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Abstract. The mean curvature-based image deblurring model is widely used to preserve edges
and remove staircase effect in the resulting images. However, the Euler-Lagrange equations of mean
curvature model lead to solving nonlinear fourth order integro-differential equation. Furthermore
the discretization of Euler-Lagrange equations produce a nonlinear ill-conditioned system which
affect the convergence of the numerical algorithms like Krylov subspace methods (GMRES etc.) In
this paper, we have treated the high order nonlinearity by converting the nonlinear fourth order
integro-differential equation into a system of first order equations. To overcome the problem of slow
convergence by GMRES method, we have introduced a new circulant peconditioned matrix. Fast
convergence has shown in the numerical results by using the proposed new preconditioner. The first
order error estimates are also established on a uniform rectangular mesh. The theoretical analysis is
verified by showing the convergence rates in numerical examples.
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1. Introduction. In the last two decades, the nonlinear variational methods
have received a great deal of attention in the field of image deblurring. Two main
difficulties arise while applying nonlinear variational techniques to large-scale noisy,
blurrred images. One of them, ofcourse, is nonlinearty and other is the solution of
the large system which arise from the discretization after linearization. The main
focus of this paper to handle these two computational difficulties. The most well-
known nonlinear variational image deblurring model is total variation (TV) model
[1, 19, 24]. It has nice properties like edge preserving. But the main drawback of TV
model is that the resulting images look blocky. Because this model converts smooth
functions into piecewise constant functions which create staircase effects in resulting
images. To reduce the staircase effects one remedy is to use the mean curvature (MC)
[9, 22, 27, 28, 29] based regularization models.

The MC-based regularization models are widely used in all image processing prob-
lems. In image deblurring, the MC-based models are very effective. These models not
only preserve edges but also remove staircase effect in the recovery of digital images.
However, the Euler-Lagrange equations of mean curvature model lead to solving non-
linear fourth order integro-differential equation. This nonlinear high order term comes
from the MC functional. Furthermore the discretization of Euler-Lagrange equations
produce a nonlinear ill-conditioned system which affect the convergence of the numer-
ical algorithms like Krylov subspace methods (GMRES etc.) The Jacobian matrix of
the ill-conditioned system is having a block banded structure with large bandwidth.
The mean curvature-based regularization methods are effective, but due to high non-
linearity and ill-conditioned system, robust and fast numerical solution is a crucial
issue. In this manuscript, we have treated the high order nonlinearity by converting
the fourth order integro-differential equation into a system of first order equations.
Then we discretize this system by using cell-centered finite difference scheme along
with midpoint quadrature scheme for integral term. The resulting discretized sys-

∗Department of Mathematics, KFUPM, Saudi Arabia (ffairag@kfupm.edu.sa).
†Department of Mathematical Sciences, UOL, United Kingdom (k.chen@liv.ac.uk).
‡Department of Mathematics, KFUPM, Saudi Arabia (shahbazahmad@kfupm.edu.sa).

1

(2022)   Computational and Applied Mathematics [Springer]

mailto:ffairag@kfupm.edu.sa
mailto:k
mailto:shahbazahmad@kfupm.edu.sa


tem have a nonsymmetric structure, so GMRES method is suitable for the solution.
To overcome the problem of slow convergence by GMRES method, we have intro-
duced a new circulant peconditioner matrix. So instead of applying ordinary GMRES
(Generalized Minimal Residual) method (without preconditioner) we use PGMRES
(preconditioned Generalized Minimal Residual) method (with new preconditioner) for
the solution of the system. Fast convergence has shown in the numerical results by
using proposed new preconditioner. The first order error estimates are also estab-
lished on a uniform rectangular mesh. The theoretical analysis is verified by showing
the convergence rates in numerical experiments.

The contributions of the paper is as follows: (i) presents the discretization of the
MC functional in terms of simple matrices; (ii) introduce a new circulant precondi-
tioner matrix which overcomes the problem of slow convergence of GMRES method;
(iii) presents a global error analysis for the numerical scheme and initiate that the
error is of first-order; and, (iv) verify the theoretical result by showing the conver-
gence rates in numerical examples. The paper is organized in different sections. The
first section includes introduction while the second section includes problem descrip-
tion of image deblurring model. In the third section, we present nonlinear system of
first order equations for MC-based image deblurring model. The cell discretization
and CCFD method are also presented in third section. In fourth section, we present
the global error analysis of the method. In fifth section, we present the numerical
implementation of our method. The proposed circulant preconditioner and numerical
experiments are also in the fifth section. The conclusions about the proposed method
is discussed in the sixth section. The appendix is the last section of the paper in
which we present the supplementary material.

2. Problem description. The focus of the paper is on image debluring problem,
so we start by presenting its concise description. Mathematically, the relationship
between u (original image) and z (recorded image) is as follows;

z = ~Ku+ ε(2.1)

where ε is the noise function. The noise can be Gaussian noise, salt and pepper
noise, Brownian noise etc. In this paper, we have considered Gaussian noise. The ~K
is called the blurring operator;

(2.2) ( ~Ku)(x) =

∫
Ω

k(x, y)u(y) dy, x ∈ Ω

where k(x, y) = k(x − y) is known as translate invariant kernel. If ~K = I (identity

operator), then problem (2.1) is called image denoising problem. The ~K is a Fredholm-
integral operator of first kind, so is compact. That is why the problem (2.1) becomes
ill-posed [1, 23, 24]. Let Ω denotes a square in R2. The u ∈ Ω is known as image

intensity function. The x = (x, y) defines the position in Ω. Let |x| =
√
x2 + y2 be

the Euclidean norm and ‖.‖ is L2(Ω) norm. The inverse problem of recovering of u
from z makes (2.1) an unstable problem [1, 23, 24]. To make it stable, one remedy is
to use the mean curvature (MC) regularization functional [9, 22, 27, 29],

(2.3) J(u) =

∫
Ω

κ(u)2dx =

∫
Ω

(5. 5u
|5u|

)2dx.

Then the problem (2.1) takes the form, find u that minimizes the functional

T (u) =
1

2
‖ ~Ku− z‖2 +

α

2
J(u)(2.4)
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where α > 0 is a regularization parameter. The well-posedness of the problem (2.4)
for a particular case (synthetic image denoising problem) is explained in [29]. Then
the Euler-Lagrange equations of (2.4) are,

~K∗( ~Ku− z) + α5 .[
5κ√

|5u|2 + β2

− 5κ.5 u

(

√
|5u|2 + β2)3

5 u] = 0 in Ω,(2.5)

∂u

∂n
=0 in ∂Ω,(2.6)

κ(u) =0 in ∂Ω,(2.7)

where ~K∗is the adjoint operator of ~K and β > 0 is used to avoid non-differentiability
at zero. The (2.5) is a nonlinear fourth order differential equation.

Similarly we can define corresponding mean curvature-based one-dimensional im-
age (signal) deblurring problem. For convenience, we still denote the original image
and blurry image by u and z respectively. The closed interval I = [a, b] is the domain.
In one-dimensional case, the MC functional have the following form;

(2.8) κ(u) = (
ux√
u2
x + β2

)x

and the Euler-Lagrange equation are

~K∗( ~Ku− z) + α
(
κx

1

(
√
u2
x + β2)3

)
x

=0,(2.9)

ux(0) =ux(1) =0,(2.10)

κ(0) = κ(1) =0.(2.11)

The mean curvature-based model not only preserve edges but also remove staircase
effect in the recovery of digital images. However, fourth order derivatives appear
in the Euler-Lagrange equations, which create problems in developing an efficient
numerical algorithm. One key problem in presenting the method is to give a proper
approximation to the nonlinear mean curvature functional. We have treated this
difficulty by converting the nonlinear fourth order Euler-Lagrange equation into a
system of first order equations.

3. The first order nonlinear system. The equation (2.5) can be expressed as
first order nonlinear system,

~K∗ ~Ku+ α5 .−→p − α5 .
−→
t = ~K∗z,(3.1)

−w +5.−→v = 0,(3.2) √
|5u|2 + β2−→v −5u = 0,(3.3) √
|5u|2 + β2−→p −5w = 0,(3.4) √

|5u|2 + β2−→t − (5w.−→v )−→v = 0,(3.5)

where

−→v =
5u√

|5u|2 + β2

, w = 5.−→v , −→p =
5w√

|5u|2 + β2

and
−→
t =

(5w.−→v )−→v√
|5u|2 + β2

.
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In case of one-dimensional problem, we have to introduce fewer unknowns to formulate
a first order nonlinear system because (2.9) is simpler than (2.5). So from (2.9), we
have the following system of four equations

~K∗ ~Ku+ αpx = ~K∗z,(3.6)

−w + vx = 0,(3.7) √
u2
x + β2v − ux = 0,(3.8)

(
√
u2
x + β2)3p− wx = 0,(3.9)

where

v =
ux√
u2
x + β2

, w = vx and p =
wx

(
√
u2
x + β2)3

.

3.1. Cell discretization. For the MC-based two-dimensional image deblurring
problem, the domain Ω = (0, 1)× (0, 1) is partitioned by δx × δy, [20], where

δx : 0 = x1/2 < x3/2 < x5/2 < ... < xnx−1/2 < xnx+1/2 = 1,

δy : 0 = y1/2 < y3/2 < y5/2 < ... < ynx−1/2 < ynx+1/2 = 1

where nx represents the number of equispaced partitions in the x or y directions and
(xi, yj) denotes centers of the cells. The

xi = (i− 1

2
)h i = 1, 2, 3, ..., nx,

yj = (j − 1

2
)h j = 1, 2, 3, ..., nx

where h = 1
nx

. The (xi± 1
2
, yj) and (xi, yj± 1

2
) are representing midpoints of cell edges,

xi± 1
2

= xi ±
h

2
i = 1, 2, 3, ..., nx,

yj± 1
2

= yj ±
h

2
j = 1, 2, 3, ..., nx.

For each i = 1, 2, ..., nx, and j = 1, 2, ..., nx, define

Ωi,j = (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2),

Ωi+1/2,j = (xi, xi+1)× (yj−1/2, yj+1/2),

Ωi,j+1/2 = (xi−1/2, xi+1/2)× (yj , yj+1).

For the function θ(x, y), let θk,l denotes θ(xl, ym), where k and l may take values
i, i + 1/2 and j, j + 1/2 respectively, for integers i, j ≥ 0. For discrete functions we
need values at proper discrete points, so we define

[dxθ]i+1/2,j =
θi+1,j − θi,j

h
, [Dxθ]i,j =

θi+1/2,j − θi−1/2,j

h
,

[dyθ]i,j+1/2 =
θi,j+1 − θi,j

h
, [Dyθ]i,j =

θi,ji+1/2 − θi,j−1/2

h
.
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By applying midpoint quadrature approximation, we have

(Ku)(xi, yj) ∼= [KhU ](ij).

For the discretization of one dimensional image deblurring problem, one can consider
above discussion in x−direction only.

3.2. The CCFD method. Here, we consider the cell-centered finite difference
(CCFD) method for mean curvature-based image deblurring problem. The CCFD ap-
proximations {Ui,j} and {Wi,j} to {u(xi,j)} and {w(xi,j)} , respectively are chosen.
Denote vectors v, p and t by v = (vx, vy), p = (px, py) and t = (tx, ty) respectively.
The CCFD approximations {V x

i+ 1
2 ,j
} and {V y

i,j+ 1
2

} to {vx(xi+ 1
2 ,j

)} and {vy(yi,j+ 1
2
)},

respectively, are chosen. Similarly, the CCFD approximations {P x
i+ 1

2 ,j
} and {P y

i,j+ 1
2

}
to {px(xi+ 1

2 ,j
)} and {py(yi,j+ 1

2
)}, respectively, are chosen. And the CCFD approx-

imations {T x
i+ 1

2 ,j
} and {T y

i,j+ 1
2

} to {tx(xi+ 1
2 ,j

)} and {ty(yi,j+ 1
2
)}, respectively, are

chosen. So we have

[K∗KU ]i,j + α
(

[DxP
x]i,j + [DyP

y]i,j

)
− α

(
[DxT

x]i,j + [DyT
y]i,j

)
=[K∗Z]i,j ,

(3.10)

−Wi,j + [DxV
x]i,j + [DyV

y]i,j = 0,(3.11) √
[dxU ]2

i+ 1
2 ,j

+ β2V xi+ 1
2 ,j
− [dxU ]i+ 1

2 ,j
= 0,(3.12) √

[dyU ]2
i,j+ 1

2

+ β2V y
i,j+ 1

2

− [dyU ]i,j+ 1
2

= 0,(3.13) √
[dxU ]2

i+ 1
2 ,j

+ β2P xi+ 1
2 ,j
− [dxW ]i+ 1

2 ,j
= 0,(3.14) √

[dyU ]2
i,j+ 1

2

+ β2P y
i,j+ 1

2

− [dyW ]i,j+ 1
2

= 0,(3.15) √
[dxU ]2

i+ 1
2 ,j

+ β2T xi+ 1
2 ,j
−
(

[dxW ]i+ 1
2 ,j
V xi+ 1

2 ,j

)
V xi+ 1

2 ,j
= 0,(3.16) √

[dyU ]2
i,j+ 1

2

+ β2T y
i,j+ 1

2

−
(

[dyW ]i,j+ 1
2
V y
i,j+ 1

2

)
V y
i,j+ 1

2

= 0.(3.17)

According to the lexicographical ordering of the unknowns,

U = [U11 U12 ... Unxnx
]t, W = [W11 W12 ... Wnxnx

]t,

V = [V x11 V x12 ... V xnx−1nx−1 V y11 V y12 ... V ynx−1nx−1]t,

P = [P x11 P x12 ... P xnx−1nx−1 P y11 P y12 ... P ynx−1nx−1]t,

and T = [T x11 T x12 ... T xnx−1nx−1 T y11 T y12 ... T ynx−1nx−1]t.
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Fig. 1. Location of variables on 5 × 5 CCFD grid.

So from (3.10)-(3.17) we have the following matrix system,

K∗
hKhU − αAhW + αB∗

hP − αB∗
hT =K∗

hZ,(3.18)

−IhW +B∗
hV = O,(3.19)

DhV +BhU = O.(3.20)

DhP +BhW = O,(3.21)

DhT − ChV = O.(3.22)

Here Kh, Ah and Ih are matrices of size n2
x×n2

x, and Bh is a matrix of size 2nx(nx−
1)× n2

x. Ch and Dh are matrices of size 2nx(nx − 1)× 2nx(nx − 1). So we have the
following system

K∗
hKh −αAh O αB∗

h −αB∗
h

O −Ih B∗
h O O

Bh O Dh O O
O Bh O Dh O
O O −Ch O Dh



U
W
V
P
T

 =


K∗
hZ
O
O
O
O


The K∗

hKh is symmetric positive semidefinite. The matrix Kh is block Toeplitz with
Toeplitz blocks (BTTB) matrix. The matrix Ah is a diagonal matrix having following
structure,

Ah =
2

βh
(A1 +A2),

where both A1 and A2 are of size n2
x × n2

x .

A1 = Ĩ ⊗ E and A2 = E ⊗ Ĩ

where ⊗ is a tensor product. The size of the identity matrix Ĩ is size nx × nx. The
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matrix

E =


1

0
. . .

0
1

 ,
is of size nx × nx. The matrix Bh has the following structure,

Bh =
1

h

[
B1

B2

]
where both B1 and B2 are of size nx(nx − 1)× n2

x , and

B1 = F ⊗ Ĩ and B2 = Ĩ ⊗ F.

F =



1 −1
1 −1

. . .
. . .

. . . −1
1 −1

 ,

is a matrix of size (nx − 1)× nx. The matrix

Ch(U) =

[
Cx 0
0 Cy

]
,

is a diagonal matrix and its entries are obtained by the discretization of the expression
(5w.−→v ). The matrix Cx is of size (nx − 1) × nx, and the matrix Cy is of size
nx× (nx− 1). The matrix Dh is also a diagonal matrix with positive diagonal entries

that are obtained by the discretization of the expression

√
|5u|2 + β2. The matrix

Dh has the following structure,

Dh(U) =

[
Dx 0
0 Dy

]
where Dx is of size (nx − 1) × nx, and Dy is of size nx × (nx − 1). Note that on
horizontal and vertical edges of each cell Ωij , the values of the all unknowns are not
available, so one can use average operators to calculate their values.

Now if we eliminate W,V, P and T from (3.18)-(3.22), then we have the following
primal system,

(K∗
hKh + αLh(U))U =K∗

hZ,(3.23)

where

(3.24) Lh = (B∗
hD

−1
h Bh)2 +Ah(B∗

hD
−1
h Bh) +B∗

hD
−1
h ChD

−1
h Bh.

According to the lexicographical ordering of the unknowns, Lh is block pentadiagonal.
The diagonal blocks are pentadiagonal matrices, while the off-diagonal blocks, just
below and above the main diagonal blocks, are tridiagonal matrices.
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As we mentioned above, one key problem in presenting the method is to give
a proper approximation to the nonlinear mean curvature functional. A number of
different approximations to mean curvature functional can be find in [3, 29, 30]. Sim-
ilar to the above approximation of the nonlinear mean curvature functional for image
denoising problem can be found in [12] in which comparison to other methods is also
presented.

4. Global Error. In this section we find the global error for MC-based im-
age deblurring problem. For this we follow the error analysis procedure of Rui
and Pan [20] who considered a Darcy−Forchheimer model using a block-centered
finite difference method. For simplicity, we consider one-dimensional MC-based im-
age deblurring problem (3.6)-(3.9). The cell-centered finite difference approximations
{Ui}, {Wi}, {Vi+ 1

2
} and {Pi+ 1

2
} to {u(xi)}, {w(xi)}, {v(xi+ 1

2
)} and {p(xi+ 1

2
)}, respec-

tively, are chosen so that

[K∗KU ]i + α[DxP ]i =[K∗Z]i,(4.1)

−Wi + [DxV ]i = 0,(4.2) √
[dxU ]2

i+ 1
2

+ β2Vi+ 1
2
− [dxU ]i+ 1

2
= 0,(4.3)

(
√

[dxU ]2
i+ 1

2

+ β2)3Pi+ 1
2
− [dxW ]i+ 1

2
= 0,(4.4)

with V 1
2

= Vn+ 1
2

= 0 and W 1
2

= Wn+ 1
2

= 0.

Theorem 4.1. Let u,w, v and p be the solutions of the system (3.6)-(3.9) on
mesh Ωh and U,W, V and P be the computed solutions of the system (4.1)-(4.4) on
mesh Ωh. Then there exists a positive constant C independent of h such that
for i = 1, 2, ..., n

|K∗K(ui − Ui)| ≤ Ch.

Proof. One can notice that by putting K = I, in (3.6)-(3.9) and (4.1)-(4.4), we
get a similar one-dimensional MC-based signal denoising problem and its descritized
system, respectively, because image denoising is a special case of image deblurring
model. In [12], Faisal et al, has proved the above result for the case of MC-based
signal denoising problem. So here what’s remain to be prove is that the presence of
deblurring operator ~K in MC-based image deblurring model does not effect the order
of global error.

First discretize the interval [0, 1] using n = nx distinct points. So h = 1
n .

Fig. 2. Discretization of one-dimensional MC-based image deblurring problem
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At x = xi, i = 1, 2, ..., (n− 1)

From (3.6) by integration, we have

pi+ 1
2

= pi− 1
2

+
1

α

∫ x
i+1

2

x
i− 1

2

( ~K∗ ~Ku− ~K∗z)dx.

Now by applying recursively i− 1 times, we have

(4.5) pi+ 1
2

= p 1
2

+

i∑
l=1

1

α

∫ x
l+1

2

x
l− 1

2

( ~K∗ ~Ku− ~K∗z)dx.

Now from (4.1), we have

Pi+ 1
2

= Pi− 1
2

+
1

α

∫ x
i+1

2

x
i− 1

2

([K∗KU ]i − [K∗Z]i)dx.

Now by applying recursively i− 2 times, we have

(4.6) Pi+ 1
2

= P 1
2

+

i∑
l=1

1

α

∫ x
l+1

2

x
l− 1

2

([K∗KU ]l − [K∗Z]l)dx.

By subtracting (4.6) from (4.5), we have

pi+ 1
2
−Pi+ 1

2
= p 1

2
−P 1

2
+

i∑
l=1

1

α

∫ x
l+1

2

x
l− 1

2

( ~K∗ ~Ku− ~K∗z)dx−
i∑
l=1

1

α

∫ x
l+1

2

x
l− 1

2

([K∗KU ]l−[K∗Z]l)dx.

⇒ ep
i+ 1

2

= ep1
2

+

i∑
l=1

1

α

∫ x
l+1

2

x
l− 1

2

( ~K∗ ~Ku− [K∗KU ]l)dx−
i∑
l=1

1

α

∫ x
l+1

2

x
l− 1

2

( ~K∗z− [K∗Z]l)dx.

where ep
i+ 1

2

= pi+ 1
2
− Pi+ 1

2
, i = 0, 2, ..., n − 1. Now by mid-point quadrature rule, we

have

ep
i+ 1

2

= ep1
2

+
i∑
l=1

( 1

α
h( ~K∗ ~Ku(xl)−[K∗KU ]l)+O(h3)

)
−

i∑
l=1

( 1

α
h( ~K∗z(xl)−[K∗Z]l)+O(h3)

)
.

Since ~K∗z(xl)− [K∗Z]l = 0, so

ep
i+ 1

2

= ep1
2

+

i∑
l=1

1

α
h( ~K∗ ~Ku(xl)− [K∗KU ]l) +O(h2).

By using Appendix I,

ep
i+ 1

2

= Cp 1
2

h2 +O(h4) +

i∑
l=1

1

α
h( ~K∗ ~Ku(xl)− [K∗KU ]l) +O(h2).

(4.7) ⇒ ep
i+ 1

2

=

i∑
l=1

1

α
h( ~K∗ ~Ku(xl)− [K∗KU ]l) +O(h2).
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By using Appendix II,

ep
i+ 1

2

=

i∑
l=1

h

α
([K∗KŨ ]l − [K∗KU ]l) +O(h2).

⇒ ep
i+ 1

2

=

i∑
l=1

h

α
[K∗K(Ũ − U)]l +O(h2).

Hence, for i = 1, 2, ..., n− 1

(4.8) ep
i+ 1

2

=

i∑
l=1

h

α
K∗Keul +O(h2).

where K∗Keul = [K∗K(Ũ − U)]l.
At x = xn

From (3.6) by integration, we have

pn+ 1
2
− pn− 1

2
=

1

α

∫ x
n+1

2

x
n− 1

2

( ~K∗ ~Ku− ~K∗z)dx.

So

(4.9) pn− 1
2

= pn+ 1
2
− 1

α

∫ x
n+1

2

x
n− 1

2

( ~K∗ ~Ku− ~K∗z)dx.

Now from (4.1), we have

Pn+ 1
2
− Pn− 1

2
=

1

α

∫ x
n+1

2

x
n− 1

2

([K∗KU ]n − [K∗Z]n).

So

(4.10) Pn− 1
2

= Pn+ 1
2
− 1

α

∫ x
n+1

2

x
n− 1

2

([K∗KU ]n − [K∗Z]n).

By subtracting (4.10) from (4.9), we have

pn− 1
2
−Pn− 1

2
= pn+ 1

2
−Pn+ 1

2
− 1

α

∫ x
n+1

2

x
n− 1

2

( ~K∗ ~Ku− ~K∗z)dx+
1

α

∫ x
n+1

2

x
n− 1

2

([K∗KU ]n−[K∗Z]n).

⇒ ep
n− 1

2

= ep
n+ 1

2

− 1

α

∫ x
n+1

2

x
n− 1

2

( ~K∗ ~Ku− [K∗KU ]n)dx+
1

α

∫ x
n+1

2

x
n− 1

2

( ~K∗z − [K∗Z]n).

By mid-point quadrature and using [K∗KU ]n − [K∗Z]n = 0, we have

ep
n− 1

2

= ep
n+ 1

2

− h

α
( ~K∗ ~Ku(xn)− [K∗KU ]n) +O(h3).

10



By using Appendix I,

ep
n− 1

2

= Cp
n+1

2

h2 +O(h4)− h

α
( ~K∗ ~Ku(xn)− [K∗KU ]n) +O(h3).

⇒ ep
n− 1

2

= −h
α

( ~K∗ ~Ku(xn)− [K∗KU ]n) +O(h2).

Now by using (4.7), we have

n−1∑
l=1

1

α
h( ~K∗ ~Ku(xl)− [K∗KU ]l) +O(h2) = −h

α
( ~K∗ ~Ku(xn)− [K∗KU ]n) +O(h2).

After rearranging, we have

⇒
n∑
l=1

h

α
( ~K∗ ~Ku(xl)− [K∗KU ]l) +O(h2) = 0.

By Appendix II, we have

n∑
l=1

h

α
([K∗KŨ ]l − [K∗KU ]l) +O(h2) = 0

⇒
n∑
l=1

h

α
[K∗K(Ũ − U)]l +O(h2) = 0

So we have

(4.11)

n∑
l=1

h

α
K∗Keul +O(h2) = 0

where K∗Keul = [K∗K(Ũ − U)]l. Now let

Eu = [K∗Keu1 ,K
∗Keu2 , ...,K

∗Keun]t and Ep = [ep3
2

, ep5
2

, ..., ep
n− 1

2

]t

So from (4.8)-(4.11), we have the following system

[
h
αAn×n Bn×(n−1)

] [ Eun×1

Ep(n−1)×1

]
= T̃n×1

where

An×n =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0

. . .
. . .

. . .

1 1 1 . . . . . . 1

 ,
11



Bn×(n−1) =



−1 0 0 . . . 0
0 −1 0 . . . 0

. . .
. . .

. . .
. . .

0 0 0 . . . −1
0 0 0 . . . 0


=

[
−I(n−1)×(n−1)

O1×(n−1)

]
,

and T̃n×1 =



O(h2)
O(h2)
.
.
.

O(h2)
O(h2)


.

In the above system the subscript represents the order of the indicated matrix.
Now by multiplying both sides with A−1, we have

[
h
αIn×n A−1

n×nBn×(n−1)

] [ Eun×1

Ep(n−1)×1

]
= A−1

n×nT̃n×1

where

A−1
n×n =



1 0 0 . . . . . . 0
−1 1 0 . . . . . . 0

. . .
. . .

. . .

. . .
. . .

. . .

0 0 0 . . . 1 0
0 0 0 . . . −1 1


.

So we have

[
h
αIn×n Cn×(n−1)

] [ Eun×1

Ep(n−1)×1

]
= A−1

n×nT̃n×1

where

Cn×(n−1) = A−1
n×nBn×(n−1) =

[
−A−1

(n−1)×(n−1)

D1×(n−1)

]
and

D1×(n−1) =
[
0 0 0 . . . 0 1

]
.

Then

h

α
Eun×1 + Cn×(n−1)E

p
(n−1)×1 = A−1

n×nT̃n×1

⇒ Eun×1 = −α
h
Cn×(n−1)E

p
(n−1)×1 +

α

h
A−1
n×nT̃n×1.

12



So 
K∗Keu1
K∗Keu2

.

.

.
K∗Keun

 =
α

h



ep3
2

ep5
2

− ep3
2

.

.

.
ep
n− 1

2

− ep
n− 3

2

−ep
n− 1

2


+
α

h



O(h2)
O(h2)
.
.
.

O(h2)
O(h2)


.

Since, for i = 2, 3, ..., (n− 1), |pi+ 1
2
− Pi+ 1

2
| ≤ Ch2 [12], hence for i = 1, 2, ..., n

|K∗K(ui − Ui)| ≤ Ch.

This completes the proof.
In the literature, one can find a number of numerical methods that have been

investigated for mean curvature-based nonlinear minimization problems [3, 9, 16, 22,
24, 26, 27, 29]. Since MC-based models produce a large nonlinear and ill-conditioned
matrix system, almost all these numerical techniques get quite slow convergence. Fur-
thermore the presence of higher order and nonlinear mean curvature regularization
functional in the governing equation of the models makes these highly nonlinear sys-
tems harder for calculation. MC is very much computationally expensive, that is why,
most of the existing methods performs quite poorly. To provide a robust numerical
method for MC-based nonlinear image deblurring problem, now we present a new
preconditioned numerical method.

5. Numerical implementation. Here we introduce the algorithms to solve the
MC-based nonlinear system (3.23). First we apply a discrete version of the FPI (fixed
point iteration) to (3.23) to handle the nonlinearity of MC. The approach taken here
is called ”lagged diffusivity” scheme [24]. Its rate is just linear but in practice it has
a quite rapid convergence. Furthermore, this scheme does not depend on the initial
guess to converge globally. This is why globalization is not an issue for this scheme.
So by FPI we have a following linear system;

(K∗
hKh + αLh(Um))Um+1 =K∗

hZ.(5.1)

5.1. Properties. Before proceeding further, we discuss some important proper-
ties of our system (5.1).

1. The Hessian matrix K∗
hKh +αLh(Um) is extremely large for practical appli-

cation. When α is small, the Hessian matrix tends to be quite ill-conditioned.
This happens because the blurring operator K̄ eigenvalues which cluster as
zero [24].

2. The first term K∗
hKh in the Hessian matrix is symmetric positive definite.

Although, K∗
hKh is full but the blurring operator K̄ has translation invari-

ant property, which allows the use of Fast Fourier transformation (FFT) to
evaluate K∗

hKhu in O(nlogn) operations [24].
3. The second term Lh(Um) in the Hessian matrix is sparse but not symmetric.

The Lh(Um) (3.23) consists of three terms. The first and the last term in
Lh(Um) are symmetric positive semidefinite [24] but the middle term is not
symmetric. Hence the system (5.1) is not symmetric positive definite.
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5.2. The Preconditioner. According to the properties of our system (5.1),
mentioned above, Generalized Minimal Residual (GMRES) method, is suitable for the
solution of the system (5.1). Due to ill-conditioned system GMRES can be quite slow
to convergence. So we use preconditioned Generalized Minimal Residual (PGMRES)
method [5, 6, 7, 13, 14, 15, 21]. For effective solution, preconditioning matrix P , must
be symmetric positive definite (SPD) [2, 8, 24]. Here we introduce our SPD circulant
preconditioned matrix P of Strang-type [17].

P = αK̃∗
hK̃h + γdiag(Lsh(Um)),(5.2)

where γ is a positive parameter and where K̃h is a circulant approximation of matrix
Kh. The diag(Lsh(Um)) is a diagonal matrix whose entries are the diagonal entries of
matrix Lsh(Um). The matrix

(5.3) Lsh = (B∗
hD

−1
h Bh)2 +B∗

hD
−1
h ChD

−1
h Bh

is the SPD part (first and the third term) of Lh(Um) matrix (5.1). The PGMRES
method is summarized in Algorithm 5.1.

Algorithm 5.1 The PGMRES Method

On mesh Ωh ,

1. Choose x0 as the initial guess
2. Compute r̃0 = b−Ax0 where A = K∗

hKh + αLh(Um) and b = K∗
hZ,

3. Solve P r0 = r̃0

4. Let β0 = ‖r0‖, and compute v(1) = r0/β0

5. For k = 1, 2, ... until βk < τβ0 do

6. w̃
(k+1)
0 = Av(k)

7. Solve P w
(k+1)
0 = w̃

(k+1)
0

8. For l = 1 to k do
9. hlk = 〈wl(k+1), v(l)〉

10. wl
(k+1) = wl

(k+1) − hlkv(l)

11. end do
12. hk+1,k = w

(k+1)
k+l /hk+1,k

13. Compute y(k) such that βk = ‖β0e1 − Ĥky
(k)‖ is minimized, where

Ĥk = [hij ]1≤i≤k+1≤,1≤j≤k and e1 = (1, 0, ..., 0)T

14. end do
15. x(k) = x0 + Vky

(k)

end

While applying PGMRES to (5.1), the inversion of preconditioner matrix, will
be required. Since the second term diag(Lsh(Um)) in our preconditioning matrix P
is diagonal matrices, so inversion can be done easily. The inversion of the first term
K̃∗
hK̃h, we need less than O(nlogn) floating point operations using FFTs [24].

Now, let the eigenvalues of K∗
hKh and Lh(Um) be λKi and λLi respectively such

that λKi ↓ 0 and λLi ↑ ∞. So the eigenvalues of P−1Ā are

(5.4) θi =
λKi + αλLi
α+ γλL

s

i

,

14



where λL
s

i are eigenvalues of Lsh(Um) and Ā = K∗
hKh + αLh(Um) is the Hessian

matrix of the system (5.1). One can notice that λL
s

i ≤ λLi . So we have

(5.5) θi =
λKi + αλLi
α+ γλLi

,

So clearly θi → α
γ as i→∞. Hence, for α ≈ γ, P−1Ā has more favourable spectrum

as compared to the Hessian matrix Ā. It can also be shown in the numerical examples
that PGMRES is getting rapid convergence with small γ.

5.3. Numerical experiments. Now we present five numerical examples of MC-
based image deblurring problem. Here, the value of the parameters α and β is set
according to [4, 29]. In all experiments, we take the zero vector to be the initial guess.
We stopped the outer iterations (PGMRES) when the residuals satisfies ‖b−Axk‖ <
10−7 ‖ b ‖ where xk = (vk, uk) is the solution vector in the k − th iteration. We
used just only one iteration of the FPI method to linearized the non-linear term and
it is stopped when the tolerance is tol = 1e − 4. In all experiments, we have used
different nx and the resulting matrix system has n2

x unknowns. Then the mesh size
is h = 1/nx. For numerical computations, MATLAB software is used on Intel(R)
Core(TM) i7-4510U CPU @ 2.00 GHz 2.60 GHz. The PSNR (Peak Signal to Noise
Ratio) measure is used to measure the quality of the restored images.
Example 1

In this example we have used the Goldhills image. The different aspects of Gold-
hills image are shown in Figure 5. The size of each one is 256 × 256. These are (a)
exact image (b) blurry image (c) deblurred image without preconditioner and (d) de-
blurred image by using preconditioner P with γ = 1e− 7. The calculation of relative
residual at each iterations against different values of the parameter γ is presented
in Figure 4. For numerical calculations, we have used the ke−gen(nx, 300, 5) kernel
[10, 11, 12, 18]. It is a circular gaussian filter of size nx × nx with radius (r = 300)
and standard deviation (σ = 5). The ke−gen(120, 40, 4) kernel is depicted in Figure
3. The parameters α = 1e − 8 and β = 1. In Table 1, we have summarized the
information of this experiment.
Remarks

1. The Figures 5(c) and 5(d) are having almost similar quality, which means
that PGMRES method is generating the same quality deblurred images as
by the ordinary GMRES method without preconditioning.

2. From the Figure 4, one can clearly observe the effectiveness of preconditioning.
Here, result were presented using fixed point iteration count m = 1. The
number of PGMRES iteration is much lesser than as compared to ordinary
GMRES (without preconditioning) to reach to the required accuracy tol =
1e− 4. The later fixed point iterations are also having the similar results.

3. From the Figure 4, this can also be observed that PGMRES is getting rapid
convergence for smaller values of γ.

4. From Table 1, it is observed that the PSNR by both methods (GMRES
and PGMRES) is almost same. But PGMRES is generating same PSNR in
quite less iterations. For example, to achieve the same PSNR, the PGMRES
method needs only 80 iterations with γ = 5e− 6. But the ordinary GMRES
method needs 120 plus iterations to get the same PSNR. The number of iter-
ations further decrease with smaller values of γ. Which means that PGMRES
method is faster than the ordinary GMRES method.
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5. From Table 1, it is also observed that for preconditioner P the PSNR do not
get much improvement with the decrease in the value of γ. The smaller value
of γ only decreases the number of iterations. So for the selection of γ, one
should only care about small value of γ close to α.

(a)

Fig. 3. The blurring kernel ke−gen(120, 40, 4).

Fig. 4. GMRES and PGMRES convergence for Example 1 at fixed point iteration m = 1. The
horizontal axis represents the number of iterations. The norm of the residual at each iteration is
presenting on vertical axis. Blue line represents GMRES iteations. The remaining lines represent
PGMRES iteration using preconditioner P against different values of γ .
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(a) (b)

(c) (d)

Fig. 5. Goldhills image: (a) exact image (b) blurry image (c) deblurred image without precon-
ditioner and (d) deblurred image by using preconditioner P with γ = 1e− 7.

Table 1
Comparison of GMRES and PGMRES for Example 1

GMRES PGMRES
γ — 1e− 10 1e− 9 1e− 8 1e− 7 5e− 6

Blurred 25.5958 25.5958 25.5958 25.5958 25.5958 25.5958
PSNR

Deblurred 31.4864 29.3659 29.8812 30.7970 31.1418 31.3269
PSNR

Iterations 120+ 10 10 11 16 80

Example 2
Here we have used the Cameraman image. This image is a complicated image, because
it contains a small scale texture part (shirt) and also a large scale cartoon part (face).
The different aspects of Cameraman image are shown in Figure 6. The size of each
sub-figure is 512× 512. These are (a) exact image (b) blurry image and (c) deblurred
image by PGMRES method. In this experiment, we have used the ke−gen(nx, 300, 4)
kernel. For the analysis of convergence rate we have taken four values of nx. These
are 64, 128, 256 and 512. Here β = 1 , α is varied from 1e− 5 to 1e− 7 and γ is varied
from 5e− 5 to 5e− 7. In Table 2, we have summarized the information of errors and
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convergence rates of this experiment.
Remarks

1. From Figure 6, one can notice the quality of deblurred image produce by
PGMRES method. Most of the blur has been removed. This means that
PGMRES method generates a high quality deblurred images.

2. From the Table 2 one can observe that the relative residual norm is approxi-
mately 9× 10−8 for all values of mesh size h. It means PGMRES method is
achieving quite well accuracy.

3. The Table 2 shows that the PGMRES method have the first-order accuracy
in discrete L2 norm for all values of mesh size h. It is also observed that the
error ‖K∗K(u− U)‖ also decreases with the decrease in the mesh size h.

(a) (b) (c)

Fig. 6. Cameraman image : (a) exact image (b) blurry image and (c) deblurred image by
PGMRES method.

Table 2
PGMRES calculations for Example 2

Mesh Size Blurred Deblurred Relative Error Rate
(h) PSNR PSNR Residual ‖K∗K(u− U)‖

1/64 19.9426 48.9348 9.5696e-08 4.021e-02 –
1/128 21.4185 44.0716 9.7826e-08 1.995e-02 1.0043
1/256 20.9834 40.8261 9.9701e-08 1.060e-02 0.9123
1/512 22.1542 43.1164 9.9705e-08 4.801e-03 1.1430

18



Example 3
Here we have used the Peppers image. The Peppers image is a nontexture image.
The different aspects of Peppers image are shown in Figure 7. The size of each sub-
figure is 512 × 512. These are (a) exact image (b) blurry image and (c) deblurred
image by PGMRES method. In this experiment, we have used the ke−gen(nx, 200, 4)
kernel. For the analysis of convergence rate we have taken four values of nx. These
are 64, 128, 256 and 512. Here β = 1 , α is varied from 1e− 7 to 1e− 8 and γ is varied
from 5e− 7 to 5e− 8. In Table 3, we have summarized the information of errors and
convergence rates of this experiment.
Remarks

1. From Figure 7, one can notice that in the deblurred image most of the blur
has been removed. This means that PGMRES method generates high quality
results.

2. The Table 3 shows that the PGMRES method have the first-order accuracy
in discrete L2 norm for all values of mesh size h and the error ‖K∗K(u−U)‖
also get decrease with the decrease in the mesh size h. The relative error is
also quite low for this example too.

(a) (b) (c)

Fig. 7. Peppers image : (a) exact image (b) blurry image and (c) deblurred image by PGMRES
method.

Table 3
PGMRES calculations for Example 3

Mesh Size Blurred Deblurred Relative Error Rate
(h) PSNR PSNR Residual ‖K∗K(u− U)‖

1/64 18.8168 33.9585 9.9196e-08 2.0286e-05 –
1/128 21.3244 35.9837 9.9746e-08 3.9824e-05 0.9732
1/256 23.3415 42.3435 9.9781e-08 1.6730e-05 1.2512
1/512 23.9288 41.7332 9.9634e-08 8.5444e-05 1.2663

Example 4 In this example we have used Kids image. This image is also a compli-
cated image, because it contains a small scale texture part (shirt) and also a large
scale cartoon part (face). Here we have compared our MC based algorithm with TV
(total variation) based algorithm. Since TV-based model generates a SPD matrix
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system [24], so for the solution we have used CG (Conjugate Gradient) method. The
different aspects of Kids image are presented in Figure 8. The size of each subfigure
is 512× 512. These are (a) exact image (b) blurry image (c) deblurred image by CG
(d) deblurred image by GMRES and (e) deblurred image by PGMRES. For numerical
calculations, we have used the ke−gen(nx, 300, 5) kernel. For TV-based method we
have used α = 1e − 4 and β = 1 according to [24]. For MC-based method we have
used α = 1e− 6, β = 1 and γ = 1e− 5.

(a) (b)

(c) (d) (e)

Fig. 8. Kids image: (a) exact image (b) blurry image (c) deblurred image by CG (d) deblurred
image by GMRES and (e) deblurred image by PGMRES.

Table 4
Comparison of CG, GMRES and PGMRES for Example 4

CG GMRES PGMRES

Blurred PSNR 22.9734 22.9734 22.9734
Deblurred PSNR 39.0931 43.2036 43.6945
‖K∗K(u− U)‖ 3.8528e-06 6.0732e-07 7.5004e-07

Remark
From Table 4, it is observed that the PSNR by MC-based (GMRES and PGM-

RES) methods are little higher than TV-based CG method. Same comparison can be
observed from Figures 8(c), 8(d) and 8(e). So MC-based (GMRES and PGMRES)
methods are generating better quality results.

20



Example 5 In this example, we have compared our MC-based method with MC-
based augmented lagrangian method (ALM) [25, 28, 30, 31]. In [30] Zhu et al, has

presented ALM for only image denoising case (when blurring operator ~K = I identity
operator). Here, we have extend that algorithm for image deblurring problem and
presented in Algorithm 5.2. The complete detail of the ALM algorithm can be found
in [30, 31].

Algorithm 5.2 The Augmented Lagrangian method for MC model

1. Initialize u0, q0, ~p0, ~n0, ~m0, and λ0
1,
~λ0

2, λ
0
3,
~λ0

4.
2. For k = 0, 1, 2, ... : Compute (uk, qk, ~pk, ~nk, ~mk) as an (approximate) mini-

mizer of the augmented Lagrangian functional with the Lagrange multiplier
λk−1

1 , ~λk−1
2 , λk−1

3 , ~λk−1
4 , i.e.,

(5.6) (uk, qk, ~pk, ~nk, ~mk) ≈ argminL(u, q, ~p, ~n, ~m, λk−1
1 , ~λk−1

2 , λk−1
3 , ~λk−1

4 ).

3. Update the Lagrangian multipliers

λk1 = λk−1
1 + r1(|~pk| − ~pk.~mk),(5.7)

~λk2 = ~λk−1
2 + r2(|~pk|− < 5uk, 1 >),(5.8)

λk3 = λk−1
3 + r3(qk − ∂nk1 − ∂nk2),(5.9)

~λk4 = ~λk−1
4 + r4(~nk − ~mk),(5.10)

where ~n =< n1, n2, n3 >.
4. Measure the relative residuals and stop the iteration if they are smaller than

a threshold εr.

The associated augmented Lagrangian functional in (5.6) is

(5.11) L(u, q, ~p, ~n, ~m, λ1, ~λ2, λ3, ~λ4) =
1

2

∫
( ~Ku− z)2 + α

∫
|q|

+r1

∫
(|~p| − ~p.~m) +

∫
λ1(|~p| − ~p.~m)

+
r2

2

∫
|~p− < 5u, 1 > |2 +

∫
~λ2.(~p− < 5u, 1 >)

+
r3

2

∫
(q − ∂xn1 − ∂yn2)2 +

∫
λ3.(q − ∂xn1 − ∂yn2)

+
r4

2

∫
|~n− ~m|2 +

∫
~λ4.(~n− ~m) + δR(~m),

where r1, r2, r3 and r4 are the penalization parameters. The λ1, λ3,∈ R and ~λ2, ~λ4 ∈
R3 are Lagrange multipliers, and ~p, ~n, ~m ∈ R3. All these terms except the data
fidelity term are similar to the ones discussed in [30]. For the comparison we have
used Cameraman image. The different aspects of Cameraman image are presented in
Figure 9. The size of each subfigure is 256×256. The MC-based augmented lagrangian
method use certain sets of parameters which we have used according to [30, 31]. The
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parameters for ALM are α = 1e−9, r1 = 9.5e−7, r2 = 1e−6, r3 = 1e−8, r4 = 1e−5
and β = 1. For our MC-based algorithms (GMRES and PGMRES) we have used
α = 1e − 9, β = 1 and γ = 1e − 8. For numerical calculations, we have used the
ke−gen(nx, 300, 10) kernel and for the stopping criteria of a numerical methods we
have used tolerance tol = 1e− 8.

(a) (b)

(c) (d) (e)

Fig. 9. Cameraman image: (a) exact image (b) blurry image (c) deblurred image by ALM (d)
deblurred image by GMRES and (f) deblurred image by PGMRES.

Remarks
1. From the Figure 9 one can notice that all methods are generating same quality

results.
2. From the Table 5, it is observed that the PSNR value of all methods is al-

most same. But our methods (GMRES and PGMRES) are generating same
PSNR in quite less CPU-Time as compared to augmented lagrangian method
(ALM). Our methods are saving quite well CPU-Time. For example, the GM-
RES and PGMRES methods are generating their PSNR values in 131.0810
seconds and 104.5429 seconds, respectively. But ALM is generating its PSNR
in 241.1423 seconds. Which means GMRES method is saving more than 40%
of CPU-Time as compared to ALM and PGMRES method is saving more than
50% of CPU-Time as compared to ALM. So we can say, our proposed MC-
based methods are faster than the MC-based augmented lagrangian method.

6. Conclusion. A numerical algorithm (PGMRES) is presented to solve the
primal form of mean curvature-based nonlinear image deblurring problem. A new
SPD circulant preconditioner matrix is introduced. The first order error estimates
are established on a uniform rectangular mesh. Five examples are tested by PGM-
RES using our new preconditioner matrix. Different kinds of images (Complicated,
real, synthetic and nontexture) are tested by PGMRES using our new preconditioner
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Table 5
Comparison of different methods for Example 5

Image Blurred Method Deblurred CPU-Time
PSNR PSNR

Cameraman 17.8172 ALM 40.1991 241.1423
17.8172 GMRES 38.8709 131.0810
17.8172 PGMRES 38.8143 104.5429

matrix. We have also compared our MC based algorithm with TV (total variation)
based algorithm. The comparison between our algorithms and augmented lagrangian
method (ALM) is also presented. Numerical experiments show the rapid convergence
of PGMRES method using new preconditioner. The first order error estimates are
also established on a uniform rectangular mesh. Numerical experiments show the
consistency of the convergence rates of our method with the theoretical analysis.

7. Appendix. In this section we present collection of supplementary materials.
Appendix I Consider

ep1
2

= p(x 1
2
)− P 1

2
.

By using (3.9) and (4.4), we have

ep1
2

=
1

(
√
ux(x 1

2
)2 + β2)3

wx(x 1
2
)− 1

(
√

1
h [U1 − U0]2 + β2)3

1

h
[W1 −W0]

Since ux(x 1
2
) = 0 and U0 = U1, so

ep1
2

=
1

β3
{wx(x 1

2
)− 1

h
[W1 −W0]}

=
1

β3
{wx(x 1

2
)− 1

h
[w(x 1

2
+
h

2
)− w(x 1

2
− h

2
)]}.

By applying Taylor’s series on right side, we have

ep1
2

= − h2

24β3
wxxx(x 1

2
) +O(h4).

Hence ep1
2

= Cp 1
2

h2 +O(h4). Similarly, ep
n+ 1

2

= p(xn+ 1
2
)− Pn+ 1

2
= Cp

n+1
2

h2 +O(h4).

Appendix II Consider

( ~Ku)(x) =

∫ 1

0

k(x, t)u(t)dt =

n∑
m=1

∫ x
m+1

2

x
m− 1

2

k(x, t)u(t)dt.
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By applying mid-point quadrature rule, we have

( ~Ku)(x) =

n∑
m=1

hk(x, xm)u(xm) +
h3

24

∂2

∂t2
[k(x, t)u(t)]t=ξm

where ξm ∈ (xm− 1
2
, xm+ 1

2
). So for x = xi, i = 1, 2, ..., n,

( ~Ku)(xi) =

n∑
m=1

hk(xi, xm)u(xm) +
h3

24

n∑
m=1

∂2

∂t2
[k(xi, t)u(t)]t=ξm

where ξm ∈ (xm− 1
2
, xm+ 1

2
). This can be written as

(7.1) ( ~Ku)(x) =

n∑
m=1

hk(x− xm)u(xm) +
h3

24

n∑
m=1

Htt(x, ξm)

where ξm ∈ (xm− 1
2
, xm+ 1

2
) and H(x, t) = k(x, t)u(t). Similarly, we have, for x =

xj , j = 1, 2, ..., n

(7.2) ( ~K∗u)(x) =

n∑
j=1

hk(xj − x)u(xj) +
h3

24

n∑
j=1

Gtt(ξj , x)

where ξj ∈ (xj− 1
2
, xj+ 1

2
) and G(t, x) = k(t, x)u(t). So by using 7.1 and 7.2, we have,

for x = xi, i = 1, 2, ..., n

( ~K∗ ~Ku)(x) =

n∑
j=1

hk(xj − x)( ~Ku)(xj) +
h3

24

n∑
j=1

Gtt(ξj , x)

where ξj ∈ (xj− 1
2
, xj+ 1

2
) and G(t, x) = k(t, x)( ~Ku)(t).

⇒ ( ~K∗ ~Ku)(x) =

n∑
j=1

hk(xj−x)[

n∑
m=1

hk(xj−xm)u(xm)+
h3

24

n∑
m=1

Htt(xj , ξm)]+
h3

24

n∑
j=1

Gtt(ξj , x)

where ξj ∈ (xj− 1
2
, xj+ 1

2
) , ξm ∈ (xm− 1

2
, xm+ 1

2
), H(x, t) = k(x, t)u(t) and G(t, x) =

k(t, x)( ~Ku)(t).

⇒ ( ~K∗ ~Ku)(x) =

n∑
j=1

n∑
m=1

h2k(xj − x)k(xj − xm)u(xm)

+
h4

24

n∑
j=1

k(xj − x)

n∑
m=1

Htt(xj , ξm) +O(h5), for x = xi, i = 1, 2, ..., n.

So we have the following matrix system
( ~K∗ ~Ku)(x1)

( ~K∗ ~Ku)(x2)
.
.
.

( ~K∗ ~Ku)(xn)

 = h2

24





k(0) k(h) . . . k((n− 1)h)
k(−h) k(0) . . . k((n− 2)h)

. . .

k(−(n− 1)h) k(−(n− 2)h) . . . k(0)





k(0) k(−h) . . . k(−(n− 1)h)
k(h) k(0) . . . k(−(n− 2)h)

. . .

k((n− 1)h) k((n− 2)h) . . . k(0)




u(x1)
u(x2)
.
.
.

u(xn)



+
h4

24



∑n
j=1 k(xj − x1)

∑n
m=1Htt(xj , ξm) +O(h)∑n

j=1 k(xj − x2)
∑n

m=1Htt(xj , ξm) +O(h)

.

.

.∑n
j=1 k(xj − xn)

∑n
m=1Htt(xj , ξm) +O(h)

 ,

where k(xi − xn) = k((n− i)h) for i = 1, 2, ..., n. This can be written as
( ~K∗ ~Ku)(x1)

( ~K∗ ~Ku)(x2)
.
.
.

( ~K∗ ~Ku)(xn)

 = K∗
n×nKn×nŨn×1 +

h4

24
ξK

∗KU
n×1 .

So for i = 1, 2, ..., n

( ~K∗ ~Ku)(xi) = K∗KŨi +O(h5).
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