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On Two Multigrid Algorithms for Modelling
Variational Multiphase Image Segmentation

Noor Badshah and Ke Chen∗

Abstract

In this paper we present two related multigrid algorithms for multiphase image segmentation.

Algorithm I solves the model by Vese-Chan [23] (Int. J. Computer Vision, 2002). We first gen-

eralize our recently developed multigrid method to this multiphase segmentation model (MG1);

we also give a local Fourier analysis for the local smoother which leads to a new and more effec-

tive smoother. Although MG1 is found many magnitudes faster than the fast method of additive

operator splitting (AOS); both algorithms are not robust with regard to the initial guess. To

overcome this dependence on the initial guess, we consider a hierarchical segmentation model

[10] (Pattern Recognition Letters, 2005) which achieves multiphase segmentation by repeated

use of the Chan-Vese two-phase model [6]; our Algorithm II solves this model by a multigrid

algorithm (MG2). Numerical experiments show that both algorithms are efficient and in partic-

ular MG2 is more robust than MG1 with respect to initial guesses.
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1 Introduction

Segmentation, referring to separating image features from backgrounds, is one of the most

important tasks arising from computer vision (e.g. detecting objects) and many image

processing fields (e.g. picking out special cells in cell imaging). Segmentation methods

fall into several categories, including histogram analysis, region growing, edge detection

and partial differential equations (PDE) based variational methods. Our main focus will

be on nonlinear PDE based segmentation methods.

The PDE and variational based methods [15] are among the more recently developed

tools for image segmentation. The snake model [12], the active contours [5], the gradient
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vector flow [25] and the curvature driven diffusion method [8] all belong to this class of

PDE-based methods. In most situations, the level set method by [17] proves to be an

indispensable tool for analysis and implementation. We remark that for geodesic active

contours models, multigrid methods (linear) have been developed recently; see [13, 18, 19].

Our primary aim of this paper is an extension of the Badshah-Chen multigrid method

[3] to the Vese-Chan multiphase image segmentation [23]. Two contributions are made

in this work. Firstly direct application of [3] to [23] does not work. The observation can

be explained by a local Fourier analysis (LFA) of the underlying smoother, suggesting

that it is not effective. A close study shows that this ineffectiveness is due to a few image

pixels only, where the linearized coefficients differ vastly. We then propose a different

smoothing (under-relaxation) strategy at these ‘odd’ pixels. The LFA shows that the

modified smoother is effective. Secondly we found that the Vese-Chan multiphase model

[23] may not segment images (i.e. may not converge to the desired level set functions) if

good initial guesses are not provided; this problem is inherent in the model rather than

numerical solution methods. To overcome this latter problem we adopt the idea of [10]

to decouple the multiphase model into repeated two phases in a hierarchical way. This

prompts us to consider a multigrid method for each two phase problem. In addition to

efficiency gain, as a by-product, this hierarchical approach is less dependent on initial

guesses than when the method [10] alone is used. Moreover, even when good initial

guesses are available, the hierarchical approach is also faster (in number of iterations and

CPU) than a standard multiphase multigrid method; with our modified smoother, the

two algorithms are comparable in speed.

The rest of paper is organized as follows. In Section 2 we give the brief detail of the

local smoother used in a multigrid method [3] for the two-phase Chan-Vese model [6] and

in Section 3 the generalized local smoother for the Vese-Chan multiphase segmentation

model [23] and the corresponding nonlinear multigrid algorithm (MG1). Some LFA results

are given to illustrate the shortcoming of the smoother, before we propose an improved

smoother. In Section 4 the hierarchical image segmentation technique [10] is presented

along with a multigrid solver (MG2). In Section 5 we present some numerical results of

the two main algorithms, compared with the AOS solver, and we end the paper with some

conclusions.

2 Solution of a two-phase image segmentation model

We first recall the active contour without edges method for two-phase segmentation by

Chan-Vese [6], and then review the local smoother used in our recently used multigrid

method [3].

Let z = z(x, y) be the given image in a continuous domain Ω ∈ R2 and in practice only

a discrete image matrix z ∈ Rm1×m2 will be given. We hope to segment z into separate

and meaningful regions.
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Following the Mumford-Shah [16] methodology, the Chan-Vese [6] idea is to locate two

regions of approximatively piecewise constant intensities, of distinct values c1 and c2 (‘c1’

for inside and ‘c2’ for outside) by global optimization, where the object to be detected is

represented by the region with intensity c1. Let Γ denote the boundary that separates

the two regions. Then the minimization problem is

min
Γ,c1,c2

F (Γ, c1, c2) = µ|Γ|+ λ1

∫

inside(Γ)

|z(x, y)− c1|2dxdy

+ λ2

∫

outside(Γ)

|z(x, y)− c2|2dxdy, (1)

where c1 and c2 are average values of image grey-scales inside and outside Γ respectively.

To proceed with the minimization, using a level set formulation [17], let Γ = {(x, y) :

φ(x, y) = 0}, inside(Γ) = {(x, y) : φ(x, y) > 0}, outside(Γ) = {(x, y) : φ(x, y) < 0}. Then

the minimization problem becomes

min
φ,c1,c2

F (φ, c1, c2) = µ

∫

Ω

|∇H(φ)|dxdy + λ1

∫

Ω

|z(x, y)− c1|2H(φ)dxdy

+ λ2

∫

Ω

|z(x, y)− c2|2(1−H(φ))dxdy, (2)

where H(w) is one dimensional Heaviside function defined by 1 if w ≥ 0 and 0 if w < 0.

To allow conventional differentiation, introduce Hε and δε as a C1 approximation and

regularization of the Heaviside function H and Delta function δ e.g. Hε(w) = 1
2

(
1 +

2
π

arctan(w
ε
)
)

and δε(w) = H ′
ε(w). Further minimizing the energy functional, we obtain:

c1(φ) =

∫
Ω

z(x, y)Hε(φ)dxdy∫
Ω

Hε(φ)dxdy
, c2(φ) =

∫
Ω

z(x, y)(1−Hε(φ))dxdy∫
Ω
(1−Hε(φ))dxdy

,

δε(φ)
[
µ div

( ∇φ

|∇φ|
)
− λ1(z(x, y)− c1)

2 + λ2(z(x, y)− c2)
2
]

= 0 in Ω,

δε(φ)

|∇φ|
∂φ

∂~n
= 0 on ∂Ω.(3)

Here once the desirable level set function φ = φ(x, y) is found, the two-phase segmented

image is given by

u(x, y) = c1H(φ(x, y)) + c2(1−H(φ(x, y)). (4)

We give some detail of the local smoother used in the multigrid method [3] for the

two-phase segmentation (3). Denote the approximation at (i, j) by φi,j = φ(xi, yj). Using

finite difference scheme to discretize the Euler-Lagrange’s equation for φ, the equation at

grid point (i, j) is given by

δε(φi,j)

[
∆x
−

h1

µ∆x
+φi,j/h1√

(∆x
+φi,j/h1)2 + (∆y

+φi,j/h2)2 + β
+

∆y
−

h2

µ∆y
+φi,j/h2√

(∆x
+φi,j/h1)2 + (∆y

+φi,j/h2)2 + β

−λ1(zi,j − c1)
2 + λ2(zi,j − c2)

2

]
= 0,
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=⇒ ∆x
−

µ̄∆x
+φi,j√

(∆x
+φi,j)2 + (λ∆y

+φi,j)2 + β̄
+ ∆y

−
µ̄λ2∆y

+φi,j√
(∆x

+φi,j)2 + (λ∆y
+φi,j)2 + β̄

= λ1(zi,j − c1)
2 − λ2(zi,j − c2)

2, (5)

where µ̄ = µ/h1, β̄ = h2
1β and λ = h1/h2, with Neumann’s boundary conditions

φi,0 = φi,1, φi,m2+1 = φi,m2 , φ0,j = φ1,j, φm1+1,j = φm1,j, (6)

assuming z ∈ Rm1×m2 . The system of nonlinear equations is linearized locally, by com-

puting D(φ) on each grid (i, j) locally using current iterations. Then we obtain a system

of linear equations, which is solved by using a Gauss-Seidel method for a few steps to

smooth the error. We are using a few steps of this smoother to smooth the error in a

nonlinear multigrid context.

Let the nonlinear coefficients (intended below to be freezed in local linearization) be

denoted by

D(φ)i,j =
1√

(∆x
+φi,j)2 + (λ∆y

+φi,j)2 + β̄
, D(φ)i−1,j =

1√
(∆x

+φi−1,j)2 + (λ∆y
+φi−1,j)2 + β̄

,

D(φ)i,j−1 =
1√

(∆x
+φi,j−1)2 + (λ∆y

+φi,j−1)2 + β̄
.

Equation (5) can be written as

µ̄
[
D(φ)i,j∆

x
+φi,j −D(φ)i−1,j∆

x
+φi−1,j

]
+ µ̄λ2

[
D(φ)i,j∆

y
+φi,j −D(φ)i,j−1∆

y
+φi,j−1

]

= λ1(zi,j − c1)
2 − λ2(zi,j − c2)

2 ≡ fi,j.

Let φ̃ be the current iterate of φ. The linear equation in φi,j is then

µ̄
[
D(φ̃)i,j(φ̃i+1,j − φi,j)−D(φ̃)i−1,j(φi,j − φ̃i−1,j)

]
+

µ̄λ2
[
D(φ̃)i,j(φ̃i,j+1 − φi,j)−D(φ̃)i,j−1(φi,j − φ̃i,j−1)

]
= fi,j

i.e.

D(φ̃)i,j(φ̃i+1,j − φi,j)−D(φ̃)i−1,j(φi,j − φ̃i−1,j) +

λ2
[
D(φ̃)i,j(φ̃i,j+1 − φi,j)−D(φ̃)i,j−1(φi,j − φ̃i,j−1)

]
= fi,j/µ̄ ≡ f̄i,j,

or N(φh) = f̄h on level Ωh.

Algorithm I (Local smoother): Let the smoothing step for N(φh) = f̄h be denoted by

φh
` ←− Smoother(φh, f̄h,maxit, tol)

where h = (h1, h2) is the step size.

for i = 1 : m1
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for j = 1 : m2

for iter=1:maxit

φ̃h ← φh, a = D(φ̃h)i,jφ̃
h
i+1,j + D(φ̃h)i−1,jφ̃

h
i−1,j,

b = D(φ̃h)i,jφ̃
h
i,j+1 + D(φ̃h)i,j−1φ̃

h
i,j−1,

(φ)h
i,j =

a + λ2b− f̄i,j

D(φ̃h)i,j + D(φ̃h)i−1,j + λ2(D(φ̃h)i,j + D(φ̃h)i,j−1)

if ‖φh − φ̃h‖ < tol Stop

end

end

end

3 Multigrid algorithm I for multiphase segmentation (MG1)

The Vese-Chan multiphase segmentation model [23] is the extension of the 2-phase Chan-

Vese segmentation model [6]. In [6], with one level set function, we can segment an image

into two phases as one level set cannot represent more than two phases. In general, to

divide an image into n phases, we need log2 n level set functions. We remark that related

work by Tai et al [14] and Ambrosio-Tortorelli [2] provides alternatives to these multiple

level set functions.

Consider p = log2 n level set functions φ` : Ω → R for ` = 1, 2, . . . , p. The union

of the zero level sets of all φ` will represent the edges in the segmented image. For

1 ≤ s ≤ n = 2p, denote by cr = mean(z) the average value of image gray-scales in phase r

and by χr the characteristic function for phase r. Then the proposed minimization energy

for multiphase segmentation by Vese-Chan [23] is the following:

Fn(c, Φ) =
∑

1≤r≤n

∫

Ω

(z(x, y)− cr)
2χrdxdy + µ

∑

1≤`≤p

∫

Ω

|∇H(φ`)|dxdy (7)

where c = (c1, c2, . . . , cn) and Φ = (φ1, φ2, . . . , φp); note n = 2p. The main focus in this

paper will be on the 4-phase segmentation i.e. n = 4 or p = 2, which we denote by SEG4.

But all the ideas will carry over to more phases.

We shall consider the following minimization problem: minc,Φ F4(c, Φ) with

F4(c, Φ) =

∫

Ω

(z(x, y)− c11)
2H(φ1)H(φ2)dxdy +

∫

Ω

(z(x, y)− c10)
2H(φ1)(1−H(φ2))dxdy

+

∫

Ω

(z(x, y)− c01)
2(1−H(φ1))H(φ2)dxdy + µ

∫

Ω

|∇H(φ1)|dxdy

+

∫

Ω

(z(x, y)− c00)
2(1−H(φ1))(1−H(φ2))dxdy + µ

∫

Ω

|∇H(φ2)|dxdy (8)

where c = (c11, c10, c01, c00) and Φ = (φ1, φ2). Here the phase domains will be interlaced

by the zero level sets of φ1, φ2 e.g. Ω1 = {(x, y) : φ1 > 0, φ2 > 0}, Ω2 = {(x, y) : φ1 >
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0, φ2 < 0} similar to the notation inside(Γ) in (1). Once Φ is found, the segmented image

u is

u = c11H(φ1)H(φ2)+c10H(φ1)(1−H(φ2))+c01(1−H(φ1))H(φ2)+c00(1−H(φ1))(1−H(φ2)).

Minimizing (8) with respect to c and Φ, we have:

c11(φ) =

∫
Ω

zH(φ1)H(φ2)dxdy∫
Ω

H(φ1)H(φ2)dxdy
, c10(φ) =

∫
Ω

zH(φ1)(1−H(φ2))dxdy∫
Ω

H(φ1)(1−H(φ2))dxdy
,

c01(φ) =

∫
Ω

z(1−H(φ1))H(φ2)dxdy∫
Ω
(1−H(φ1))H(φ2)dxdy

, c00(φ) =

∫
Ω

z(1−H(φ1))(1−H(φ2))dxdy∫
Ω
(1−H(φ1))(1−H(φ2))dxdy

and the following Euler-Lagrange’s equations





δε(φ1)
[
µ∇ · ∇φ1

|∇φ1| − [T1Hε(φ2) + T2(1−Hε(φ2))]
]

= 0,

δε(φ2)
[
µ∇ · ∇φ2

|∇φ2| − [T3Hε(φ1) + T4(1−Hε(φ1))]
]

= 0,
(9)

with Neumann’s boundary conditions, where T1 = (z− c11)
2− (z− c01)

2 ,T2 = (z− c10)
2−

(z − c00)
2, T3 = (z − c11)

2 − (z − c10)
2 and T4 = (z − c01)

2 − (z − c00)
2. We shall shortly

discuss how to solve (9) efficiently.

An easy but less efficient alternative is to solve the following evolution problem





∂φ1

∂t
= δε(φ1)

[
µ∇ · ∇φ1

|∇φ1| − [T1Hε(φ2) + T2(1−Hε(φ2))]
]
,

∂φ2

∂t
= δε(φ2)

[
µ∇ · ∇φ2

|∇φ2| − [T3Hε(φ1) + T4(1−Hε(φ1))]
]
,

(10)

with initial conditions φ1(0, x, y) = φ1,0(x, y), φ2(0, x, y) = φ2,0(x, y). In [23] these parabolic

equations were solved using the additive operator-splitting (AOS, semi-implicit) method

which will be used later for comparison.

3.1 Multigrid algorithm I

Instead of (10), we now consider solving (9) using a multigrid method. The general idea

of multigrid method for an operator equation N(φ) = f is the following. Suppose that a

smooth approximation φ̃h of φ has been obtained on some fine grid Ωh; by ‘smooth’ we

mean that both the solution φ̃h and the residual rh = fh −Nh(φ̃) are smooth (i.e. they

contain mainly the low frequency components when projected into the Fourier space).

If this assumption is true, then an improvement over φ̃h can be made by restricting the

operator equation (residual equation) to a coarse grid (with much less unknowns) ΩH and

solving the (cheaper) coarse grid equation

NH(wH) = NH(φH) + Rrh,
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and once wH is obtained, the correction to φ̃h can be obtained on Ωh which leads to a

better approximation of φh as follows

φ̄h = φ̃h + P (wH − φH)

where R is a restriction operator transferring information from Ωh to ΩH , P is an inter-

polation operator transferring information from ΩH to Ωh and φH = Rφ̃h is the initial

solution on ΩH . Refer to [4, 22, 9, 7, 3, 13, 18, 19] and the references therein. Crucially

among the three key stages of a multigrid method, the step of getting a smooth solution

φ̃h is called smoothing and the iterative method used for this purpose is named as a

smoother whose effectiveness determines the success or the failure of a multigrid method.

Let (φ`)i,j = φ`(xi, yj), for ` = 1, 2. Using finite difference schemes to discretize (9)

for φ`, the equations at a pixel point (i, j) are given by




δ(φ1)i,j

{4x
−

h1

µ4x
+(φ1)i,j/h1√

(4x
+(φ1)i,j/h1)2 + (4y

+(φ1)i,j/h2)2 + β
− (T1)i,jHε(φ2)i,j+

4y
−

h2

µ4y
+(φ1)i,j/h2√

(4x
+(φ1)i,j/h1)2 + (4y

+(φ1)i,j/h2)2 + β
− (T2)i,j(1−Hε(φ2)i,j)

}
= 0,

δ(φ2)i,j

{4x
−

h1

µ4x
+(φ2)i,j/h1√

(4x
+(φ2)i,j/h1)2 + (4y

+(φ2)i,j/h2)2 + β
− (T3)i,jHε(φ1)i,j+

4y
−

h2

µ4y
+(φ2)i,j/h2√

(4x
+(φ2)i,j/h1)2 + (4y

+(φ2)i,j/h2)2 + β
− (T4)i,j(1−Hε(φ1)i,j)

}
= 0,

(11)

where (T1)i,j = (zi,j − c11)
2 − (zi,j − c01)

2, (T2)i,j = (zi,j − c10)
2 − (zi,j − c00)

2, (T3)i,j =

(zi,j − c11)
2 − (zi,j − c10)

2 and (T4)i,j = (zi,j − c11)
2 − (zi,j − c00)

2.

Let µ̄ = µ/h1, β̄ = h2
1β and λ = h1/h2. Also denote (f1)i,j = (T1)i,jHε(φ2)i,j +

(T2)i,j(1 − Hε(φ2)i,j) and (f2)i,j = (T3)i,jHε(φ1)i,j + (T4)i,j(1 − Hε(φ1)i,j). Further for

` = 1, 2, denote the coefficients (to be freezed) by

D`(φ`)i,j =
1√

(∆x
+(φ`)i,j)2 + (λ∆y

+(φ`)i,j)2 + β̄
,

D`(φ`)i−1,j =
1√

(∆x
+(φ`)i−1,j)2 + (λ∆y

+(φ`)i−1,j)2 + β̄
,

D`(φ`)i,j−1 =
1√

(∆x
+(φ`)i,j−1)2 + (λ∆y

+(φ`)i,j−1)2 + β̄
.

We can simplify equation (11) to
[
D`(φ`)i,j((φ`)i+1,j − (φ`)i,j)−D`(φ`)i−1,j((φ`)i,j − (φ`)i−1,j)

]

+λ2
[
D`(φ`)i,j((φ`)i,j+1 − (φ`)i,j)−D`(φ`)i,j−1((φ`)i,j − (φ`)i,j−1)

]
= ¯(f`)i,j, (12)

where f̄` = f`/µ̄, with the boundary conditions

(φ`)i,0 = (φ`)i,1, (φ`)i,m2+1 = (φ`)i,m2 , (φ`)0,j = (φ`)1,j, (φ`)m1+1,j = (φ`)m1,j. (13)
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Let φ̃` be the approximation to φ` at the current iteration. Then from equation (12),

pursuing only local unknowns φ` at (i, j), we have the following linear equations[
D`(φ̃`)i,j((φ̃`)i+1,j − (φ`)i,j)−D`(φ̃`)i−1,j((φ`)i,j − (φ̃`)i−1,j)

]

+λ2
[
D`(φ̃`)i,j((φ̃`)i,j+1 − (φ`)i,j)−D`(φ̃`)i,j−1((φ`)i,j − (φ̃`)i,j−1)

]
= ¯(f`)i,j. (14)

Our proposed algorithm solves these equations for (φ`)i,j to update (φ̃`)i,j which leads

to updating the coefficients locally and further iterations (before moving to the next pixel

in a Gauss-Seidel fashion). Denote the system of non-linear equations from (12) by
{

Nh
1 (φh

1) = f̄h
1 ,

Nh
2 (φh

2) = f̄h
2 ,

(15)

where φh
` and fh

` are grid functions on a m1 ×m2 cell centered rectangular grid Ωh with

spacing h = (h1, h2) and l = 1, 2.

We shall first summarize this local smoother and then present our algorithm I.

Algorithm II (Smoother for multiphase model): Let a smoothing step for (12) via (14) be

φh
` ←− Smoother(φh

` , f̄`
h
,maxit, tol)

where ` = 1, 2 and h is the step size on level Ωh.

for i = 1 : m1

for j = 1 : m2

for iter=1:maxit

φ̃`

h ← φh
` , A` = D`(φ̃`)

h
i,j(φ̃`)

h
i+1,j + D`(φ̃`)

h
i−1,j(φ̃`)

h
i−1,j,

B` = D`(φ̃`)
h
i,j(φ̃`)

h
i,j+1 + D`(φ̃`)

h
i,j−1(φ̃`)

h
i,j−1,

(φ`)
h
i,j =

A` + λ2B` − f̄`i,j

D`(φ̃`)h
i,j + D`(φ̃`)h

i−1,j + λ2(D`(φ̃`)h
i,j + D`(φ̃`)h

i,j−1)

if ‖φh
` − (φ̃`

h‖ < tol Stop

end

end

end

Multigrid Algorithm: Equation (15) will be solved by the following multigrid algorithm

[3, 4, 9, 22, 7] – the full approximation scheme of Brandt.

Algorithm III (Multigrid Algorithm): Assume we have set up these multigrid parameters:

ν1 pre-smoothing steps on each level

ν2 post-smoothing steps on each level

γ the number of multigrid cycles on each level (γ = 1 for V-cycling and γ = 2 for W-

cycling). Set tol = 0.1. Here we present one step V-cycle of nonlinear multigrid method

for SEG4. A multigrid cycle refers to one call to the procedure

φh
` ←− FASCY Ch(φh

` , f̄`
h
, ν1, ν2)
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1. If Ωh is the coarsest grid, then solve equation (15) using a time marching technique

(the AOS method) and then stop.

Else do the Pre-Smoothing step:

φh
` ←− Smoother(φh

` , f̄`
h
, ν1, tol)

2. Restriction:

φ2h
` = I2h

h φh
` , φ̄`

2h
= φ2h

` ,

f̄`
2h

= I2h
h (f̄`

h −Nh
` φh

` ) + N2h
` φ2h

` ,

φ2h
` ←− FASCY C2h(φ2h

` , f̄`
2h

, ν1, ν2)

3. Interpolation

φh
` ←− φh

` + Ih
2h(φ

2h
` − φ̄`

2h
)

4. Implement the Post-Smoothing step:

φh
` ←− Smoother(φh

` , f̄`
h
, ν2, tol).

Here the restriction operator I2h
h is by full weighting and the interpolation Ih

2h by the

bilinear operator [22].

As we know, an effective multigrid algorithm relies on two necessary ingredients: the

smooth residual errors on fine levels and effective error corrections from coarse levels. In

practice, effectiveness of a smoother to smooth errors is the key to the success. In the

next section we give the local Fourier analysis of our smoother in Algorithm II.

3.2 Local Fourier analysis and a modified smoother

The local Fourier analysis (LFA) is a suitable tool to analyze the convergence rate of any

iterative method for linear equations. However our underlying equations are nonlinear

so a LFA will consider a linearized equation, and as linearization occurs locally at each

pixel, we shall look for the maximum rate from all pixel locations.

Consider Algorithm II in the case of a square image with m = m1 = m2 and also h1 =

h2 = h for simplicity; then λ = 1. Given the previous iterate at step k, φ̃` = φ
(k)
` , denote

a1 = D1(φ̃1)i−1,j, a2 = D1(φ̃1)i,j, a3 = D1(φ̃1)i,j−1, b1 = D2(φ̃2)i−1,j, b2 = D2(φ̃2)i,j, b3 =

D2(φ̃2)i,j−1 which are to be considered as local constants. From (12), the grid equation

at (i, j) is the following





−(a1 + 2a2 + a3)(φ1)i,j + a1(φ1)i−1,j + a3(φ1)i,j−1 + a2[(φ1)i+1,j + (φ1)i,j+1]
= (f̄1)i,j,

−(b1 + 2b2 + b3)(φ2)i,j + b1(φ2)i−1,j + b3(φ2)i,j−1 + b2[(φ2)i+1,j + (φ2)i,j+1]
= (f̄2)i,j.

(16)
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And our local smoother can be written as




−(a1 + 2a2 + a3)(φ1)
(k+1)
i,j + a1(φ1)

(k+1)
i−1,j + a3(φ1)

(k+1)
i,j−1 + a2[(φ1)

(k)
i+1,j + (φ1)

(k)
i,j+1]

= (f̄1)i,j,

−(b1 + 2b2 + b3)(φ2)
(k+1)
i,j + b1(φ2)

(k+1)
i−1,j + b3(φ2)

(k+1)
i,j−1 + b2[(φ2)

(k)
i+1,j + (φ2)

(k)
i,j+1]

= (f̄2)i,j.

(17)

Define the error functions by e
(k)
1 = φ1 − φ

(k)
1 and e

(k)
2 = φ2 − φ

(k)
2 . Then using (16) and

(17), the error equations are
{

a1(e1)
(k+1)
i−1,j + a3(e1)

(k+1)
i,j−1 + a2[(e1)

(k)
i+1,j + (e1)

(k)
i,j+1]− (a1 + 2a2 + a3)(e1)

(k+1)
i,j = 0

b1(e2)
(k+1)
i−1,j + b3(e2)

(k+1)
i,j−1 + b2[(e2)

(k)
i+1,j + (e2)

(k)
i,j+1]− (b1 + 2b2 + b3)(e2)

(k+1)
i,j = 0.

(18)

Recall that the LFA measures the largest amplification factor in a relaxation scheme

[4, 9, 22]. With i =
√

(−1), let a general Fourier component be

Θα,β(xi, yj) = exp
(
iθα

xi

h
+ iθβ

yj

h

)
= exp

(
2iαiπ

m
+

2iβjπ

m

)
.

Note that θα, θβ ∈ [−π, π]. The LFA expands

e
(k)
1 =

m/2∑

α,β=−m/2

(ψ
(k)
1 )α,βΘα,β(xi, yj), e

(k)
2 =

m/2∑

α,β=−m/2

(ψ
(k)
2 )α,βΘα,β(xi, yj)

in Fourier components. We look for the largest spectral radius (maximum eigenvalue) of

the amplification matrix Aα,β [7, 22]:
[

(ψ
(k+1)
1 )α,β

(ψ
(k+1)
2 )α,β

]
= Aα,β

[
(ψ

(k)
1 )α,β

(ψ
(k)
2 )α,β

]
.

After plugging in these components into (18) for e
(k+1)
1 , e

(k)
1 and e

(k+1)
2 , e

(k)
2 , we have:

Aα,β =




a2

(
e

2απ
m +e

2iβπ
m

)
(

a1+2a2+a3−a1e
−2iαπ

m −a3e
−2iβπ

m

) 0

0
b2

(
e

2iαπ
m +e

2iβπ
m

)
(

b1+2b2+b3−b1e
−2iαπ

m −b3e
−2iβπ

m

)




.

At the kth iteration, each rate µ̄(k)(i, j) = maxα,β ρ(Aα,β) in the high frequency range

(θα, θβ) ∈ [−π, π] \ [−π
2
, π

2
], measuring the effectiveness of a smoother [4], is dependent

on a`, b`, ` = 1, 2, 3, which in turn depend on the pixel location (i, j). Therefore we

should look for the largest smoothing rate for all i, j (i.e. among all such pixels): µ̂ =

maxa1,a2,a3,b1,b2,b3 µ̄(k)(i, j).

However, due to the high nonlinearity, we found it useful to define the smoothing rate

as the maximum of the above accumulated rates out of all s relaxation steps by

µ̂s = max
i,j

µ̄(1)(i, j)µ̄(2)(i, j) · · · µ̄(s)(i, j).
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Clearly for linear equations where a`, b` are constants, µ̄ = µ̄(k) is a constant so µ̂s =

µ̄s. Here as a`, b` are not constants, with this particular definition, we would allow the

possibility of µ̄(k)(i, j) ≈ 1 for some i, j, k; as long as µ̂s ¿ 1, we would say a smoother is

effective.
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Fig. 1: Segmentation of the top left image into the bottom right image.

In Table 1, we take the particular example of Figure 1 of segmenting an artificial

image. We use the image size m = 32; note the similar results are obtained with taking

m = 64. Here in Table 1, the “odd pixels” refer to positions where the relative ratios

Tab. 1: The smoothing rate for a local smoother with 3 inner iterations
Outer The smoothing rate The smoothing rate

iterations s µ̂s taking out “odd pixels”
µ̂∗s

1 0.6862 0.5720
2 0.6861 0.3170
3 0.6861 0.2747

between a2 and max(a1, a3) or the ratios between b2 and max(b1, b3) are quite large; clearly

our smoother is ineffective overall due to these odd pixels. This prompted us to consider

how to improve the overall smoothing rate (Column 2 in Table 1).

A modified smoother. To motivate the idea, consider the particular case of an odd

pixel assigned with

a1 = 0.3536, a2 = 10000, a3 = 0.3536, b1 = 0.3536, b2 = 10000, b3 = 0.3536 (19)
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and the above LFA gives a local (large) rate of µ = 0.99996. Now we propose, as an

alternative to (17), the following under-relaxation smoothing scheme at these odd pixels





a1(φ1)
(k+1)
i−1,j + a3(φ1)

(k+1)
i,j−1 + a2[(φ1)

(k)
i+1,j + (φ1)

(k)
i,j+1]

− (a1 + 2a2 + a3)(1 + ω)(φ1)
(k+1)
i,j + ω(a1 + 2a2 + a3)(φ1)

(k)
i,j = (f̄1)i,j,

b1(φ2)
(k+1)
i−1,j + b3(φ2)

(k+1)
i,j−1 + b2[(φ2)

(k)
i+1,j + (φ2)

(k)
i,j+1]

− (b1 + 2b2 + b3)(1 + ω)(φ2)
(k+1)
i,j + ω(b1 + 2b2 + b3)(φ2)

(k)
i,j = (f̄2)i,j,

(20)

for some 0 ≤ ω ≤ 1 (note ω = 0 reduces to the previous local smoother). The new error

equation is





a1(e1)
(k+1)
i−1,j + a3(e1)

(k+1)
i,j−1 + a2[(e1)

(k)
i+1,j + (e1)

(k)
i,j+1]

− (a1 + 2a2 + a3)(1 + ω)(e1)
(k+1)
i,j + ω(a1 + 2a2 + a3)(e1)

(k)
i,j = 0,

b1(e2)
(k+1)
i−1,j + b3(e2)

(k+1)
i,j−1 + b2[(e2)

(k)
i+1,j + (e2)

(k)
i,j+1]

− (1 + ω)(b1 + 2b2 + b3)(e2)
(k+1)
i,j + ω(b1 + 2b2 + b3)(e2)

(k)
i,j = 0.

(21)

Then the corresponding new Fourier amplification matrix is

Aα,β =




a2

(
e

2απ
m +e

2iβπ
m

)
+ω(a1+2a2+a3)

(
(1+ω)(a1+2a2+a3)−a1e

−2iαπ
m −a3e

−2iβπ
m

) 0

0
b2

(
e

2iαπ
m +e

2iβπ
m

)
+ω(b1+2b2+b3)

(
(1+ω)(b1+2b2+b3)−b1e

−2iαπ
m −b3e

−2iβπ
m

)




.

Now for (19) with ω = 0.7, the above new scheme yields a much pleasing rate of µ =

0.75026.

Therefore, our new smoother will be (20) using a variable ω written in a form similar

to (14) as

D`(φ̃`)i,j

[
(φ̃`)i+1,j − (1 + ω)(φ`)i,j + ω(φ̃`)i,j

]

− D`(φ̃`)i−1,j

[
(1 + ω)(φ`)i,j − ω(φ̃`)i,j − (φ̃`)i−1,j

]

+ λ2D`(φ̃`)i,j

[
(φ̃`)i,j+1 − (1 + ω)(φ`)i,j + ω(φ̃`)i,j

]

− λ2D`(φ̃`)i,j−1

[
(1 + ω)(φ`)i,j − ω(φ̃`)i,j − (φ̃`)i,j−1)

]
= ¯(f`)i,j. (22)

It may be stated as follows.

Algorithm IV (Modified smoother for multiphase model): Denote a smoothing step for (15),

using (22), by

φh
` ←− Smoother(φh

` , f̄`
h
, maxit, ω,K, tol)

where ` = 1, 2 and h is the step size on level Ωh. Set K = 100.

for i = 1 : m1

for j = 1 : m2
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for iter = 1 : maxit

if |D`(φ̃`)
h
i,j| ≥ K max(|D`(φ̃`)

h
i−1,j|, |D`(φ̃`)

h
i,j−1|) for any `, set ω = 0.7;

otherwise set ω = 0.

φ̃`

h ← φh
` ,

A` = D`(φ̃`)
h
i,j((φ̃`)

h
i+1,j+ω(φ̃`)

h
i,j)+D`(φ̃`)

h
i−1,j((φ̃`)

h
i−1,j+ω(φ̃`)

h
i,j),

B` = D`(φ̃`)
h
i,j((φ̃`)

h
i,j+1+ω(φ̃`)

h
i,j)+D`(φ̃`)

h
i,j−1((φ̃`)

h
i,j−1+ω(φ̃`)

h
i,j),

(φ`)
h
i,j =

A` + λ2B` − f̄`i,j

(1 + ω)(D`(φ̃`)h
i,j + D`(φ̃`)h

i−1,j + λ2(D`(φ̃`)h
i,j + D`(φ̃`)h

i,j−1))

if ‖φh
` − φ̃`

h‖ < tol Stop

end

end

end

We now repeat the smoothing analysis as was done in Table 1 and show the new results in

Table 2. Clearly the new rates are much more acceptable (note the accumulated number

of smoothing steps is 3s since we use 3 inner iterations for each outer step). In Section 5,

Tab. 2: The smoothing rate for a modified local smoother
Outer The smoothing rate

iterations s µ̂s

1 0.5720
2 0.3170
3 0.2747

we shall compare the performance of the two smoothers in MG1.

4 Multigrid algorithm II for multiphase segmentation (MG2)

As previously remarked, a time-marching solution scheme is employed in the original work

of Vese-Chan [23]. Realizing that this scheme is extremely slow to converge, Jeon et al

[10] proposed a hierarchical image segmentation method which essentially abandoned this

multiphase model in favour of the earlier Chan-Vese [6] model. The idea of Jeon et al [10]

is the following. We first use the two-phase model [6] to segment the given image z into

two phases (a domain and its complement) using a single level set function φ. We then

segment one of the phases using the two-phase model [6] again and this process is repeated

until the desirable number of phases is achieved. Here there are two key decisions made:

(i) The domain having the larger intensity variation will be the next segmentation target.

(ii) The domain having the smaller intensity variation will be replaced by a uniform

intensity equal to the average intensity of the larger intensity domain. This gives rise to a

new image znew – a modified image of z – the new image znew will be segmented. Here the

purpose of (ii) is to avoid re-segmenting the domain with the smaller intensity variation.
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The aim of this section is to combine the multigrid algorithm [3] for two-phase segmen-

tation with this unsupervised hierarchical image segmentation algorithm [10] and then to

assess if any advantage can be gained over Algorithm III — our motivation stems from

an observation of [3] that the multigrid algorithm can help reach a global minimizer of

a two-phase model (i.e. less dependent on initial guesses) while it is not true with the

multiphase model (from using Algorithm III).

We first review the important definition used in steps (i-ii) above and then present the

combined hierarchical multigrid algorithm. We shall denote by

[φ, c1, c2] ← MGM(φ, z)

the process of utilizing the multigrid algorithm [3] to segment a given image z by working

out the desirable level set function φ, the two associated constants c1, c2; refer to (4).

Definition 4.1 (Intensity Variation [10]): Let z be the given image and S1, S2 denote a par-

tition of z, obtained by segmentation using one level set function. Then the intensity

variation across Si is given by

Var(Si) =
1

Mi

Mi∑

`=1

(z(x`, y`)− C`)
2,

where C` represents the average intensity of Si and Mi is the number of pixels in Si.

Algorithm V (Hierarchical segmentation by multigrid method):

Let n be the required number of segmentation phases and z the given image.

Assume φ0 is an initial contour (which can be a simple pattern or may be worked out by

a full multigrid idea as in [3]).

for i = 1, . . . , n− 1

φi ← φ0

[φi, ci1, ci2] ← MGM(φi, z), using the 2-phase multigrid method.

Define S1 = {(k, `) | (φi)k,` < 0} and S2 = {(k, `) | (φi)k,` ≥ 0}.
Compute Var(S1), Var(S2).

Find j = argmin` Var(S`) and denote q = {1, 2}\{j}.
Save the index set Wi = Sj. (Note j, q = 1 or 2.)

If i > 1, find the true index set by modifying Wi = (Wz\Wi−1)∪Wi else continue.

Set z(Sj) = ciq since Sq is the domain with the larger variation.

end

Set the final (phase) index set Wn = (Wz\Wn−2) ∪ Sq.

Here assume that Wz denotes the index set of all pixels so the quantity (Wz\Wi−1) singles

out the index set being segmented. Also we can only use the sets S1, S2 to identify the

domain with the larger variation (to proceed) but its complement (phase i) must be found

through (Wz\Wi−1).
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We remark that the main algorithm presented in [10, p.1465] has a major typo, where

‘smallest’ should mean ‘largest’, and also the loop should end at n− 1 rather than n.

Finally once the algorithm is completed, the segmented image will be separated by

the index sets W1,W2, . . . , Wn from which we compute the mean gray values Cj’s, as in

(3), by

Cj =
∑

(i,k)∈Wj

zi,k/Mj

where Mj is the cardinality of Wj. Further the (piecewise) segmented image can be

written as u = (ui,k) with

ui,k = Cj if (i, k) ∈ Wj for all (i, k) ∈ Wz = W1 ∪ · · · ∪Wn, (23)

which is similar to the two-phase case (4) with n = 2. Clearly for n phases, we now

require altogether n − 1 level set functions while the previous multiphase method [23]

only requires log2 n level set functions. For small n, the difference is small; however for

large n MG2 will have to store much more level set functions (matrices) than MG1.

5 Numerical Results

In this section we present experimental results to illustrate the two multigrid algorithms

(MG1 and MG2) versus the time marching method i.e.
MG1 – Algorithm III with the local smoother (Algorithm II);
MG1m – Algorithm III with the modified local smoother (Algorithm IV);
MG2 – Algorithm V with the hierarchical segmentation
AOS – The additive operator splitting method (time-marching [10])
SA – The smoother alone, Fixed point Gauss Seidel iterations.

We shall first compare the qualitative results of segmentation and then compare these

solvers in speed of segmentation (iteration steps and CPU time). Although we have done

many test examples, we show one artificial image and a real life image here, as shown in

Figure 2.

Segmentation results. The main parameter µ in the segmentation model balances

the regularization term and the fitting term (fitting a phase domain with its average

gray-scale levels). Here for Problems 1 and 2 we take µ = m1m2/12 and µ = m1m2/500

respectively.

In Figure 3, Problem 1 (in image size of 128 × 128) is solved with MG1, MG1m,

MG2 and AOS. Even for this small image, we give these computational details to get an

impression of these methods: MG1 takes 15 iterations (MG cycles) with CPU time of 12

seconds. MG1m takes 10 iterations with CPU time of 9 seconds. MG2 takes 10 iterations

with CPU time of 10 seconds. In the last row final results with AOS are obtained in

230 iterations with CPU time of 64 seconds. Clearly all segmented images are similar to

each other while all MG algorithm performances are similar to each other and are faster
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Problem 1

MG2

Problem 2

MG2

Fig. 2: Test Problems 1 and 2 with the initial guess contours for MG1, MG1m, AOS
methods. For MG2, the initial guesses are for a two-phase model.
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MG1

MG1m

MG2

AOS

Fig. 3: Problem 1 solved by MG1, MG1m, MG2, AOS methods. Top row: results with
MG1, row 2: results with MG1m, row 3: the results with MG2 and row 4: results
with AOS. In row 3 the left image is the three phase segmentation and the right
image is the final segmented image.
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MG1

MG1m

MG2

AOS

Fig. 4: Problem 2 solved by MG1, MG1m, MG2, AOS methods. As with Figure 3, Top
row: results with MG1, row 2: results with MG1m, row 3: the results with MG2
and row 4: results with AOS. In row 3 the left image is the three phase segmen-
tation and the right image is the final segmented image.
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Initial solution AOS from [10]

MG1 [23] MG2 solution

Fig. 5: Problem 3 to illustrate reliance on the initial solutions: clearly AOS (initialized as
in Fig.2, only giving 3 phases) and the MG1 (initialized as the top left, without
convergence) failed while MG2 (bottom right) segments 4 phases correctly.

than AOS. In Figure 4, Problem 2 is solved with MG1, MG1m, MG2 and AOS. A similar

summary can be made.

Performance comparison. In Table 3 we compare the methods discussed in this

paper, by CPU times tested on the image in Fig 1 in different (larger) sizes. With MG2, in

the 8th column of the table we use the notation p(q) implying p iterations used for the first

segmentation and q iterations used for the second segmentation. One observes that, even

for images of small sizes, there is some benefit in using MG algorithms. However for large

sizes, one could see a huge difference in CPU times, with MG algorithms outperforming

the AOS by many magnitudes.

Finally we show one example of testing initial solutions in Fig.5 where we can see that

our MG2 converges correctly for the same initial solutions with which both the AOS (i.e.

algorithm [10] alone) and the MG1 failed to converge to the correct result.

6 Conclusions

In this paper we have introduced two multigrid algorithms for multiphase variational

image segmentation. As expected of a multigrid method, both algorithms are much

faster than the Additive Operator Splitting (AOS) method. To deliver an acceptable

segmentation, MG1 requiring less level set functions can be dependent of initial guesses
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Tab. 3: Comparison of MG1, MG1m and MG2 with AOS and SA (Smoother alone) meth-
ods in number of iterations (‘Itr’) and CPU time (‘CPU’). Here ‘—’ implies no
convergence (to the tolerance) is yet achieved after 24 hours.

Image AOS SA MG1 MG1m MG2
Size Itr CPU Itr CPU Itr CPU Itr CPU Itr CPU

128× 128 80 22 50 3 3 5 2 2 2(2) 11
256× 256 150 193 300 54 4 13 2 7 2(2) 15
512× 512 1500 42600 1350 975 4 74 2 33 3(3) 43

1024× 1024 — — 1450 3854 4 525 2 148 3(3) 154

while MG2 requiring more level set functions is practically not dependent of initial guesses.

Future work will consider models that require only one level set function [2, 14] as well

as other models [5, 8].
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