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Abstract. Image registration is one of the most useful and practical ap-
plications of image analysis. Among its manifold tasks are the tracking
of changes between data from different time points or motion correc-
tion. Moreover, superimposing complementary information across image
modalities is needed, as new imaging modalities emerge in the field. This
chapter presents a review of the fundamental ideas and models in the
field. The goal is to reflect the current state of art of image registration
(IR) to motivate the readers to refine these models, and to enable the
tackling of new challenges as they arise. After discussing the background
(Section 2), we review main components of a variational model: a dis-
tance measure or data fidelity term (Section 3), regularization to ensure
existence of solutions and constraints to further restrict the wanted trans-
formation (Section 4). We also discuss diffeomorphic approaches which
ensure local invertibility. We present the surface registration (SR) mod-
elling in the same framework of variational models in Section 5 where the
close relationship between IR and SR is also discussed, while we briefly
discuss the numerical methods for IR and SR in Section 6. Finally in Sec-
tion 7, we touch upon the main ideas in deep learning based approaches
for registration.
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1 Introduction

Registration is the process of automatically establishing correspondences be-
tween geometrical data, such as images, surfaces or point clouds. Typically, reg-
istration aligns a pair, a stack or a sequence of such data. Of particular interest
is the registration of two images. Often, one of these images is considered to
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be fixed, stationary or a reference and is denoted by R and the other one is
consider a moving, floating or template image denoted by T . The necessity of
registration can be found in diverse fields of sciences and engineering, includ-
ing remote sensing, computer graphics, computer vision and medical imaging;
see, e.g. [9,78,30,60,40,63,93,74] and references therein. For example, in medi-
cal imaging, finding an accurate correspondence between biomedical images is
crucial for statistical shape analysis of the anatomical structures. In computer
graphics, a surface registration satisfying user-defined correspondences of land-
mark features is needed for the constrained texture mapping. In computer vision,
image registration offers a crucial tool in combining, merging or fusing multiple
data sources from multi-modality images such as infrared images and satellite
images. Despite its importance, the registration problem inhere many mathe-
matical challenges: for various applications appropriate models are missing and
the modelling is unclear, variational models are non-convex and solutions non-
unique (ill-posedness); see [84,25,11] among others. Very often, a suitable choice
of the regularization and a proper registration model is non-trivial to make.
Robustness of a model remains a major challenge.

Different registration models have been recently developed. In terms of the
type of information to be matched, existing approaches can mainly be divided
into three categories, namely, feature-based registration, intensity-based regis-
tration and hybrid registration using both features and intensity information.
Examples of such features are localized points a.k.a. landmarks, structures such
as vessels or segmentations of organs.

Particularly landmark-based schemes are popular in computer sciences. One
of the main advantages of landmarks-based method is the straightforward incor-
poration of user-interaction during the registration. This provides an intuitive
and user-validated assumption to achieve a meaningful deformation approxima-
tion. From the numerical point of view, landmarks-based method is more com-
putationally efficient when modeling large deformations, since more (initial) in-
formation about the deformation are provided through feature correspondences.
The downside is that landmarks are generally difficult to determine, particu-
larly in 3D medical data. Inaccurate, incorrect or non-corresponding landmarks
may degrade the registration results considerably. Moreover, for many appli-
cations the number of required landmarks is unknown but registration results
may depend heavily on this number. Intensity-based registration aims to match
corresponding data without reducing the data to features such as landmarks.
Registration is usually obtained by matching intensity functions, such as the
image intensity for image registration or the surface curvature for surface ge-
ometric registration. The main advantage of the intensity-based registration is
that more image information is taken into account and the derivation of features
is not required. This is quite desirable in delivering an automatic algorithm.
However, the lack of human supervision may cause inaccuracy in the registra-
tion result especially in cases where landmarks can be confidently identified
with known knowledge. Hybrid registration that combines landmarks-based and
intensity-based methods has gained increased attention. Hybrid approaches use
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both the landmarks and intensity information to guide the registration. This type
of approaches can provide excellent initial guesses; see, e.g. [28,32] for extended
discussion.

A generic mathematical formulation of image registration (IR) takes a varia-
tional form. Here, a joint energy is to be minimized on a set of suitable transfor-
mations. This energy typically consists of an application conform image distance
or data fidelity, a regularization, and potentially additional penalty terms. The
data fidelity term measures data mismatching, such as the landmark mismatch-
ing error or intensity mismatching error. The regularization term usually aims
to enhance the smoothness of the registration map and may occasionally require
an additional term to impose a geometric constraint on the map invertibility. An
extra penalty might be added to emphasize particular aspects such as volume
preservation or point to point correspondences. This term may either be phrased
as a penalty or a hard constraint. We note, that there also exists a connection
to a Bayesian formulation of the registration problem. There, the probability
of a transformation given the two images is maximized. However, a thorough
discussion is beyond the scope of this paper.

The regularization puts a bias on the set of transformation. Therefore, for
different applications, different classes of regularizers have been proposed. For ex-
ample, one of the common classes of mappings is the space of diffeomorphisms.
Despite its computational costs, diffeomorphic registration has become more
popular in recent years, especially in biomedical image registration. For many
biomedical applications, a one-to-one transformation is a reasonable. Diffeor-
morphic mappings provide this feature but may result in a very smooth trans-
formation fields. While this can be beneficial for some applications, it might be
too restrictive for others. An example is the registration of lung images, as the
lung slides along the rib cage. Other options to ensure bijectivity is to include
a penalty or constraint on the Jacobian of the transformation. Other commonly
used classes of transformations include rigid or affine transformations, conformal,
quasiconformal mappings as well as isometric mappings.

The ingredients of the variational model will be reviewed and discussed in
this chapter, mostly for a pair of mono-modality images. However the framework
can be also be used for the registration of multi-modal images. Here, the fidelity
term has to be replaced appropriately. In fact, fusion of images with different
modalities has been challenged the medical imaging field very rapidly due to
the presence of highly accessible patients’ information in recent years. For ex-
ample, cross platform non-rigid registration of CT with MRI images has found
a significant role in different clinical application. There are many complemen-
tary modalities, such as MR images vs CT images, ultra-sound images vs PET
images, CT images vs optical images, infrared images vs digital images and so
on. In some instances labelling of anatomical features by medical experts are
also involved to further improve the robustness, accuracy and authenticity of
the registration. Being motivated by these, various multi-modality image regis-
tration models have been proposed. From a mathematical perspective, it is the
same variational framework as for mono-modal images, simply with a different
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the data fidelity or distance measure. Note, however, that multi-modal image
registration is by far more non-convex than mono-modal registration. In practi-
cal applications issues such as pre-alignment, choice of parameters, local minima
and robustness become much more severe.

The topic of surface registration (SR) is closely connected to IR. Though
each problem class has own distinct features, there are common modeling ideas.
In this chapter, we discuss both the similarities, commonalities as well as the
differences. Some methods from one class can lend themselves to the other class;
even mixed models are possible.

Both the theoretical and numerical analysis of IR and SR are very challeng-
ing because registration problems are typically non-convex, the joint energy may
has arbitrary many global minimizers. Numerical approaches can easily end up
in local minimizers and a proper initial guess can play a significant role. For ex-
ample, the curvature regularizer discussed in Sec. 4 has an infinite dimensional
kernel of harmonic functions. Moreover, not all models have been supplied with
an existence theory. As a result, discretized functionals and related linear sys-
tems may not be positive definite and registration thus provides a rich source of
challenging problems to design efficient and converging algorithms for. Note that
current medical CT images can result in 5123 voxels and a registration ends up
in a non-convex optimization problem with about 0.5 ·109 unknowns; the results
preferably in real time.

Finally we touch upon the artificial intelligence aspect of IR. In the era of
big data, various learning based approaches are being developed. Following the
success of deep learning techniques in various imaging tasks, many recent stud-
ies have been carried out to apply deep learning techniques to improve various
registration models. In particular, deep learning techniques have been applied to
build prediction models of spatial transformations for achieving image registra-
tion under supervised learning framework. Landmark features can also be learnt
for guiding the registration. Of course, the quality of the training data plays
an important role for the accuracy of the obtained registration result. Exciting
aproaches also investigate to speedup optimization either by learning gradients
or transformation manifolds.

In this chapter, our aim is to give a survey of different registration models
and to motivate new research works in this challenging and yet exciting field.
Various variational models, statistical models and learning based models will be
explored.

2 Mathematical background

The goal of image registration is to find a suitable map y that maps a template T
to a reference image R, such that T (y) and R are aligned, that is corresponding
points are placed at the same position. We also aim to provide a mathematical
framework that is capable to cover as many image registration approaches as
possible.This section will introduce this framework, modelling ideas and notation
but leaving details to later sections.
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2.1 Continuous and discrete images

From reading this volume of the Handbook, the reader should be clear that
mathematical imaging can offer powerful modeling tools (namely the variational
framework) mainly because we can assume that the input images T,R are con-
tinuous. Then the full power of functional analysis can be applied to imaging
and it is natural to define and discuss geometry (such as gradients, curvature,
H1 norm) of T,R. Also, a continuous interpretation of image data is much more
convenient if geometrical transformations are to be applied.

In the continuous interpretation that is used in this paper, a generic image is
defined as a mapping I : Ω → G. Here, Ω ⊂ Rd denotes the image domain and
d is the image dimensionality, where typically Ω is a one-dimensional interval
with d = 1, and a square with d = 2 or a cube with d = 3. The image range
is denoted by G and may indicate binary images G = {0, 1}, grey scale images
G = {0, . . . , 255}, real images G = R, or multispectral images such as color
images, mass spectroscopy, or tensors. In this Chapter, we focus on real images
mainly with d = 2. However, the discussed models extend to other images.

In applications, the image data I is typically given as a d-array of size m1 ×
· · · ×md, which may be naturally viewed as sampled from a continuous image
function I. Interpolation or approximation techniques must be used to embed
the data into a function space; see, e.g., [62,16]. In this sense, the notation I(y)
implies that an interpolation must be implemented (unless y takes integer values
only). This aspect is unique in IR and SR, different from other imaging problems.
However, this Chapter emphasizes the ‘existence’ of a continuous image I (via
interpretation) that is assumed available for discrete images.

If the continuous image I needs to be visualized, the domain Ω is partitioned
into a number n of cells with cell-centres xj = (x1

j , . . . , x
d
j ), and the discrete

image [I(xj), j = 1, . . . , n] is displayed. In imaging, a pixelized interpretation of
image data is often used for processing; see Fig. 1 for an illustration.

Finally we remark that another popularly used notation for the deformed
template T (y) is T ◦y, where the transform y may also be written as y = x+u(x)
later when we apply regularization to the deformation field u.

2.2 A mathematical framework for image registration

As common for ill-posed problems, we use a variational framework that aims to
minimize a joint energy functional constituting a data-fidelity term or an image
distance measure and a regularizer. Details on distance measures D and the
regularizer R are provided in subsequent sections.

The objective is to determine the wanted transformation y : Rd → Rd as a
minimizer of a joint energy J over a feasible set of transformation A, i.e.

J : A → R, J (y) := D(T ◦ y,R) +R(y), (1)

where the data fidelity term D, the regularization term R, and the feasible set
A are discussed below.
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(a) image (b) with pixel

x2

x1

xj

h2

h1

(c) grid

Ω

(d) rotated (e) with pixel (f) non-linear

Fig. 1. An image (a) overlaid with a pixel grid (b), a rotated version of the image (d)
overlaid with a pixel grid (e); a non-linearly deformed version of the image overlaid
with a pixel grid (f). Part (c) displays a partitioned image domain Ω with 6-by-4 cells
with cell-centres xj = (x1j , x

2
j ), j = 1, . . . , n = 24.

We remark that, though the approach applies to both, mono- and multi-
modal images, we focus on mono-modality for ease of presentation. We also
remark that is often convenient to consider the deformation u rather than the
transformation y, where the deformation or displacement denotes the change,
y(x) = x + u(x). Note, that in contrast to the differences of transformation
and deformation the notations transformed image and deformed image are used
synonymously in the literature.

3 Distance measures

An important piece of the puzzle in model (1) is the similarity or dissimilarity
D of two given images. There are essentially two approaches. The first approach
is to embed the data into a function space or a space of densities and to define
similarity via norms or metrics in these spaces. The second approach is based on
a projection of data onto a feature space and to base the similarity on feature
similarity.

3.1 Volumetric differences

Probably the most intuitive volumetric distance measure is the energy of the
difference image a.k.a. the sum of squared differences (SSD),

DSSD(T,R) := ‖T −R‖2L2
=
∫
Ω

(T (x)−R(x))2 dx
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for a pair of mono-modality images. The underlying idea is that if image inten-
sities match, i.e. T (y(x)) ≈ R(x), then the images correspond. Obviously, the
difference can be replaced by any other meaningful residual function r(T,R).
Also, the L2-norm |r|2 may be replaced by another metric ψ(r), and the inte-
gration may also include a weighted measure dω. We mention two particular
options to replace the L2-norm by an L1-norm and a differential Huber-norm
[42] respectively

|r|h,ε =
√
|r|2 + ε2 or |r|H,ε =

{
0.5|r|2, |r| ≤ ε,
ε(|r| − 0.5ε), otherwise.

(2)

The least-squares distance (LSD) approach of [38] relates the template to a
projected version of the reference image. More precisely, using a transfer function
γ : R → R similarly to a gamma-correction, the residual is phrased as r(T, γ ◦
R). Determining the optimal colour map γ might then be part of the overall
optimization.

A weight function ω : Rd → R might be use to either emphasize or deempha-
size certain areas. For example, if Σ ⊂ Ω denotes a segmentation of a critical
organ, then a weight ω := χΣ would ignore points that are not in Σ. Here, χΣ
denotes the characteristic function,

χΣ =

{
1, x ∈ Σ,
0, x 6∈ Σ.

Note that ω is not necessarily restricted to {0, 1} and may also be interpreted
as a certainty or confidence. The weight may also depend on image intensities.
For example, ω(x;T,R) := exp(−(T (x) − R(x))2) is suggested in [24,23]. Here,
ω ≈ 1 in areas in which T (x) ≈ R(x), whereas ω ≈ 0 where intensity differences
are huge. This weight therefore also yields an implicit soft segmentation into
corresponding and non corresponding structures. This concept can be beneficial
if one images displays structures that are not contained in the other, e.g. tumours
or air bubbles in the intestines; see also [15] for similar strategies.

The above remarks also outline limitations of SSD based distances. For multi-
modal images, i.e. images that are acquired with different sensors, it may holds
that T (x) 6= R(x) even if the images are perfectly aligned. A nasty example
is illustrated in Fig. 2, mimicking the signal “coffee” sensed by nose (smell,
smooth reference, gray) and by eye (vision, characteristic function for of the cup,
black). Since the intensity of the smell does not relate to the size of the cup, a
minimization of ‖T ◦ y−R‖L2

is meaningless; see Fig. 2 for particular solutions.
Several approaches for multi-modal distance measures have been suggested. We
note that to our best knowledge, none of these approaches is able to solve the
“coffee problem”.

The fusion of images with different modalities is a very important application
field in image registration. For example, cross platform non-rigid registration of
CT with MRI images has found a significant role in different clinical applica-
tions. Fig. 3 displays a typical example where the CT image shows structural
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R
T

R

T SSD

R

TNGF

R

T θ

Fig. 2. “Coffee-Problem:” Multi-modal 1D registration problem aligning the smell of
a cup of coffee (top row left: smooth reference R, gray) with the visual impression (top
row right: characteristic function, template T , solid black). Bottom row shows solutions
of L2 minimization (left), correlation of maximum slope (center), and thresholded ref-
erence; note that the scale of smell and vision may not relate.

Fig. 3. Illustration of MR (left, template), CT data (right, reference), and the registered
MR (middle, T (y)). The result is from the NGF model [80] with α = 1/4 and N = 256.
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(bone) and anatomical information and the MR image shows details on soft tis-
sues. Registration or fusion of the two modalities thus locates complementary
information in a normalized geometry.

In [35] it is suggested to use the co-linearity of normalized gradient fields
(NGF) of the images as a residual. More precisely, r(x) := 1−(g(T ;x)>g(R, x))2,
where g(I;x) := ∇I(x)/|∇I(x)|h,ε. The motivation is, that even if intensities
of T and R do not match, intensity changes occur at corresponding positions.
This assumption holds for many applications where structural changes appear
at corresponding spatial positions such as the example in Fig. 3. However, it
does not hold for the “coffee” example in Fig. 2.

The smoothing of the gradient fields is crucial. In the most likely advent of
noise, the normalized gradient field is uninformative. The parameter ε is there-
fore introduced to discriminate between noise |∇I(x)| ≤ ε and signal change
i.e. |∇I(x)| > ε. We note that a proper embedding of the image data into a
smooth function space as outlined in Sec. 2.1 can improve the performance sig-
nificantly. Variants of NGF include to use individual noise parameters εT and
εR. Additionally, one can work with the L2 inner product for embedded gradi-
ents ∇εI := (∇I>, ε)> ∈ Rd+1. Exploration of the different variants is a topic
of current research. For example, a recent improvement over NGF can be found
in [80] where a different measure of NGF is proposed.

Another commonly used similarity measure for multimodal images is based
on the mutual information of the data [22,82]. Further approaches for multimodal
image registration are based on so-called Wasserstein metrics [66] or normalized
cross correlation [73,14].

In some applications such as histological serial sectioning, a sequence of r > 2
images Ij , j = 1, . . . , r needs not be registered. An obvious extension of the
above framework is based on sequential concatenation of standard registration
problems for two consecutive images Ij−1 and Ij ,

J (y1, . . . , yr) =

r∑
j=2

{
D(Ij−1 ◦ yj−1, Ij ◦ yj) +R(yj)

}
, y1(x) = x.

This process can be very time consuming as the transformations yj depend
on the whole image sequence. Schatten-q-norms based approaches provide a
promising alternative as it naturally combines all images of the sequence. Here,
a Schatten-q-(quasi) norm [83] of a data matrix A is defined as the q-norm of the
vector containing the singular values of A: with a singular value decomposition
A = Udiag(σ)V > it holds ‖A‖S,q := ‖σ‖q. For more details and choices of the
data matrix we refer to[1,64,79,5].

3.2 Feature based differences

A simple example for feature based similarity is the location of markers, land-
marks or keypoints. Markers are prominent spatial locations that have been
attached to an object before imaging. Landmarks are usually outstanding points
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such as tips of fingers or eye centres that can be identified after imaging. Inde-
pendent of whether these points have been identified a priori or a posteriori, the
idea then is to determine the image transformation by matching the features.
The transformation can be computed from an interpolation or approximation
approach. To be more precise, let (t`)

L
`=1 and (r`)

L
`=1 denote two lists of corre-

sponding landmarks, t`, r` ∈ Rd, for the template and reference image, respec-
tively. The goal is to determine the transformation y such that ideally y(r`) = t`
for ` = 1, . . . , L.

In case of a parametric approach, i.e. y ∈ A is parametrizable (by parameters
{αj}), a least squares approach for the parameter αj is typically used. Here, A
denotes the set of feasible transformation, for example rotations as in Fig. 1. More
precisely, the optimal parameters are computed by minimizing the landmark
distance DLM over the set A i.e.

min
α1,...,αN

DLM(y) :=
∑
‖y(r`)− t`‖, y ∈ A. (3)

Obviously, there is a huge degree of freedom in tuning the residuals. Mahalanobis
distances [59] can be used if the location error is not isotropically distributed,
weights can be incorporated to emphasize particular correspondences or to ad-
dress further uncertainties. For a linear space A, a solution can by obtained by
solving the linear system w = Q(r)†t, where r and t denote the collection of
landmarks, Q(r) is the Vandermonde-matrix and † denotes the pseudo-inverse;
see [62] for details.

Other approaches are to introduce a smoothness measure or regularizer R
and to optimize with respect to the data fidelity, the regularization or a weighted
compromise. For example, the thin-plate bending energy

RTPS(y) :=
∑
j

∫
Ω

(∂1,1y
j)2 + 2(∂1,2y

j)2 + (∂2,2y
j)2 dx (4)

is used in thin-plate-spline registration [71]. Variants of this techniques are based
on different optimization approaches for the transformation:

1. R(y)
!
= min subject to D(y) ≤ σ,

2. D(y)
!
= min subject to R(y) ≤ σ,

3. (1− σ)D(y) + σR(y)
!
= min,

where σ denotes a noise level.
For a variety of smoothness operatorsR, solutions can be computed explicitly

via radial basis functions or fundamental solutions ρ. For example, for RTPS as
in (4) the radial basis function and thus the transformation of the first approach
are given by

ρ(r) =

{
r2 log r, d = 2
r, d = 1

, yj(x) =

L∑
k=1

cjkρ(‖x− rj‖) + wj0 +

d∑
k=1

wjkx
j
k,
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where the coefficients can be computed by solving the KKT systems(
A B
B> 0

)(
cj

wj

)
=

(
tj

0

)
, j = 1, . . . , d,

with A = [ρ(‖rj − rk‖)]j,k ∈ RL,L, B = [1, r1
k, . . . , r

d
k]k ∈ RL,d+1 and tj =

(tj1, . . . , t
j
L)> ∈ RL; see [62] for details and discussions.

A major advantage of these approaches is that explicit solutions are avail-
able. If the number of landmarks is not too large (say less then 10,000), the
above KKT system can generally be solved with reasonable effort and accuracy.
Another advantage of landmark-based method is the straightforward incorpo-
ration of expertise knowledge during the registration process. This provides an
intuitive and user-validated assumption to achieve a meaningful deformation
approximation.

However, this approach also has a number of disadvantages: the impact of
the number of landmarks and the distribution of landmarks is difficult to con-
trol. In practice, the determination of landmarks is cumbersome, difficult and
erroneous. Also, when both the number of landmarks and the deformation of
landmarks are large, parametric approaches to obtain landmark-matching regis-
tration usually fail to obtain a bijective deformation and overlaps can usually be
observed in the obtained registration (unless extra constraint is imposed at the
cost of not matching the landmarks accurately). To overcome these issues, var-
ious non-parametric approaches based on solving optimization problems have
been proposed, such as the Large Deformation Diffeomorphic Metric Match-
ing (LDDMM) method [45,4] and the Quasi-conformal landmark registration
(QCLR) method [56,48].

4 Regularization

As already outlined, image registration is an ill-posed problem and hence regu-
larization becomes inevitable. In the registration context, the main goal of reg-
ularization is to ensure the existence of solutions. Uniqueness is a critical topic.
For example, if one wants to register a square to a square, rotations of multiples
of 90 degrees results in four meaningful global solutions. From an application
point of view it can by questionable to declare one of these solutions to be best
even if it makes the mathematical problem well-posed. The problem gets more
exciting if one considers a circle rather than a square. We remark, that in some
approaches the ambiguities are removed by adding boundary conditions, which
may not comply the application demands. A smaller issue is related to the fact
that many regularizers are based on derivatives and are thus blind with respect
to translations. In practice, this is rarely a problem, since either the distance
measure adds information, or alternative solutions may also be meaningful.

We remark that a regularizer is often imposed on the deformation rather than
the underlying transform, expressed as a function of the increment, R(y− yref),
where the reference transformation yref may be obtained from a pre-registration,
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an educated guess, or simply by setting yref(x) = x. Using this construction,
it is also common to use zero Dirichlet boundary conditions for the update
u := y − yref (though Euler-Lagrange equations tend to impose Neumann’s
type boundary conditions). The boundary conditions result from the variational
formulation and should not be phrased artificially.

4.1 Regularization by ansatz-spaces, parametric registration

In many applications the transformation is restricted to a certain set A, such
that the wanted transformation can be expressed as a finite combination of ba-
sis functions and parameters w ∈ Rp. We call this class parametric registration
schemes. Examples are the set of rigid transformations, the space of affine trans-
formation or the space of spline transformations [71],

yrigid(x,w) = rotation(w) · x+ translation(w),

yaffine(x,w) = affine-map(w) · x+ translation(w),

yspline
k (x,w) =

∑
wkj · splinej(x), k = 1, . . . , d.

The registration problem is to find the optimal w ∈ Rp, where p denotes the
degrees of freedom. In the 2D case for example, one may consider

yrigid(x,w) =
(

cosw1 − sinw1
sinw1 cosw1

)(
x1
x2

)
+
(
w2
w3

)
, w ∈ R3 or

yaffine(x,w) =
(
w1 w2
w4 w5

)(
x1
x2

)
+
(
w3
w6

)
, w ∈ R6.

In terms of basis functions, for the latter case, we can define them precisely:
φ1 = x1e1, φ2 = x2e1, φ3 = e1, φ4 = x1e2, φ5 = x2e2, φ6 = e2. Then we have
the equivalent form

yaffine(x,w) =

6∑
j=1

wjφj(x).

In many publications, regularization for the parametric case is often ne-
glected, particularly for low degrees of freedom. Note, however, that registration
is an ill-posed problem even in the parametric case and thus should be regular-
ized; see also the above square or disk example. Particularly for the affine linear
transformation yaffine(x,w) = (I +A)x+ b and the diffusion regularizer leads to
Rdiff(yaffine) = ‖A‖2Fro; see also [63,19]

4.2 Quadratic regularizer

A huge class of regularizers is based on quadratic forms on the displacement u,

R(y) =

∫
Ω

(Bu)>(Bu) dx,

where y(x) = x + u(x), B may be chosen differently but the Euler-Lagrange
equations will contain the operator B∗B.
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Diffusion regularizer The classical optical flow regularizer [41]

Rdiff(y) :=
∑
j

∫
Ω

‖∇uj‖2 dx, B∗B = −∆,

is used in registration as it enables fast algorithms due to its decoupled nature;
see e.g. [27,10,36,20]. However, the decoupling may also lead to unnatural and
unpleasing transformations.

Elastic regularizer A physically motivated extension of the diffusion regular-
izer is the elastic potential

Relas(y) :=

∫
Ω

∑
j,k

µ

4
(∂juk+∂kuj)

2+
λ

2
(div u)2 dx, B∗B = −(µ∆+(λ+µ)∇ div),

with Lamé-constants λ, µ; see [29,7,26] and [62] for details on the elastic poten-
tial. Here, image features are considered to act like elastic bodies. We note that
the results are often very pleasing, if displacements u are small, |∂juk| � 1.

Curvature regularizer For some applications, smooth transformations might
be desirable and a second order regularizer can thus be beneficial. The linear
curvature regularizer

Rcurv(y) :=
∑
j

∫
Ω

∆uj dx, B∗B = ∆2,

has been suggested in [28]; for implementations see also [39]. This regularizer is
of particular interest for registrations where volumetric distance measures and
landmark conditions are combined,

minJ (y) subject to DLM(y) = 0;

see [28] for details.

4.3 Non-quadratic regularizer

A disadvantage of the previous regularizers is that the regularization energy is
always finite, even for unwanted transformation. Thus, an unwanted and non-
regular transformation might be a minimizer if one reduce the distance measure
sufficiently by adjusting the parameter. We therefore also discuss nonlinear, non-
quadratic and non-convex regularizers.

Mean curvature regularizer An extension of the above curvature regularizer
is to use the mean curvature as regularizer

Rmean curv(y) :=
∑
j

∫
Ω

κ(uj)
2 dx, κ(uj) := ∇ · ∇uj

|∇uj |
, (5)

see [21]. The extended version may even be coupled by replacing κ with κ̂(uj) =
∇ · (∇uj/|∇u|) in (5); see [92] for details.
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Gaussian curvature regularizer Gaussian curvature was investigated in [43].
For 2D, κ in (5) is replaced by

κG(uj) =
uj;1,2uj;2,1 − uj;1,1uj;2,2

(u2
j;1 + u2

j;2 + 1)2
.

It is fair to remark that both curvature models are non-trivial to solve efficiently;
a related model could be built based on the elastica regulariser but again efficient
solution is a topic of current research [46].

Fractional derivative based regularizer Fractional derivatives are increas-
ingly used in imaging to take advantage of non-local behaviour. We briefly re-
view [91], suggesting

Rfrac(y) :=
∑
j

∫
Ω

‖∇αuj‖22 dx, ∇αuj = (∂α1 uj , . . . ∂
α
d uj)

>
, (6)

∂αk uj denoting the fractional α-order derivative [68], 1 ≤ α ≤ 2 and the particu-
lar choice α = 1.6. The fractional α-order derivative be based on the Riemann-
Liouville, Grünwald-Letnikov or Caputo definition. For homogeneous zero bound-
aries condition and suitable smoothness assumption on u, all three definitions
are equivalent.

We remak in passing that fractional derivatives, though non-local, generate
structured matrices (Toeplitz form) so existing fast solvers can be utilized [6].

Hyperelastic regularizer We finally highlight the hyper elastic regularizer as
proposed in [25,11], to overcome the limitations of a quadratic regularizer and
to also allow for large deformation:

Rhyper(y) :=

∫
Ω

αllength(y) + αssurface(y) + αvvolume(y) dx, (7)

where C := cof∇y denotes the cofactor matrix and d := det(∇y) the determinant
of the matrix F := ∇y, respectively. Here,

length(y) = ψl(∇y), ψl(F ) = ‖F − Id‖22,
surface(y) = ψc(cof∇y), ψc(C) = max{‖C‖22 − 3, 0}2,
volume(y) = ψd(det(∇y)); ψd(d) = ((d− 1)2/d)2.

For details, see [11]. In particular the penalty on the determinant ensures finite
energies only for transformation with det∇y > 0 and therefore enforces one-to-
one transformations. Note that the penalty C also introduces a bias towards the
identity transformation.
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4.4 Registration penalties and constraints

The set of feasible transformation A can be used to restrict the wanted transfor-
mation. For example, by setting A = {y : P (y) = 0}, where the penalty could
be a landmark match P = DLM(y) (cf. (3)), the restriction y being rigid on
certain areas, or the determinant of the Jacobian to be be positive.

In many applications, these restrictions or so-called hard constraints are re-
placed by so-called soft constraints or penalties. Here, the objective in (1) is
augmented by a penalty term,

J : A → R, J (y) := D(T ◦ y,R) +R(y) + P (y). (8)

We note, that the penalty approach comes with a number of drawbacks. Firstly,
for a minimizer y∗ of (8) generally P (y∗) 6= 0. Secondly, even if P (y∗) � 1,
it might be big on small but potentially critical structures such as tumours or
lessons. Thirdly, the penalty usually involves a weighting parameter that has to
be tuned for practical applications. And fourthly, typically huge values are used
for weighting, which then lead to ill-conditioned optimization problems. Despite
its various conceptual disadvantages, penalty approach are very common in the
registration community as they are generally easy to be implemented.

4.5 Penalties for locally invertible maps

The mapping y = y(x) = x + u(x) is invertible in a neighbourhood of a point
x, if the determinant of the Jacobian d(x) := det(∇y(x)) is nonzero and the
inverse function theorem applies. In order to also preserve orientation, one may
constrain the transformation such that d(x) > 0. We remark that this constraint
is mathematically challenging as the determinant may leaves L2 and solutions
of the registration problem may not be evaluated pointwise; see e.g. [34,33] and
the extended discussion in [11]. In [34], the poitnwise constraint C(y) = d(x) = 1
has been introduced and extended to k(x) ≤ d(x) ≤ K(x) in [37]. Here, the
constraint applies to all points x ∈ Σ ⊂ Ω, where Σ could be the whole domain
or a subset indication critical organs or tumours; upper and lower bounds are
denoted by k and K, respectively.

A commonly used idea in image registration is to add a penalty to the joint
energy. In [70], the following penalty on the determinant of the Jacobian d is
introduced

P (y) =

∫
(log(d))2 dx,

[87] considered the penalty

P (y) =

∫
|d− 1| · log |d| dx.

Both approaches favour transformations with d ≈ 1.
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We remark that the hyperelastic approach of [11] might be interpreted along
the same lines as the volume term is

volume(y) =

∫
((d− 1)2/d)2 dx.

Note, however, that [11] introduced a regularizer, i.e. the existence of a mini-
mizing element with d > 0 is guaranteed, but the theory also requires the length
and in particular the cofactor term; see [11] for details and extended discussion.

The 2D case is simpler. In [90], a penalty based on the Beltrami coefficient
is proposed:

P (y) =

∫
|µ|2

(|µ|2 − 1)2
dx, |µ|2 =

‖∇y‖22 − 2 det(∇y)

‖∇y‖22 + 2 det(∇y)
. (9)

However, the determinant is not easily accessible and it adds strong nonlinearity
to a model. For d = 3 for example, the determinant is a polynomial of derivatives
of degree 3 and thus may not even be in L2. Furthermore, the determinate
being non-negative on certain grid points does not imply that the determinant
is non-negative everywhere. The algorithm from [11] resolves these issues using
a computational framework with finite elements.

4.6 Diffeomorphic registration

A diffeomorphic transform y is invertible, differentiable and smooth function
(that offers one-to-one mapping) and its inverse is also smooth. For applications
such as brain mapping and registration of MR images, diffeomorphic registration
models are particularly suitable.

The above subsection discussed one to one maps and how to achieve them.
Diffeomorphic registration models offer more than locally invertible maps. Here
we review two such models.

In the first diffeomorphic registration model of Large Deformation Metric
Mappings (LDMM) [4,88], an additional time component is introduced. Let K :=
[0, 1] be a normalized time interval, ΩK := Ω ×K, I : ΩK → R and y : ΩK →
Rd. For brevity, we write zt := z(·, t) for functions depending on space and
time. Moreover, we introduce the velocity v such that ∂tyt(x) =: v(yt(x)). The
objective is then to find a minimizing element (y, v) of an energy

J LDDMM(y, v) := D(T,R) +RLDDMM(v), (10)

constrained for all (x, t) ∈ ΩK by

I0(x) = I(x, 0) = R(x), I1(x) = I(x, 1) = T (x),
y0(x) = y(x, 0) = x, ∂tyt(x) = v(yt(x)).

In the second diffeomorphic registration model of [48], the key idea is to look
for y in the space of quasi-conformal maps, using

R(u) =

∫
Ω

|∇µ|2dx, C(u) =

∫
Ω

|µ|pdx+ P(y)
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where µ = µ(y) is the Beltrami coefficient (9), explicitly represented by y =
(y1, y2). More specifically, if one write y = y1 +

√
−1y2 in the complex form,

then µ(y) is defined as mu(y) = ∂y
∂z̄ /

∂y
∂z , where ∂

∂z̄ = 1
2 ( ∂
∂x +

√
−1 ∂

∂y ) and ∂
∂z =

1
2 ( ∂
∂x −

√
−1 ∂

∂y ). P denotes the landmarks constraint. Note that the one-to-one

mapping property can be seen from the equivalence of det(∇y) > 0 and |µ| < 1.

4.7 Registration by inverse consistent approach

This framework is used to enforce a directionally unbiased registration. Note
that the optimal y for the images T and R may not relate to the optimal z for
R and T , order matters. This is, among others, due to the fact that the distance
as well as the regularizer are assigned to the reference image domain. A remedy
suggested in [18] is to symmetrize the problem i.e. to register R to T , as well
as T to R, at the same time. Introducing the transformation z : Rd → Rd, such
that ideally z = y−1, the objective now is to minimize

J (y, z) = D(T ◦ y,R) +D(R ◦ z, T ) +R(y) +R(z) + E(y, z),

with
E(y, z) = ‖y ◦ z−1 − id‖+ ‖z ◦ y−1 − id‖;

for details, see, e.g. [18,17,2,81].

5 Surface registration

In this section, we discuss state-of-the-art approaches for surface registration
(SR); see, e.g., [48,85,54,67,8,75,51] and references therein.

SR is a special class of registration problem. Instead of warping between two
images, SR aims to find a mapping between two curvilinear surfaces; see also
Figure 4. More precisely, the goal of SR is to establish a meaningful correspon-
dences between two Riemann surfaces which are denoted by Sk, k = 0, 1. The
correspondence should match the surface geometry as well as the data defined on
the surfaces. As outlined in Sec. 3, SR can be interpreted as a special case of fea-
ture based image registration, where surface are derived from the data by some
kind of projection. However, a major difference between SR and the conventional
IR is that surfaces have an intrinsic geometry. In IR, the domains of images are
Euclidean spaces, whereas in SR, the domains of interest are Riemann surfaces
embedded in Rd. In this paper we focus on d = 3 for ease of presentation. As
such, the surface geometry is usually taken into consideration in SR. This is the
reason why SR is usually also called shape matching [8].

5.1 Brief introduction to surface geometry

In practice, the surfaces to be registered often have different geometry. In SR,
one main goal is to match two surfaces based on their geometry. For instance,
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Fig. 4. Examples of surface registration between hippocampal surfaces for medical
morphometry.

Fig. 5. Examples of surface conformal parameterizations of a human face (left) and a
brain cortical surface onto a unit disk (right), respectively.

in brain surface registration, the sulci and gyri on each brain surfaces should
match with each other. To achieve this goal, the underlying idea of SR is that
the similarity of two surfaces Sk can by measured by utilizing the associate
Riemanian metrics gk, k = 0, 1. More specifically, geometric distortion between
S0 and S1 can be measured by comparing the so-called pull-back metric f∗(g1)
with the original metric g0.

A Riemann surface is an arbitrarily smooth 2D manifold S equipped with
an inner product gp on the tangent space TpS for each point p ∈ S; see e.g. [50].
The inner product gp is also called a Riemannian metric and varies smoothly
amongst points on S. More specifically, a Riemannian metric on S is a collection
of inner product

gp : TpS × TpS → R, p ∈ S,

such that for vector fieldsX and Y defined on S, the mapping p 7→ gp(X(p), Y (p))
is arbitrarily smooth.

The pull-back metric maps the metric of S1 back to S0. To this end let
f : S0 → S1 be one-to-one and differentiable. For any given point p ∈ S0 and
any given u ∈ TpS0, let γ be a smooth curve on S0 with γ(0) = p and γ′(0) = u.
The differential dfp is defined by dfp(u) := (f ◦ γ)′(0) and the pull-back metric
by

f∗p (g1) : TpS
0 × TpS0 → R, f∗p (g1)(u, v) := g1

p(dfp(u), dfp(v)).
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Intuitively, a pull-back metric takes the inner product of two tangent vectors u
and v of S0 being pushed forward by f to two tangent vectors on S1. The inner
product differs from g0 by the distortion introduced by f and the geometric
distortion between the surfaces S0 and S1 can be measured by comparing the
pull-back metric with the original metric g0.

Over the last decades, different approaches for SR have been proposed. Be-
low we will summarize some popular approaches from the literatures; see, e.g.,
[49,85,8,51]. Specific examples include the isometric maps [75], the conformal
maps [54], and the quasi-conformal maps [48,56], which we discuss in more de-
tail.

A map f is called isometric if f∗(g1) = g0. An isometric map captures shape
deformations that preserve length, such as human poses. A map is called con-
formal if f∗(g1) = λg0, where λ is the so-called conformal factor, a non-negative
smooth function λ : S0 → R>0. A conformal map preserves the local geometry
under the map, although the local area is usually distorted. It captures defor-
mations that does not change the local shape, such as biological deformations.

A map is called quasi-conformal, if f∗(g1) = | dfdz |
2|dz + µdz̄|2, where z is

the local coordinate of S0 and µ is a complex-valued function capturing the
conformality distortion. It captures more general deformations with bounded
amount of local geometric distortions. Depending on various applications, SR
aims to look for optimal map in a suitable class of mappings that satisfies other
prescribed constraints, such as the landmark constraints and curvature-matching
condition.

5.2 Parameterization-based approaches

A commonly used approach for SR is based on the global surface parameteriza-
tion [54]. The basic idea is to flatten the surface to a simple domain, such as a
2D unit disk or a 2D rectangle; see also Fig. 5. For instance, a surface can be
interpreted as a 2D image, whose image intensity is given by some geometric
quantities, if it is parameterized onto a 2D rectangle. SR can then be considered
as finding an optimal mapping between two images that matches the correspond-
ing geometric quantities, such as the curvatures. This problem can be solved by
any registration approaches discussed in the previous sections. More specifically,
suppose the surfaces S0 and S1 to be registered are parameterized onto the do-
main Ω ⊂ R2. Denote the parameterizations of S0 and S1 by ψ0 : Ω → S0 and
ψ1 : Ω → S1 respectively. Suppose the mean curvatures H0 and H1 of S0 and
S1 are to be matched. The SR problem is reduced to an IR problem to match
two 2D images given by I0 := H0 ◦ ψ0 : Ω → R and I1 := H1 ◦ ψ1 : Ω → R. In
other words, we aim for a transformation T : Ω → R2 such that

I1 ◦ T (x) = I0(x) for all x ∈ Ω.

Sometimes, the constraints on landmark correspondences can be enforced. Sup-
pose pi on S0 should be matched to qi on S1 for i = 1, 2, ...,m. Then, the
transformation T should further satisfy the condition that Tψ−1

0 (pi) = ψ−1
1 (qi)
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for i = 1, 2, ...,m. Similar to IR, a regularization on T is usually imposed to con-
strain the type of transformation. For instance, a common choice is to look for
an optimal conformal parameterization that matches landmarks and the surface
geometry [54]. Once an optimal T is obtained, the registration map between S0

and S1 can be obtained by the composition map ψ1 ◦ T ◦ ψ−1
0 : S0 → S1. Of

course, the choice of parameterization is crucial in these approaches and may
introduce distortions such as conformality distortion or metric distortion. To
avoid theses distortions, conformal or isometric surface parameterizations are
often used; cf., e.g., [54,56].

5.3 Laplace-Beltrami eigenmap approaches

In these approaches, one takes advantage of an eigen-system of the Laplace-
Beltrami operator ∆S on the surface S [77,75,51]. Let (S, g) be a Riemann
surface in R3, g = (gi,j) ∈ R2,2 be the Riemann metric and (gi,j) its inverse. For
a smooth function f : S → R, the Laplace-Beltrami (L-B) operator ∆S acting
on f near a point p is defined by

∆Sf := (det g)−
1
2

2∑
i,j=1

∂i[det(g) gi,j∂jf ].

As the L-B operator ∆S is self-adjoint and elliptic, it has a system of eigenvalue
and corresponding eigenfunctions (λj , φj) with −∆Sφj = λjφj and λj ≤ λj+1

for all j ∈ N. This L-B eigen-system can be used to define a shape signature
for a surface up to isometry. Two isometric surfaces have the same L-B eigen-
systems [75]. SR strategies have been investigated to match L-B eigen-systems
as good as possible for surfaces undergoing isometric deformations; see, e.g. [72].

The L-B approach is especially effective when registering shapes with differ-
ent poses. For instance, for every point p ∈ S, the L-B eigen-system gives rise

to a m-dimensional feature vector sm(p) := (λ
−1/2
j φj(p))

m
j=1, where the number

m is user supplied. In a discrete scenario, we assume that the surfaces Sk are
represented by a collection of vertices {pkj }nj=1, k = 0, 1. An L-B signature of Sk

is then the n ×m matrix Bk, where the j-th row of Bk is given by skm(pkj ). A
match of the surfaces can be obtained by computing an optimal correspondence
matrix C such that ||B1C −B0||Fro is minimized.

5.4 Metric approaches

In these approaches, a non-rigid shape is modelled as a metric space (X, dX),
where X is a two-dimensional smooth compact connected and complete Rieman-
nian surface (possibly with boundary) embedded into R3, and dX : X×X → R is
a metric measuring distances between pairs of points on X. Two shapes (X, dX)
and (Y, dY ) are similar if the metrics between pairs of corresponding points
on X and Y coincide, i.e., there exists a bijective map φ : X → Y such that
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dY ◦ (φ × φ) = dX [8]. To simplify the computation of the shape correspon-
dence φ, a low dimensional representation is often considered, by means of a
minimum-distortion embedding φ : X → Z. The low dimensional representa-
tion is usually called the canonical form, which can be computed by solving the
multidimensional scaling problem [8]

min
φ:X→Z

max
x,x′∈X

||dX(x, x′)− dZ(φ(x), φ(x′))||

where dZ is the metric of Z. Once the embeddings φ(X) and ψ(X) of X and
Y are computed, an optimal correspondence can be obtained by minimizing the
Hausdorff distance between φ(X) and ψ(X). It is generally impossible to select
a common metric space in which the geometry of any shape can be accurately
represented.To solve this problem, the Gromov-Hausdorff distance, instead of
the Hausdorff distance, is considered:

dGH(X,Y ) := inf
φ:X→Z,ψ:Y→Z,Z

dZH(φ(X), ψ(Y )).

5.5 Functional map approaches

Another popular SR approach is based on a functional map representation [67].
For k = 0, 1, we consider the spaces Fk := F(Sk,R) of mappings from Sk to
R. Then any one-to-one transformation y : S0 → S1 defines the linear mapping
yF : F0 → F1, ψ0 7→ ψ1 := ψ0 ◦ y−1.

For a given yF , the underlying transformation y can be reconstructed using
point evaluation functionals δx [67]: for any x0 ∈ S0, yF (δx0) =: δx1 establishes
the connection between x0 ∈ S0 and x1 ∈ S1.

Suppose now that for k = 0, 1, {bkj }∞j=1 is a basis of Fk. Thus we have the

following representations, f =
∑
ζµb

0
µ, yF (b0µ) =

∑
γν,µb

1
ν , and

yF (f) =
∑

βνb
1
ν = yF (

∑
ζµb

0
µ) =

∑∑
γν,µζµb

1
ν .

With the column vectors (βν) and (ζµ) that are formed by the coefficients and
the matrix representation C = (γν,µ) of yF , we have (βν) = C(ζµ). With this
setup, SR can be computed by different choices of basis functions as well as
prescribing different conditions on yF .

For example, to obtain an isometric SR, one can choose {φkj }∞j=1 to be the

Laplace-Beltrami eigenfunctions on Sk and choose an optimal C that is closest
to a diagonal matrix. To further enforce the landmark constraints yF (δp0` ) = δp1` .
Functional map method reduces the SR problem to optimizing a matrix C.

5.6 Relationship between SR and IR

SR and IR are closely related to each other. Many ideas from image registration
can be applied to surface registration. In fact, both IR and SR can be formulated
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as an optimization problem over the space of admissible registration maps as
follows:

Ereg(f) = D(I1, I2 ◦ f) +R(f) (11)

where D is the distance measure and R is a suitable regularization term. Com-
mon distance measures in IR are usually chosen as the L1 or L2 error between
image intensities. These distance measures are often used in SR. The only chal-
lenge in SR, which is different from IR, is that meaningful ‘intensities’ on surfaces
are not readily defined. One important question in SR is to design suitable geo-
metric quantities, such as curvatures, conformality distortions, Laplace-Beltrami
eigenfunctions, to drive the registration process and obtain a geometric matching
surface registration map.

In recent years, various ’meaningful’ intesnities based on the surface geometry
has been proposed to define the dissimilarity measure before surfaces. Another
connection is the regularization terms in IR and SR. Most of the regularization
terms applied in IR can be generalized to SR. Examples include the total vari-
ation (TV), harmonic energy and so on. The only difference is that on surfaces,
instead of using the standard Euclidean differentiation, covariant derivatives de-
fined according to the Riemannian metric have to be utilized. In other words,
the problem of surface registration is indeed a combination of ideas from IR with
Riemannian geometry.

More specifically, the connection between a surface S and an image I might
be interpreted as follows. If the surface is parameterized as S = {(x1, x2, x3) ∈
R3 : x3 = I(x1, x2)}, then the surface is characterized by the intensities of a
2D image I. For a comparison of the two surfaces, the distance measure can be
chosen as the discrepancies of some geometric properties such as curvature. An
example is the discrepancies of curvatures [13,55]:

D(S0, S1) :=

∫
S1

α(H1 −H0)2 + β(K1 −K0)2 ds,

where Hk denotes the mean curvatures and Kk the Gaussian curvatures on Sk,
k = 0, 1. Here α, β > 0 are regularization weights. Another example is to match
the Laplace-Beltrami eignenfucntions defined on each surface according to their
Riemannian metrics.

As for the regularization term, various choices can be chosen. For example,
in order the enhance the smoothness of the surface mapping, a harmonic energy
can be used:

Rharmonic
∫
S1

|∇S1
f |2ds,

where ∇S1 is the gradient on the surface in term of covariant derivatives. If
one aims for a biholomorphic mapping as regularization, the Riemann mapping
theorem [31] suggest to add the Riemannian metric to the curvature mismatching
term D(S0, S1),

D(y) := D(S0, S1 ◦ y) + γ|µ(T )|2.
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Here, µ(y) is the Beltrami coefficient measuring the metric distortion under
the transformation y. This gives rise to various geometric measurements. Inter-
estingly, if α, β, γ > 0, this gives a full geometric measurement. This is that
D(y) = 0 when two surfaces are the same up to a rigid motion. For β = 0,
D(S0, S1) = 0 when the two surfaces are isometric to each other [55].

6 Numerical Methods

Image registration is phrased as a variational problem and the objective is to find
a minimizing element of J in an admissible set A. Typically, analytic solutions
are not at hand and numerical schemes are to be applied. As the data to be
process can range to 3 × 10243 and time is valuable, the choice of a numerical
solution strategy is non-trivial. In this paper, we only briefly outline some of the
basic concepts as the topic is too big; for details see, e.g. [63].

There are mainly two directions to go. The first is called optimize-then-
discretize. Here, one derives the so-called Euler-Lagrange equations (ELE), which
are conditions for a minimizer of the functional J in (1). One then discretizes
the ELE which yields a nonlinear set of equation. Finally, theses equations are
solved numerically. However efficient solvers are non-trivial to design, mainly
to the fidelity term and depending on the regularisers used. For example, the
ELE for J based on the SSD distance measure and the diffusion regularizer and
yref = 0 yields

J (y) := DSSD(T ◦ y,R) + αRdiff(y) =
1

2
‖T ◦ y −R‖2L2(Ω) = +

λ

2
‖By‖2L2(Ω)

0 = (T ◦ y −R)>∇T ◦ y −∆y,

see [62] for details. The transformation can be discretized using a finite dif-
ferences or finite element approach; see, e.g., [62,63,48,90] and the references
therein.

This approach has a number of drawbacks. First of all, the operator is de-
rived from partial integration and the approach therefore comes with additional
assumptions on z. For example, for the diffusion regularizer, the Gâteaux deriva-
tive for a suitable perturbation z, one gets

lim
ε→0

1

ε
(R(y + εz)−R(y)) =

∑
j

∫
Ω

(∇yj)>(∇zj) dx

=
∑
j

(
[zj · n>∇yj ]∂Ω −

∫
Ω

∆yj · zj dx
)
.

With the artificial arguments that with appropriate boundary conditions the
boundary term vanishes and that y is twice differentiable, the above ELE follows.
Secondly, it is neither clear nor obvious that discretization of the ELE yields a
symmetric Hessian system.

The so-called discretize-then-optimize approach offers a better alternative
[36]. Here, the objective J and the wanted transformation y are discretized, and
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then a sequence of finite dimensional optimization problems is to be solved. For
the above example, one ends up with

Jh(yh) =
h

2
‖T (yh)−R(xh)‖2Rm + λ

h

2
‖Bhyh‖2

where xh is a collection of m grid points, Sec. 2.1, R(xh) ∈ Rm are image values
on the grid, yh = y(xh) is the representation of the transformation on the grid,
T (yh) are image values of the transformed template, h is the volume element.
For d = 1, the matrix Bh is given by

Bh =
1

h

−1 1
. . .

. . .
−1 1

 ∈ Rm−1,m. (12)

In this approach, the problem due to data fidelity takes the form of a highly
non-convex term and also a non-positive definite Hessian.

Advantages of the discretize-then-optimze approach are that no additional
assumptions on the solutions are used, boundary conditions are derived from the
optimization problem and are automatically taken care of, and the Hessian on
the discrete problem is naturally symmetric. Finally, stopping criteria and step-
length control follow standard optimization rules; see, e.g., [65]. The optimization
is typically based on first order or second order schemes, mainly quasi-Newton
schemes. In particular in a multi-level framework, where a numerical solution
of a coarse grid representation is used as a starting guess for a finer grid, one
expects an excellent starting point and hence fast convergence due to a higher
order scheme.

Solving the problem numerically is still challenging. Memory and time restric-
tion prohibits the use of direct solvers for the Hessian systems. Highly efficient
multigrid solvers for B∗B or M+B∗B are used, where M is some approximation
to the Hessian of the data-fit; see [63,20] for details.

In particular for the SSD measures and similarly to optical flow problems,
some authors use a Gauß-Newton type approximation of the data-fit. With
yk+1 = yk + u, T k := T ◦ yk and dT := ∇T ◦ yk,

D(T ◦ yk+1, R) = ‖T ◦ (yk + u)−R‖2Ω ≈ ‖T + dT · u−R‖2Ω =: q(u)

the objective becomes a convex quadratic function.
Development of new and faster algorithms with optimal computational com-

plexity remains an interesting topic.

7 Deep learning based registration

Machine learning techniques have advanced rapidly over the last decade, espe-
cially in image classification and segmentation. The main idea of deep-learning
based algorithms is to aggregate information of various complexities in the
datasets of training images to drive the registration process. In recent years,
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supervised and unsupervised deep learning techniques have been successfully
employed for image and surface registration [44,12,47,52,61,76,86] (in particular
the latter five references on convolutional neural networks for image registra-
tion). Convolutional neural networks of various architectures have been used to
learn meaningful feature descriptors [3,89,69].

Though possessing many similarities in the variation framework to other
imaging models, registration is quite different in the context of deep learning.
The major difference lies in the non-readily available sets of training data e.g.
in medical imaging, few clinicians can accurately draw the deformation to a
good accuracy. This sets the scene of the state of art in deep learning based
registration which we briefly review; refer to [53,58,57].

Firstly, we discuss the supervised learning. To deal with the problem of get-
ting enough training data, one could generate simpler transforms for various
images so that training tuples of the form (T,R, y) are available, instead of
the usual registration pair (T,R) being given as in §1-6. Deep learning is also
employed to estimate the momentum in the framework of Large Deformation
Diffeomorphic Metric Matching (LDDMM) [86] where the same idea of gener-
ating a space of priori deformations is used to design training data. Of course,
once training data are given or rather generated, various deep learning architec-
tures are applicable as with solving other imaging problems by learning. Refer to
recent surveys [53,58]. Clearly the supervised model is good for problems where
the types of deformations can be predicted a priori, though not robust.

Secondly, we mention the unsupervised learning where no training data are
required so that more generality is offered. Then as with non-learning mod-
els, intensity-based registration models drive the registration process through
matching image intensities. The key step is to replace the loss function (usually
measuring the distance between the given deformation and the iterate) by an
energy functional that underlines a variational registration model (see §1-6). In
this idea, various deep neural networks have been proposed to transform images
to match image intensities. For instance, the spatial transformer network [44]
transforms an input image through a neural network such that the classifica-
tion task can be simplified. Convolutional neural networks with reinforcement
learning are trained to predict descent directions of the transformation towards
optimal alignment [52,61]. Convolutional neural network has also been applied
to predict parameters in the thin-plate spline registration model [12]. General
dense displacement vector field can also be predicted by training a deep convo-
lutional neural network, without applying a fixed parametric registration model
[76]. Other ideas of merging small sets of training data and unsupervised learning
may also be considered, to design new learning models.

8 Conclusions

Registration between corresponding data is a crucial process and has impor-
tant applications in various fields. In this chapter, we give an overview of the
registration problem. The basic mathematical background and the mathemati-
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cal framework for registration problems are firstly introduced. State-of-the-art
registration models are then described. In particular, we carefully examine var-
ious existing distance measures and regularization terms. Their advantages and
disadvantages are also discussed. Furthermore, mathematical models for sur-
face registration, which aims to find meaningful one-to-one correspondence be-
tween two surfaces embedded in 3D space, are also reviewed. The connection
between surface registration and image registration is also studied. Numerical
methods for different registration models are also briefly explained. As a popu-
lar research direction, various deep learning-based registration models invented
recently are also described. In the future, we expect registration models, which
combine mathematical models and machine learning techniques, will define a
trend for solving more challenging registration problems.

References

1. I. Arganda-Carreras, C. O. S. Sorzano, P. Thévenaz, A. Muñoz-Barrutia, J. Kybic,
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