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9.1 Abstract

Discretization of integral operators related problems inevitably leads to some
kind of linear systems involving dense matrices. Such systems in a large scale
can be prohibitively expensive to solve.

In this paper, we shall �rst review various works that aimed to solve such
systems e�ectively. We start from the solution of boundary integral equa-
tions for the exterior Helmholtz problem with smooth boundaries in low and
medium wavenumbers, solved by conjugate gradients and multigrid methods.
We discuss the importance of e�ective preconditioning in the contexts of fast
multipole methods and wavelet methods.

Then we present some recent work on restoring images in the framework
of inverse deconvolution, where the integral operator induced dense matrix,
though structured, can only be generated but cannot be computed due to ex-
tremely large sizes. No optimal solvers exist for this problem if the nonlinear
total-variation semi-norm based regulariser is used. An e�ective optimisation
based multilevel method, using the idea of fast multipole like methods, is de-
veloped and presented here. Various numerical experiments are also reported.
Finally a brief discussion of open challenges is given.
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9.2 Fast iterative methods for the Helmholtz equation

The Helmholtz equation, with Neumann's boundary condition ∂ϕ
∂n = g,

∇2ϕ+ k2ϕ = 0, p ∈ Ω (9.1)
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in an in�nite domain (i.e. the domain Ω exterior to the surface S = ∂Ω of
some interior domain Ω− ⊂ R3) is typically solved by a boundary integral
equation reformulation into

Lϕ(p) = −1

2
ϕ(p) +

∫
∂Ω

ϕ(q)

(
∂Gk

∂nq
(p, q) + α

∂2Gk

∂npnq

)
dSq =

α

2
g(p) +

∫
∂Ω

g(q)

(
Gk(p, q) + α

∂Gk

∂np

)
dSq

(9.2)

where nq is the unit normal exterior to the boundary ∂Ω away from Ω with

Gk(p, q) =
eik|p−q|

4π|p− q|
,

and k is the wavenumber; see [AHW92]. Discretization using boundary ele-
ments leads to the n× n linear system [AHW92, Chen05]

Au = f (9.3)

where u = ϕ; for collocation method Ai,j = L(pi)ψj and for Galerkin method
Ai,j = (ψi, L(pi)ψj).

9.2.1 Order O(n2) iterative algorithms

With the traditional method of using piecewise polynomial basis functions
{ψj}, the above matrix A is dense so matrix-vector multiplications Ax costs
O(n2) operations. In this context, commonly used methods using these mul-
tiplications are the following two [Chen05].

Conjugate gradients methods (CGM)

Assume that A is unsymmetric; if symmetric, simpler variants can be used.
Normal equation approach. The idea is to consider instead of (9.3)

AAT y = f, u = AT y,

since AAT is symmetric positive de�nite. Given an initial guess u(0) with resid-
ual r(0) = f−AAT y(0) = f−Au(0), we obtain α = (r(k))T r(k)/(p(k))TAAT p(k)

from solving
min
y

∥r∥AAT = ∥f −AAT y∥AAT

in the form y = y(k+1) = y(k) + αp(k) with p(k) a new search direction. Here
at k = 0, we take p(0) = r(0) and for k ≥ 1, with r(k) = f − AAT y(k) =
f −Au(k), we use the conjugate gradient direction p(k) = r(k) + βp(k−1) with
(p(k))TAAT p(k−1) = 0 i.e.
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β = − (r(k))TAAT p(k−1)

(p(k−1))TAAT p(k−1)
= − (r(k))T r(k)

(r(k−1))T r(k−1)
.

Equivalently let p(k) denote AT p(k) for the purpose of eliminating the
intermediate variable y. Then u = u(k) + αp(k), p(k) = AT r(k) + βp(k−1) with
(p(k))p(k−1) = 0 and

α = (r(k))T r(k)/(p(k))TAAT p(k) = (r(k))T r(k)/(p(k))T p(k).

Algorithm 1 (CGN algorithm)
(CGN Algorithm) (Naive CGN)

given x = x0, r = b−Ax0 and set
initially p = AT r, and rnew = rT r

given y = y0, r = b−AAT y0 and
set initially p = r, and rnew = rT r

(1) q = Ap
(2) αk = rnew/(p

T p)
(3) Update the solution x = x+αkp
(4) r = b−Ax = r − αkq and

set rold = rnew
(5) Compute rnew = rT r

(exit if rnew is small enough)
(6) βk = rnew/rold
(7) Update the search direction

p = AT r + βkp and continue
with step (1) for k = k + 1.

(1) q = AAT p, (pT q = ∥AT p∥22)
(2) αk = rnew/(p

T q)
(3) Update y = y + αkp
(4) r = b−Ax = r − αkq and

set rold = rnew
(5) Compute rnew = rT r

(exit x = AT y if rnew is small)
(6) βk = rnew/rold
(7) Update the search direction

p = r + βkp and continue
with step (1) for k = k + 1.

Generalized minimal residual approach. The generalized minimal residual
method by [Saad96] with m steps of restart aims to solve

min
u∈Vm

∥r∥2 = ∥f −Au∥2

where Vm = span(q1, q2, . . . , qm); here qj 's are columns of an orthogonal ma-
trix Qm from an Arnoldi iteration

AQm = QmHm + hqm+1e
T
m,

where em ∈ Rn is the m-th unit vector. Further the above minimization is
reduced to the simple least squares' problem

Hm+1y = ∥r(0)∥2ê1,

where y ∈ Rm and ê1 ∈ Rm is the �rst unit vector. After �nding y, we obtain
the next iterate u(m) = u(0) +Qmy.

Multigrid method

A multigrid method (MGM) utilizes a series of grids ∂Ωℓ with
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Lℓuℓ = fℓ, ℓ = 1, 2, · · · , L

such that ∂Ω1 is the �nest grid where we desire to solve and the other coarser
grids are here to speed up the computation. See [Trottenberg2001, Chen05].

The idea of a MGM relies on the residual correction principle. If ũ1 is a
known approximation of u1 with a nonzero residual r1 = f1 − L1ũ1. Then
solving the residual equation L2v2 = R1r1
or for a nonlinear case L2w2 = L2R1ũ1 +R1r1, v2 = w2 −R1ũ1
will result in an improved approximation ū1 = ũ1 + P1v2 if the original ap-
proximation ũ1 is smooth (not required to be close to u1). Here R1, P1 are
respectively the restriction and interpolation operators. This is for a two grid
between ∂Ω1, ∂Ω2. Repeated use of this idea will lead to a MGM.

The commonly used V-cycling MGM can be simply stated asMGM(u1, f1, 1)

Algorithm 2 (MGM algorithm)

MGM(uk, fk, k):
(1) Pre-smoothing over ∂Ωk: Lkuk = fk
(2) Computation of the residual ∂Ωk: rk = fk − Lkuk
(3) Setk = k + 1
(4) Restriction to coarse grid ∂Ωk: uk = Rk−1uk−1 and rk = Rk−1rk−1

(5) If k = L (coarsest grid), solve Lkvk = rk `accurately'; otherwise
call the MGM step again: MGM(uk, fk, k).

(6) Set k = k − 1
(7) Interpolation of the correction vk = Pkvk+1

(8) Update the �ne grid solution uk = uk + vk
(9) Return to continue

The most expensive part of the above two methods CGM and MGM is in
matrix-vector products, which may be speeded up.

9.2.2 Order O(n) iterative algorithms

Two excellent ideas of speeding up matrix-vector products shown below lead
to fundamentally new and fast methods.

Fast Multi-pole methods (FMM)

The FMM makes to the top 10 algorithms [Cipra00]. For boundary integral
equations, the decay properties of the integral kernel can be utilized ana-
lytically to design hierarchical expansions that may be arranged to give the
FMM approximation for computing each row of matrix L1 multiplying a vector
quickly. Similar algorithms to the FMM can be derived using a function-free
and H-matrix approach. See [BR97, Fong09, AP99, BH08].

We remark that while the FMM o�ers a fast solution per iteration for an
iterative method, the overall number of iterations required is dependent on the
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conditioning of an underlying problem. To speed up such iterations e�ective
preconditioning is necessary. However, computation for a preconditioner is
usually restricted by the inaccessibility of matrix elements from far �eld.

Wavelets methods

Wavelets methods [Dahmen97] o�er a revolutionary idea of using bi-orthogonal
basis functions, instead of the traditional piecewise polynomials, for discretiza-
tion of a boundary integral equation. The near orthogonality has two related
consequences on the resulting matrix: �rst it can be easily preconditioned by
its diagonal matrix and second the matrix is almost sparse; in fact a full or-
thogonality would imply a strictly diagonal matrix in some cases. The draw-
back of a wavelet method is that the wavelets are not easily constructed,
though the complication will be worthwhile.

Some recent work by [Mazya07] proposed to work with non-convergent
wavelets for solving operator equations. The main idea is that the construction
of approximate wavelets is much easier and it remains to test the e�ciency of
such methods for practical applications.

Combining the traditional boundary elements with the wavelet transforms
for the purpose of near optimal preconditioning leads an e�ective method; this
can be done explicitly [CC02] or implicitly [HC05].

9.3 Fast iterative methods for an image deblurring model

A rich class of problems involving an integral operator arise from high reso-
lution image processing [Vogel2002, CS05]. Among others, one example is the
image deblurring problem (as shown in Figure 9.1) of reconstructing image u
from

z(x, y) = (Ku)(x.y) + η(x, y)

given a noisy and blurred image z in Ω = [0, 1]2 ⊂ R2, where η is unknown but
assumed to be a Gaussian white noise with 0 mean and estimable standard
deviation σ [Vogel2002].

Although more recent models exist, the most well-known model for the
above problem is due to Rudin-Osher-Fatemi [ROF92]

min
u

{
E(u) ≡ α

∫
Ω

|∇u|dxdy +
∫
Ω

|Ku− z|2 dxdy
}
, (9.4)

where the �rst term is the total-variation (TV) semi-norm regularizer with

|∇u| =
√
u2x + u2y and the integral operator K is assumed to have a spatially-

invariant kernel i.e.

(Ku)(x, y) =

∫
Ω

k(x− x′, y − y′)u(x′, y′)dx′dy′.
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Fig. 9.1. An image deblurring problem.

The Euler-Lagrange partial di�erential equation of (9.4) is the following

−α∇ · ∇u
|∇u|β

+K∗Ku = K∗z (9.5)

where |∇u|β =
√
u2x + u2y + β (with β > 0 a small regularization parameter)

and K∗ is the adjoint operator of K.
Owning to the usually large dimension of a discrete image z (e.g. n× n =

1024 × 1024 ≈ 1 million), the operator K (when discretized as a dense but
structured matrix) cannot be directly formed. If u is assumed to have a zero
Dirichlet boundary condition, then K will be a block Toeplitz matrix with
Toeplitz blocks (BTTB) or if u is assumed to have a periodic boundary con-
dition, then K will be a block circulant matrix with circulant blocks (BCCB).
For either case [Vogel2002], the use of fast Fourier transforms (FFT) can en-
sure the matrix vector product Ku to be e�cient; however this restricts many
possible solvers to be developed.

Two kinds of e�cient methods for solving (9.4) are discussed below.

9.3.1 The methods of intermediate variables

The �rst method [HNW08] introduces an intermediate variable v for (9.4)

min
u,v

E1(u, v) ≡
∫
Ω

{
α|∇u|+ γ

2
(u− v)2 +

1

2
|Kv − z|2

}
dxdy. (9.6)

The second method [WYYZ08] introduces an intermediate variable w for (9.4)

min
u,ω

E2(u, ω) ≡
∫
Ω

{
α|ω|+ γ

2
|ω −∇u|2 + 1

2
|Ku− z|2

}
dxdy. (9.7)

For either method, alternating minimization leads to simple solutions: For
(9.6) solving for u is a simple denoising problem and solving for v can be
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through FFT because the regularizer now adds a constant diagonal to K∗K.
For (9.7) solving for ω can be done analytically while the solution of u involves
a simpler semi-norm to enable fast solvers.

Although elegant, both methods involve many (up to 20) iterations be-
tween two sub-problems and hence are non-optimal. Besides, practically, only
a nearby problem is solved as γ cannot be taken too large.

9.3.2 Optimization based multilevel methods

Below we consider how to solve (9.4) directly after discretizing it. Given z ∈
Rn×n, the above model [ROF92] rewritten as

min
u
E(u), E(u) =

∫
Ω

(
α
√
u2x + u2y +

1

2
(Ku− z)2

)
dxdy,

can be discretized to give rise to the discrete optimization problem

min
u∈Rn×n

E(u), (9.8)

E(u) = α
n−1∑
i=1

n−1∑
j=1

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)2

+
1

2

n∑
i=1

n∑
j=1

( n∑
ℓ=1

n∑
m=1

Ki,j;ℓ,muℓ,m − zi,j

)2

,

with α = α/h and h = 1/(n − 1). Here we shall assume that K = (Ki,j;ℓ,m)
is a block circulant matrix with circulant blocks (BCCB). This is the case if
we adopt the periodic boundary condition [NB03, Vogel2002, CS05].

Now solve (9.8) by the coordinate descent method on the �nest level 1:
Given u(0) = (u

(0)
i,j ) = (zi,j) with l = 0,

Solve u
(l)
i,j = argminui,j∈RE

loc(ui,j) for i, j = 1, 2, . . . , n

Set u(l+1) = (u
(l)
i,j) and repeat the above step with l = l + 1

until a prescribed stopping step on l,

(9.9)

where

Eloc(ui,j) =
1

2
∥Ku− z∥2 + α

[√
(ui,j − u

(l)
i+1,j)

2 + (ui,j − u
(l)
i,j+1)

2

+

√
(ui,j − u

(l)
i−1,j)

2 + (u
(l)
i−1,j − u

(l)
i−1,j+1)

2

+

√
(ui,j − u

(l)
i,j−1)

2 + (u
(l)
i,j−1 − u

(l)
i+1,j−1)

2

]
. (9.10)

This iterative method can be applied over a general level k
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min
ci,j∈R

J(ũ+ Pkci,j)

where Pk is an interpolation operator, distributing a single constant over an
index block (i, j) on level k and then padding zeros over the rest of the entire
grid of level 1 [CC10].

Although each subproblem in (9.9) is only one dimensional, we see that it
has an O(n2) complexity because the �tting term involves vectors of length

n2 and in particular (Ku)i,j = ui,jwt + w̃t, where t = (j − 1)n+ i, wt ∈ Rn2

is the tth column of K and w̃t is a vector not involving ui,j (i.e. a weighted
sum of all columns of K except t).

The same complexity problem persists on level k, where minci,j J(ũ +
Pkci,j) leads to minimization of the local subproblem

J loc(ci,j) = αT (ci,j)+
1

2
∥ci,jwt+Kũ−z∥2 = αT (ci,j)+

1

2
∥ci,jwt−z̃∥2, (9.11)

where z̃ = z −Kũ is known, the vector wt ∈ Rn2

denotes the summation of
all columns of K corresponding to the entries inside the (i, j) block on level
k, and the TV related term T (ci,j) is de�ned by

T (ci,j) =

ℓ2∑
ℓ=ℓ1

√
(ci,j − hk1−1,ℓ)2 + v2k1−1,ℓ +

k2−1∑
m=k1

√
(ci,j − vm,ℓ2)

2 + h2m,ℓ2
+

ℓ2−1∑
ℓ=ℓ1

√
(ci,j − hk2,ℓ)

2 + v2k2,ℓ
+

k2∑
m=k1

√
(ci,j − vm,ℓ1−1)2 + v2m,ℓ1−1 +

√
2

√
(ci,j − vk2,ℓ2)

2 + h
2

k2,ℓ2 ,{
vm,ℓ = ũm,ℓ+1 − ũk,ℓ, hm,ℓ = ũm+1,ℓ − ũm,ℓ,

vk2,ℓ2 =
vk2,ℓ2 + hk2,ℓ2

2
, hk2,ℓ2 =

vk2,ℓ2 − hk2,ℓ2

2
.

(9.12)

Clearly since each iteration would take O(n2) per block on any level, the
overall algorithm will have O(n4) at least and is hence not optimal.

A new breakthrough on the issue was made in [CC10], based on the reor-
ganizing the solution of the above coarse level subproblems. We �rst observe
that the �rst order condition of (9.11) takes the form

αT ′(ci,j) + wT
t wtci,j = wT

t z̃, (9.13)

where wT
t wt, w

T
t z̃ (for all wt recursively as one deals with partial sums in

the fast multi-pole method [BR97]) can be worked out, though of complexity
O(n2), once only. Then we anticipate that after all such quantities are com-
puted and stored �rst before each multilevel cycle, the local solvers will not
be expensive to proceed.

Finally our new multilevel method for the combined denoising and deblur-
ring problem for solving (9.8) is the following:
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Algorithm 3 Given z and an initial guess ũ = z, with L+ 1 levels,

Pre-calculation.
1. Compute all root matrices Tk and wT

t wt = ∥Tk∥2F for partial sum matrices
on level k = 1, 2, . . . , L+ 1.
Multilevel Iterations.

2. Iteration starts with uold = ũ (ũ contains the initial guess before the �rst
iteration and the updated solution at all later iterations).
for ν times on each level k = 1, 2, 3, . . . , L+ 1:
3. Compute z̃ = z −Kũ and form KT z̃ via the FFT.

for each block on level k,
4. form each wT

t z̃ from KT z̃ and compute the minimizer c of (9.13).
end block.

5. add all the corrections (from all blocks on level k), ũ = ũ+Pkc, where
Pk is the interpolation operator distributing ci,j to the corresponding
b× b block on level k.

end level k.
6. On level k = 1, check the possible patch size for each position (i, j):

patch = {(iℓ, jℓ) : |uiℓ,jℓ − ui,j | < ε}

for some small ε.
First compute the partial sum vector wt related the detected columns.
Then implement the piecewise constant update as with Steps 3− 5.

7. If ∥ũ − uold∥2 is small enough, exit with u = ũ or return to Step 2 and
continue with the next multilevel cycle.

Two illustrating examples solved by Algorithm 3 are shown in Figures 9.2-9.3.

9.4 Open problems and challenges

In this short paper, we discussed two problems solved by integral methods.
Both problems may be studied further.

Firstly for the Helmholtz equation, an optimal way of combining the FMM
and wavelets with suitable preconditioning is still to be found out. The more
recent interests of many researchers have turned to high frequency modeling
(where the wavenumber k is large) and inverse problems where the boundary
information (either boundary conditions or the boundary itself) is missing
while some measurement of the solution is known.

Secondly for the image deblurring problem, it remains to develop e�ective
iterative methods for cases where a more sophisticated choice of regularisers
(e.g. the mean curvature [BC10]) is used or a spatially variant blur kernel is
used. A more practical problem is the blind deblurring where the kernel k is
not known and must be estimated together with u. See [CW98, MK08].
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Fig. 9.2. Image deblurring example 1 by Algorithm 3: left z and right u.

Fig. 9.3. Image deblurring example 2 by Algorithm 3.
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