by our method based on
(10) stays around 0.5. But the ratio of the CCC-method increases quickly as the
multigrid cycle continues. Therefore, the CCC-method quickly slows down which is
a clear drawback when rather high precision is needed. This behavior can be attrib-
uted to the linear convergent rate of iteration of [4] in the smoothing steps. However
note that the ratios of our method based on (9) are not always less than 1. This is
due to the fact that the identity operator coming from the L2-norm regularization
in (9) does not yield a smoothing operation (in contrast to the Laplacian obtained
from the regularization in (10)). This adversely affects the multigrid scheme.

5. Conclusion. Nonlinear multigrid methods for total variation based image de-
noising are challenged by the non-smooth character of the Euler-Lagrange equa-
tions, or better differential inclusion, associated with the pertinent minimization
problem. An appropriate numerical treatment depends on a reformulation of the
PDE system as a non-smooth equation and the choice of an appropriate smoother.
For this purpose and due to the type of the resulting PDE system, a dual for-
mulation of the TV-problem appears better suited than a purely primal formula-
tion, since the latter suffers from oscillatory and even discontinuous coefficients in
the partial differential operator. The dual problem involves a vector-field (rather
than a scalar-value function as in the primal problem) with a PDE-operator with a
component-dependent strong coupling. The latter requires appropriate smoothing
in the multigrid scheme. In our case, a line Gauss-Seidel smoother turns out to
be efficient yielding satisfactory smoothing rates. In addition, the line smoother
has to operate on non-differentiable, but still semismooth, equations. There are
several options for solving these non-smooth problems like Chambolle’s iteration or
semismooth Newton methods. The mesh independence properties of semismooth
Newton solvers make the latter solver class appealing. In our numerics we found
that while the number of multigrid cycles deteriorates for Chambolle’s method as
the image resolution is refined, our semismooth Newton iteration based multigrid
cycle remains stable.
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