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a b s t r a c t

We present a parallel algorithm for the overlapping domain decomposition boundary inte-
gral equation method for two dimensional partial differential equations. In addition to the
improvement of the ill-conditioning and the computational efficiency achieved by domain
partitioning, using a parallel computer with p processors can offer up to p times efficiency.
Assuming direct solution is used throughout, partitioning the domain into p subregions
and employing a processor for each subproblem, overall, result in p2 times efficiency over
using a single domain and a single processor, taking into account that a sequential algo-
rithm of the underlying method can improve the computational efficiency at least p times
over using a single domain. Some numerical results showing the efficiency of the parallel
technique will be presented.

� 2010 Published by Elsevier Inc.

1. Introduction

The dual reciprocity method (DRM) is a generalized boundary element method (BEM) to solve a class of non-homoge-
neous partial differential equations (PDEs) which do not have an explicit fundamental solution. This method, first presented
by Nardini and Brebbia [12], tackles the domain integrals, arising from the inhomogeneous term in the classical BEM, by
approximating a particular solution [8] and applying the dual integration. The particular solution is approximated by using
a class of well known functions called radial basis functions (RBFs).

There exist a large class of interpolating RBFs [11,16] that can be used by DRM. These include the linear 1 + r, the poly-

nomial Pk(r), the thin plate spline (TPS) r2 log r, the Gaussian exp(�r2/b2) and the multiquadrics
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2

q
(with b a constant

parameter). We shall mainly use a polynomial RBF, 1 + r3, here.
The RBFs are globally defined functions which result in dense interpolation matrices whose condition number can rapidly

increase, especially for the large size problems. Another difficulty concerns the computational efficiency due to the dense
coefficient matrices. To overcome the ill-conditioning some sort of localization such as compactly supported RBFs (CS-RBFs)
[23] and domain decomposition method (DDM) [3] have been proposed. Using CS-RBFs results in sparse interpolation matri-
ces which improve the conditioning and computational efficiency of the method.

In the DDM the domain is divided into a number of subdomains and the numerical method is applied to each subregion to
obtain the solution for subproblems followed by assembling the global solution. Consequently, the final linear system
formed by the numerical method is split into some small systems and the condition number is considerably reduced. This
also increases the computational efficiency due to dealing with smaller matrices.
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The DDM fall into two main categories: overlapping and non-overlapping variants as widely studied in the numerical
solution of PDEs [21]. Popov and Power [14] applied the DDM to DRM in the non-overlapping variant. They showed that
the DRM can be improved by using DDM. In particular, for the convection diffusion equations, they gained better accuracy
when the original domain was partitioned into two and three subdomains. Their idea of using DDM was motivated by the
work of Kansa and Carlson [10] on the RBFs for which they indicated that the best accuracy was achieved when the original
domain was split into a number of non-overlapping subdomains. Following the work of Popov and Power the application of
DDM in the DRM has been developed for many applications [17,5,7,6,18,15].

While the above work was based on non-iterative and non-overlapping method, recently, the accuracy of the DRM has
been improved by applying the overlapping Schwarz method [19]. Although this approach enjoys the improvement of the
ill-conditioning and computational efficiency due to the reduction of the matrices size, using a parallel computer can offer
more improvement in the efficiency. This is the purpose of this paper to present a parallelization scheme of the DRM–Sch-
warz method presented in [19].

The use of multiple processors has now become a popular technique in many numerical methods with long execution
time [2,22]. Much effort has been made to design parallel algorithms adaptive with these computers [1]. For some of the
numerical methods, parallelization is either complicated or inefficient due to the large amount of communication between
the processors which increases the running time. Instead, methods such as domain decomposition are naturally suited for
parallel computing and this has increased the popularity of the DDM. The parallel implementation of the domain decompo-
sition boundary element method has been carried out by some researchers (see [4,20]).

The alternating Schwarz method based on Jacobi is suitable for parallel computing. Here we present a parallel implemen-
tation of this method. Due to the parallel nature of the DDM, the simplest and most convenient implementation will be the
case in which each processor deals with one subproblem. In this case the main part of the algorithm will be the communi-
cation between the processors for updating the artificial boundaries which is presented in this paper. Since there is no more
communication in the algorithm, the time consumed is not considerable. This will be demonstrated by observing the CPU
time for some cases. As will be shown, partitioning the domain into p subdomains and employing p processors for the under-
lying method, lead to p2 times or even more efficiency over using a single domain. That is due to the fact that the method
takes advantage of the use of both DDM and multi-processor. The contribution of the parallel computation to the improve-
ment achieved will be evaluated and proved to be effective.

The rest of this paper will be organized as follows. The DRM is briefly described in Section 2. In Section 3 the alternating
Schwarz method in the case of two and many subdomains will be reviewed. A parallelization scheme of the Schwarz method
will be discussed in Section 4 and finally some numerical results together with the complexity analysis will be presented in
Section 5.

2. The dual reciprocity method

We describe the method for the following Poisson equation,

O
2ðuÞ ¼ b; in X; ð1Þ

where u is the dependent variable, X is the domain and b is the non-homogeneous part, which can generally be in the form,

b ¼ f x; y;u;
@u
@x
;
@u
@y

� �
:

The boundary condition can be of the Dirichlet type (u ¼ �u on CD) or Neumann type @u
@n ¼ �q on CN
� �

or Robin type (a com-
bination of both), where CD

S
CN = C, is the boundary enclosing X. Applying the weighted residual technique and using

Green’s theorem, the integral formulation for Eq. (1) is given by

ciui ¼
Z

C
u
@u�

@n
� u�

@u
@n

� �
dCþ

Z
X

u�bdX; ð2Þ

where ci is a coefficient depending on the location of the point i and u* is the fundamental solution given by

u� ¼ � 1
2p ln r;

where r is the distance between the source point i and any field point under consideration. The above integral equation con-
tains a domain integral corresponding to the non-homogeneous term, b. The main idea in the DRM is converting this domain
integral to an equivalent boundary integral by approximating the function b in terms of interpolating functions at a certain
number of boundary N and internal L nodes, that is,

b ¼
XNþL

k¼1

ak/k; ð3Þ
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where /k are the RBFs and ak are the corresponding coefficients. Now the functions ûk can be found such that

O
2ûk ¼ /k:

With this approximation for b, the domain integral in Eq. (2) is converted to an equivalent boundary integral by applying
the same idea as for the main equation, that is:

Z
X

bu� dX ¼
XNþL

k¼1

ak

Z
X
O

2ûk

� �
u� dX ¼

XNþL

k¼1

ak u�
@ûk

@n
� ûk

@u�

@n

� �
dC� ûik

� �
; ð4Þ

where ûik is the known value of ûk at the source point i. Substituting (4) in (2) leads to the system of equations

Hu� Gq ¼ ðHbU � G bQ ÞF�1b; ð5Þ

where H and G are the BEM matrices, bU and bQ are matrices relating to ûk and their normal derivatives and F is the interpo-
lation matrix relevant to the approximation in (3). Also u and q are the vectors containing the potentials and the normal
derivatives and b is a vector of the values of the right side of Eq. (1). To find more details about the DRM, see [13]. There
are at least two points in motivating the use of DDM in the DRM. Firstly, the accuracy of the RBF interpolation depends upon
the condition number of the interpolation matrix. The condition number is sensitive to the size of this matrix and it can be
considerably reduced by domain partitioning due to the small sized matrices, as shown in Fig. 1a. Secondly, the DRM formu-
lation contains some operations on full matrices which are costly. A cost analysis for the DRM containing the number of
arithmetic operations to construct the linear system of equations in (5) and solving it by a direct method indicate that
although apparently some extra points arising from the overlap regions are involved in calculations, the overall operations
indicates a considerable reduction in comparison with the case of using a single domain, as depicted in Fig. 1b.

3. An overlapping Schwarz method

We first describe an overlapping Schwarz method for PDEs using two subdomains and then generalize it to multi-domain
DDM. We explain the method for the following Poisson equation with a Dirichlet boundary condition,

O
2ðuÞ ¼ b; in X; u ¼ �u; on C: ð6Þ

Other kinds of boundary conditions can be considered similarly. Let the domain X be bounded by C be divided into two
subdomains X1 and X2 bounded by @X1 and @X2 respectively (Fig. 2). The artificial boundaries for these subdomains are
denoted by C1 and C2; consequently @XinCi is the part of the boundary of the subdomain Xi which is not interior to X. Also
let X ¼ X [ @X denotes the closure of the domain. In order to describe the method, suppose that un

i stands for the approx-

0 500 1000 1500
0

1

2

3

4

5

6

7

8 x 10
8

Number of nodes

C
on

di
tio

n 
nu

m
be

r

(a)
single domain
2  domains
4 domains
8 domains

0 500 1000 1500
0

2

4

6

8

10

12

14

16
x 10

9

Number of nodes
N

um
be

r o
f o

pe
ra

tio
n

(b)
single domain
2  domains
4 domains

Fig. 1. The condition number of the interpolation matrix and the DRM cost are shown respectively in (a) and (b) for various number of overlapping
subdomains for a rectangular domain.
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imate solution on Xi after n iterations, un
1jC2

is the restriction of un
1 to C2 and un

2jC1
is the restriction of un

2 to C1. In this method
an initial guess u0

2, for the values of u in X2, is required to start the iteration. In fact only the values along the C1 is necessary.
The Schwarz method is then proceeded with the following iteration to obtain the solution,

O
2u ¼ b in X1;

un
1 ¼ �u on @X1 n C1;

un
1 ¼ un�1

2 jC1
on C1;

8><
>: and

O
2u ¼ b in X2;

un
2 ¼ �u on @X2 n C2;

un
2 ¼ un

1jC2
on C2:

8><
>: ð7Þ

The above iteration is performed until a desirable accuracy is achieved. More precisely for a given positive value, �, the
inequalities un

1 � un�1
1

		 		 < � and un
2 � un�1

2

		 		 < � are satisfied. It should be noted that the values un
2jC1

and un
1jC2

are approxi-
mated by interpolating in X2 and X1 respectively. The RBF interpolation is used for this purpose and the same RBF as in
(3) is employed in this work, that is 1 + r3. To find more details on alternative approaches, see [21]. The formulation of
the iterative scheme in (7) when applied to the DRM has been presented in [19] and proved that it is equivalent to the block
Gauss–Seidel method. The alternative Schwarz method can be constructed based on the block Jacobi. In this case the bound-
ary conditions for the subdomains are updated together and each subproblem is solved independently. This method, of
course, reduces the rate of convergence but is suitable for parallel computing.

3.1. A multi-domain algorithm

Extending the alternating Schwarz method to the case of many subdomains is straightforward. Since in the present work
we are interested in parallel algorithms, here we present a parallel algorithm based on the Jacobi method. Let the domain X
be partitioned into p overlapping subdomains, then the Jacobi algorithm can be presented as follows,

Algorithm 1. An alternating Schwarz algorithm based on Jacobi

1. Update the boundary condition for all the subdomains.
2. Apply the DRM to each subproblem.
3. If the desirable accuracy has been achieved stop otherwise go to step 1.

In the first iteration, the boundary conditions are determined using an initial guess for all the subdomains and for the next
iterations the solution from the previous iteration is used to update the boundary conditions. The method is suitable for par-
allel implementation since each subproblem can be solved independently.

4. Parallelization of the Schwarz method for a rectangular domain

In this section we present a parallelization scheme for the Jacobi–Schwarz method described in Algorithm 1. We consider
a rectangular domain divided into p rectangular overlapping subdomains as depicted in Fig. 3a. The subdomains are num-
bered from 1 to p and the subproblem i, i = 1,2, . . . ,p is dealt with by processor i. In order for the subdomains to identify their
neighbours and therefore to facilitate the communications between the processors, we use a special way of numbering the
subdomains. Let Nx and Ny be the number of the subdomains in each row and column respectively and Dij represent the sub-
domain located in row i and column j. We number the subdomain Dij and thus its processor by

pðDijÞ ¼ ði� 1ÞNx þ j; i ¼ 1; . . . ;Ny; j ¼ 1; . . . ;Nx;

which produce the numbers of Fig. 3a for a particular case of nine subdomains. As shown in Fig. 3a, each subproblem couples
with at least two and at most four subproblems. For example subproblem 1 couples with 2 and 4 and subproblem 5 will be
communicating with 4, 2, 6 and 8. Having identified the processors corresponding to the neighbours, each processor sends its
artificial boundaries coordinates to the relevant processors and returns the updated boundary values from the same proces-
sors after solving the subproblems in each iteration. In order to make a reliable communication between the processors, two
arrays Sð1 : 4Þ and Rð1 : 4Þ are employed for each processor as follows,

Fig. 2. The domain X has been split into subdomains X1 and X2.
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S1 ¼ ID� 1; j – 1;
S2 ¼ ID� Nx i – 1;
S3 ¼ IDþ 1 j – Nx;

S4 ¼ IDþ Nx i – Ny;

Sk ¼ 0 otherwise;

8>>>>><
>>>>>:

and

R1 ¼ IDþ 1; j – Nx;

R2 ¼ IDþ Nx i – Ny;

R3 ¼ ID� 1 j – 1;
R4 ¼ ID� Nx i – 1;
Rk ¼ 0 otherwise:

8>>>>><
>>>>>:

ð8Þ

S will be assigned the identification number of processors whose corresponding subdomains are located, respectively, in
the left, up, right and down the side of the current subdomain which receive/send the information from/to the current pro-
cessor with the identification, ID, i.e. the left side of (8) (see Fig. 3b). For processor k, if Sk = 0, it means that the receiver/sender
processor corresponding to k does not exist. For example, for processor 1, S1 = 0 which means that there is no communication
to the left side of subdomain 1. The array R is used to store the ID number of the processors which send/receive the information
to/from the current processor in response to the message controlled by S. This will be in the same order as in S but in the oppo-
site direction, i.e. right, down, left and up respectively (see Fig. 3b). More precisely, the message which is sent/received to/from
the left neighbour is received/sent from/to the right side and so on. This will set up the array R as indicated in the right side of
(8). Within this agreement, the messages which are sent/received to/from Si, i = 1,2,3,4, provided that Si > 0, will be received/
sent by Ri of the processor Si and therefore a common Tag, say Tag = i, will be used for communication between Si and Ri. This
ensures that messages received from different directions will be identified by different Tags (see Fig. 4). As illustrated in Fig. 4,
processor 5 sends its messages to processors S1 = 4, S2 = 2, S3 = 6 and S4 = 8 and these processors receive the messages from the
processors, whose ID are available in their, R1, R2, R3 and R4, respectively, all of which represent 5. More specifically, processor
5 sends its message to S1 = 4, using Tag = 1 and processor 4 receives the same message from processor R1 = 5 via the same Tag
and vice versa. Corresponding to the arrays S and R, two 2D arrays XS(1:nb,1:4) and XR(1:nb,1 :4) are employed to store the
coordinates of the artificial boundaries, exactly in the same order as in S and R. For instance, the first columns of XS will be the
coordinates of the boundary of the current subproblem which is shared with the left neighbour and will be sent to this neigh-
bour and the first column of XR will be the coordinates of the boundary of the right neighbour which is shared with the current
subproblem and will be received from this neighbour and so on. The variable nb represents the global maximum number of the
boundary nodes which is sent in each communication. Similarly, two 2D arrays US(1:nb,1:4) and UR(1:nb,1:4) are used for
storing the artificial boundary values exactly in the same order as in XS and XR.

Fig. 3. A rectangle divided into nine subdomains are displayed in (a) and (b) shows how the arrays S and R control the communications for a processor.

Fig. 4. Processor 5 sends its messages to processors Si, i = 1,2,3,4 and these processors receive the messages from processor 5, whose ID is stored in Ri of
processor Si.
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4.1. The parallel algorithm

In this section we present a parallelization scheme of Algorithm 1 described in Section 3. Having produced an uniform
mesh in each subdomain by the corresponding processor, the coordinates of the artificial boundaries are sent to the appro-
priate processors in the first communication. This stage is performed only once in order for the processors to identify the
boundaries of their neighbours for the updating stage. The other communication will be for updating the artificial boundaries
which is performed iteratively. We summarize the parallel algorithm for a general number of processors and present a sim-
ple illustration for a problem with four subdomains and four processors in Fig. 6. As shown in Fig. 5, the artificial boundary of
subproblem i, denoted by Ci, is a combination of Cij and Cik which are located in the subdomains j and k respectively. Below
for each step of the algorithm see the corresponding step of the illustration in Fig. 6.

Algorithm 2. A parallel scheme of Schwarz–Jacobi for the DRM

1. The mesh is produced, the real boundary conditions are set up and the artificial boundaries are initialized. Note that �u is a
known function which represents the solution function on the real boundary.

2. (I) The coordinates of the artificial boundaries of the current processor stored in XS(: , i), i = 1,2,3,4, are sent to processors
Si, for the case of Si > 0.
(II) The coordinates of the artificial boundaries of the neighbours are received from processors Ri, i = 1,2,3,4, for the case
of Ri > 0 and will be stored in XR(: , i).
For n = 1,2, . . . (until obtaining the desirable accuracy).

3. The linear system in (5) is constructed and solved to obtain the solution un (for subproblem i, fi ¼ ðHi
cUi � Gi

cQ iÞF�1
i bi).

4. The artificial boundaries are updated using the most recent solution and an interpolation operator.
5. (I) The most recent solution of the artificial boundaries of the neighbours, stored in uR(: , i), i = 1,2,3,4, are sent to proces-

sors Ri, for the case of Ri > 0.
(II) The most recent solution of the artificial boundaries of the current processor are received from processors Si,
i = 1,2,3,4, for the case of Si > 0 and will be stored in uS(: , i).

5. Numerical results

In order to show the computational efficiency we consider two PDEs and solve them by Algorithm 2, using Fortran 77 and
MPI directives [9]. In each example, the domain is divided into various numbers of subdomains and the DRM is applied to
each subproblem by a processor. Therefore, the number of subdomains will be equal to the number of processors used.

The numerical solutions are obtained when the elements are approximated by linear functions and the collocation points
are selected inside the elements, that is, discontinuous elements. The solution error is measured at the collocation points in
L2-norm. In each example, the results of the DDM are compared with the case of single domain. The total number of points in
the subdomains including the overlap is equal to the number of points in the single domain.

Example 1. In this example an elliptic equation

O
2uþ y

@u
@x
þ x

@u
@y
þ xyu ¼ d;

with a Dirichlet boundary condition is solved in the rectangle {(x,y), 0 6 x 6 1, 0 6 y 6 1}. Here d has been selected such that
the exact solution is

uðx; yÞ ¼ 0:5� 0:5 tanhð�4þ ð4x� 2Þ2 þ ð4y� 2Þ2Þ:

Fig. 5. The domain has been partitioned into four subdomains each of which couples with two subdomains.
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The error values for the interior points are presented in the case of using a single domain and different numbers of sub-
domains in Table 1. A significant improvement in the accuracy is observed in the DDM in comparison with the case of using a
single domain, especially in the case of using four and eight subdomains. However, the more the number of subdomains is,
the more the number of iterations is required to converge to the solution. This is a typical behaviour in the iterative DDM
since the communication between the subproblems takes longer when more subdomains are involved.

Example 2. This example involves a convection diffusion equation

DO2u� Vx
@u
@x
� ku ¼ 0;

Fig. 6. The illustration of Algorithm 2; the numbers on the top of the boxes represent the ID number of the processors to/from which the messages are sent/
received.

Table 1
The error values for potential function u for different numbers of subdomains with the number of iterations are listed for Examples 1 and 2.

Example 1, Number of nodes: 520 Example 2, Number of nodes: 1080

Iteration Subdomains eu Iteration Subdomains eu

1 1.2E�2 1 1.0E�2
6 2 1.5E�2 5 2 4.7E�3

10 4 6.2E�3 6 3 2.7E�3
14 8 6.0E�3 7 4 6.0E�3
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defined over an unit square where u (kgm�3) is the concentration of the transport of a substance, Vx (ms�1) is the velocity

field in the x direction depending on the y coordinate, VxðyÞ ¼ k2

c2
ðy� 0:5Þ2, with k ¼ k� c2

2 and c2 = log[c(1,0)/c(0,0)] and

k (s�1) is the reaction constant. u(0,y), u(1,y), @u
@y jy¼0 and @u

@y jy¼1 are known as the boundary conditions and for the case

D = 1 (m2s�1) and k = 50, the exact solution for the above equation is given by u ¼ 300 exp k
2 ðy2 � yÞ

 �

expðc2xÞ. Again the
problem was solved in different cases as in Example 1. The L2-norm of the relative error for the boundary and interior points
are presented in Table 1. One can observe that the overall results using multi-domain are better than applying a single
domain.

5.1. Analysis of complexity

As indicated in Fig. 1b, a sequential algorithm of the Schwarz method, applied to the DRM, itself, offers a considerable
saving time in comparison with the case of single domain. It can be verified that the total number of operations in the
DRM when using n nodes is evaluated by

FðnÞ ¼ 21
2

n3 þ 68n2 þ 5nþ 8: ð9Þ

Consequently, using p processors leads to the efficiency of

qðp;nÞ ¼ FðnÞ
pFðnpÞ

� p; ð10Þ

over using a single domain where n is the total number of nodes, np is the number of nodes in each subproblem given by
np = n/p + overlap and thus pF(np) is the total operations in the case of using p subdomains. Note that q in (10) is a function
of both p and n and can be improved by increasing n and p, as indicated in Fig. 1b. As in the present parallel algorithm, each
processor performs one subproblem, employing one processor turns the problem to the case of a single domain. Whereas
employing p > 1 processors on one hand takes the advantage of the DDM to improve the CPU time up to q times, as indicated
in (10), and on the other hand gains up to p times improvement due to the use of multi-processor. Therefore, in this case,
overall pq � p2 times efficiency is achieved over using a single domain. This distinguishes the present algorithm from many
parallel algorithms in which the improvement achieved in CPU time by employing p processors is only up to p times.

We examined our parallel algorithm by Examples 1 and 2 and measured the CPU time for various numbers of nodes. The
number of operations evaluated by (9) and the CPU time together with the overall and partial efficiency for different num-
bers of processors and nodes are listed in Table 2. One can observe the large improvement in the overall efficiency which
depends on the size of the problem, i.e. the larger the problem is, the more improvement is achieved. For example, applying
this algorithm with eight processors to problems with 350 and 950 nodes result in, respectively, 34.5 and 108 times saving in
CPU (see Table 2). In the case of using eight processors with 520 points, this improvement is 61 times saving in CPU, i.e.
nearly p2 times improvement in computational efficiency. However, as highlighted before, a large part of this improvement
is due to saving in arithmetic operations which is not a consequence of the parallel bit and can be even obtained by a sequen-
tial algorithm. In fact this is the part of the efficiency which depends on the size of the problem. This part of the improvement
can be evaluated by (10) and is given in Table 2 denoted by sequential efficiency (q). The real contribution of the parallel-

Table 2
The flop counts and the CPU time together with the overall and partial efficiency.

Size np Processors p Cost pF(np) Sequential efficiency (q) over p = 1 CPU (s) Overall efficiency over p = 1 Partial efficiency over p = 1

350 1 5.36E9 57.60
220 2 2.66E9 2.02 15.6 3.7 1.8
136 4 1.29E9 4.16 4.3 13.4 3.2

94 8 9.06E8 6.05 1.7 34.5 5.7

520 1 1.70E10 183
315 2 7.60E9 2.23 43 4.3 1.9
188 4 3.33E9 5.11 10.0 18.3 3.5
125 8 2.03E9 8.37 3.0 61.0 7.3

720 1 4.47E10 485
424 2 1.85E10 2.42 104 4.7 1.9
248 4 7.54E9 5.92 22 22.1 3.7
160 8 4.19E9 10.67 5.8 83.2 7.8

950 1 1.03E11 1160
550 2 4.01E10 2.57 224 5.2 2.0
316 4 1.54E10 6.69 44.1 26.1 3.9
200 8 7.95E9 12.95 10.8 108.0 8.3
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ization can be calculated by dividing the overall efficiency by the sequential efficiency, referred to as parallel efficiency in
Table 2. As observed, the results meet our expectation and the improvement scales well with the number of the processors.

In our previous work [19], we have shown that in the DRM–DDM the size of the overlap affects the rate of convergence.
Increasing the size of overlap, on one hand, increases the speed of convergence and, on the other hand, reduces the compu-
tational efficiency due to the size of the subproblems. In order to achieve more improvement in the efficiency, a small
amount of overlap was used (see Fig. 7). This resulted in a reasonable speed of convergence, though the number of iterations
may be slightly increased.

6. Conclusion

A parallel implementation of the overlapping domain decomposition dual reciprocity method based on the block Jacobi
method was presented. We observed that dividing the domain into p subdomains and employing p processors, overall, lead
to p2 times or even more efficiency over using a single domain with one processor. This was due to the fact that applying the
DDM with p subdomains and using one processor, itself, improve the computational efficiency at least p times. Therefore, the
contribution of the parallel implementation with p processors could be evaluated and it was about p times efficiency over
using a single processor.

The DDM and the parallel implementation was accomplished for a rectangular domain. In more general cases, one needs
to decide how to equally divide the domain and define the overlap. In such cases, we expect a similar improvement in the
accuracy and computational efficiency. We leave this for a future work. Although extending the proposed method to the case
of three dimension looks straightforward, it needs special consideration and we leave this for a future work. In this case, we
expect more computational efficiency, since partitioning the domain, for example in the case of a cubic domain, is carried out
in the three coordinate directions and this considerably increases the number of subdomains. Therefore, the contribution of
the domain partitioning is increased (see Fig. 1b). However, the contribution of the parallel implementation will be affected
due to the more communications between the processors.
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