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ABSTRACT
In this paper we reformulate a class of non-linear variational models for
global and selective image segmentation and obtain convergent multigrid
solutions. In contrast, non-linear multigrid schemes do not converge for
theseproblemswith strongnon-linearity andnon-smoothness (jumps).Our
new approach is to reformulate the non-linearmodels, using splitting tech-
niques, to generate linear models in a higher dimension which are easier to
solve and amenable to the linear multigrid framework. Although splitting
techniques arewell studied in isolation, direct application of a splitting idea
is not sufficient and it is the combination of two splitting approaches and
linear multigrid theory approaches which results in a highly effectivemulti-
grid algorithm. Numerical results demonstrate the fast convergence of the
newmultigrid methods.
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1. Introduction

Non-linear systems of algebraic equations which arise from the numerical solution of partial differen-
tial equations (PDEs) are ubiquitous in computational science and engineering. In imaging sciences,
demand for sharp contrast in images leads to strong non-linearity which in turn provides a rich source
of non-linear problems to study.

In this paper, we are primarily concerned with (non-linear and non-smooth) variational models
for image segmentation problems. For the class of problems that we consider here, there are currently
no convergent multigrid algorithms. Although the non-linear multigrid Full Approximation Scheme
(FAS) of Brandt [12] has been successfully applied to many PDEs (see e.g. [8,54]), the non-linear
coefficients must be smooth to achieve convergence of FAS with standard smoothing schemes.

In this paper, we develop a fast and convergent multigrid solver for the PDEs which result from
minimization of a class of variational image segmentation models. The key to this development is
based on the classical idea in inverse problems of using splitting, rather than solving a hard prob-
lem directly; we split it into several easier subproblems. In our case we reformulate the problem for
our class of non-linear models from a non-linear multigrid framework into four problems within
a linear multigrid framework. The benefit of this is that for the linear multigrid framework there
is extensive research into convergence guarantees, examples being [10–12,14,16,34,46,47,63,66,68],
and only sparse literature in the non-linear multigrid framework, an almost exhaustive list being
[7,34–36,40,54,55,60,67]. The reformulation step is accomplished through combining two distinct
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splitting ideas, those of Bresson et al. [15] and Goldstein et al. [30]. These splittings are individu-
ally well studied, however it is only by combining them in the right way that we achieve far simpler
problems which can be solved with a convergent algorithm. The reformulation ultimately leads to
solving 4 problems rather than 1, however 3 of these have closed form solutions and the other is
solved iteratively. The proposed formulation is found to be fast to converge.

The rest of the paper is organized as follows. In Section 2 we review the current variational image
segmentation models and some fast solvers. In Section 3 we discuss the class of models we wish
to study and the problems associated with implementing the non-linear multigrid for this class of
models. In Section 4 our two proposed optimization models will be introduced and in Section 5 the
associated single level and multi-level algorithms will be introduced. In Section 6 we give numerical
results comparing all algorithms and we finish in Section 7 with some concluding remarks.

Throughout this paper we denote the image domain by� = [0, 1]2 ⊂ R
2 and the image we would

like to segment is denoted by z(x) : �→ R. Let z be a given image defined in � ⊂ R
2.

2. Variational image segmentationmodels

Variational techniques for image segmentation involve minimizing an energy functional to find the
boundary, �, of an object defined in the image domain�. We employ the level set framework of [50]
whereby � will be found as the zero level set of function φ i.e. � = {x |φ(x) = 0}. Then the inside of
the objects is given by {φ(x) > 0} and the outside by {φ(x) < 0}. Essentially, the key quantity is the
Heaviside function

H(φ) =
{
1, φ ≥ 0,
0, φ < 0,

(1)

where the inside of the objects is characterized by the Heaviside taking value 1. We note that H(φ)

is non-convex in φ and, therefore, if a model contains H(φ) in its formulation it is non-convex and
challenging to solve.

We can follow the technique of Chan et al. [23] who replace H(φ) by a binary function u ∈ {0, 1}
and then relax the constraint to u ∈ [0, 1]. Using this technique, one can reformulate minimization
with respect to φ to a new convex problem minimizing u.

Further the global minimizer of the energy functional is given by u = χ� where � = {x | u(x) >

γ } and χ is the characteristic function. It is proven in [23] that this is a global minimizer for almost
every γ ∈ (0, 1). In this case we find the boundary of the objects as the γ level set� = {x | u(x) = γ }.
In this paper we set γ = 0.5 throughout.

We now briefly review some relevant models before we focus on fast solution issues.

2.1. The Chan-Vesemodel

Chan and Vese [22], introduced one of the most widely used and studied global image segmentation
models, given by

min
φ,c1,c2

FCV0(φ, c1, c2) = μ

∫
�

g(|∇z(x)|)|∇Hε(φ)| d�

+ λ1

∫
�

(z(x)− c1)2Hε(φ) d�+ λ2

∫
�

(z(x)− c2)2(1− Hε(φ)) d�, (2)

where g(s) = 1/(1+ βs2) is an edge detector function [19], β is a fixed non-negative tuning param-
eter and Hε(φ) is a regularized version of H(φ) for small ε > 0 [22]. The values c1 and c2 are the
average pixel intensities inside and outside of�. The termsμ, λ1 and λ2 are fixed non-negative tuning
parameters.
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The non-convex model (2) can be reformulated, by the convex relaxation technique of Chan et al.
[23], to the convex model

min
u,c1,c2

FCV1(u, c1, c2) = μ

∫
�

g(|∇z(x)|)|∇u| d�

+
∫

�

[
λ1(z(x)− c1)2 − λ2(z(x)− c2)2

]
u d�+ α

∫
�

ν(u) d�, (3)

where the exact penalty function ν(u) = max{0, 2|u− 1/2| − 1} [23,61] is used to ensure u ∈ [0, 1],
with the requirement that α > 1

2
∣∣∣∣λ1(z(x)− c1)2 − λ2(z(x)− c2)2

∣∣∣∣. The Euler-Lagrange equation
for this model is given by

μ∇ ·
(
g(|∇z(x)|) ∇u|∇u|ε1

)
− [

λ1(z(x)− c1)2 − λ2(z(x)− c2)2
]− αν′ε2(u) = 0, (4)

with Neumann boundary condition ∂u/∂n = 0 for n the unit outward normal. Notice that we
have introduced two small regularity parameters ε1 [23] and ε2 [61] at this point to avoid insta-
bilities in the numerical calculations when solving the PDE. The former is used in the quantity
|∇u|ε1 =

√
u2x + u2y + ε1 to avoid a zero denominator where∇u = 0 and the latter is used to smooth

the kinks in the formulation of ν(u) (see [61] for details). The accurate choice of the parameter ε1
is critical for convergence of the non-linear multigrid iterative solver [2,17,21,28], and is one of the
main motivations for this paper. This problem is discussed at the end of Section 2.

2.2. Some selective segmentationmodels

In contrast to the global segmentation models which segment all objects in an image, selective seg-
mentation models isolate an individual object, or objects. This is accomplished by adding a distance
termD in the energy functional which penalizes pixels which are far from a user defined marker set
M. This ensures the final segmentation result is near to the user input.

There is a vast zoo of selective segmentation models [5,6,41,44,52,53,61] from the last few years.
From these, we choose to focus on three recently introduced convex models: (1) the selection model
[61] based on Euclidean distance, (2) the modified selection model based on geodesic distance
[59] and (3) an extension of the geodesic model for images with similar average foreground and
background intensities [57]. These may be represented by

min
u

{∫
�

R(u) d�+
∫

�

Fu d�+
∫

�

Du d�+ α

∫
�

νε2(u) d�
}
, (5)

whereR(u) is the regularization term, which ensures the problem has a unique solution,D : �→ R

is a pre-defined distance function (to be discussed below) that helps to localize the intended object,
andF : �→ R is an intensity fitting term. We note that the techniques in this paper apply to a huge
array of convex segmentation models [6,15,19,22,23,32,41,42,44,48,64,70] beyond the above three.

Euclidean Model. Firstly, we mention the model of Spencer et al. [61] whose distance penalty is
the normalized Euclidean distance from a polygon P formed by the points in M. Explicitly, their
distance function is D = E/‖E‖∞, for E the Euclidean distance of each pixel in the image from P .
Inside P we set D = 0. This is a good distance term but fails in some cases where the object is large
or has a complex shape, as the Euclidean distance cannot account for this.

Geodesic Model. Extending from the Euclidean model, one may use a modified geodesic distance
functionDG from the polygonP in the image segmentationmodel, as introduced by [59]. The initial
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geodesic distanceD0
G(x) is obtained as the solution to

|∇D0
G(x)| = f (x), D0

G(x0) = 0, x0 ∈M, (6)

where f (x) = g(|∇z(x)|) is the edge-detector from (2). The geodesic model is given by

min
u,c1,c2

FGEO(u, c1, c2) = μ

∫
�

g(|∇z(x)|)|∇u| d�+ θ

∫
�

DGu d�

+
∫

�

[
λ1(z(x)− c1)2 − λ2(z(x)− c2)2

]
u d�+ α

∫
�

ν(u) d�, (7)

with μ, λ1, λ2 and θ fixed non-negative tuning parameters and α as defined for (3). To solve this
model, we find the Euler-Lagrange equation. This is given by

μ∇ ·
(
g(|∇z(x)|) ∇u|∇u|ε1

)
− θDG −

[
λ1(z(x)− c1)2 − λ2(z(x)− c2)2

]− αν′ε2(u) = 0, (8)

with Neumann boundary condition ∂u/∂n = 0 for n the unit outward normal and ε1 and ε2 small
positive values as in (4)

Similar Foreground-Background (SFB) Model. The above models were extended by Roberts and
Spencer [57] to address the failure of the intensity fitting terms in selective segmentation when the
average intensities of the foreground and background are similar. They propose changing the fitting
term F to

F = (z − c1)2 − f̃ (z), f̃ (z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1+ z(x)− c1
γ1

, c1 − γ1 ≤ z(x) ≤ c1,

1− z(x)− c1
γ2

, c1 < z(x) ≤ c1 + γ2,

0, else,

(9)

from the Chan-Vese terms used in earliermodels. Here the function f̃ (z) is asymmetric and piecewise
linear. It takes value 1 at the value c1 and decreases to zero away from c1 at a defined rate. The values
γ1 and γ2 give thresholds on the distance above and below c1 where non-zero values are taken. These
values γ1 and γ2 are automatically determined, see [57] for details. This new fitting term is more
appropriate for selective segmentations of images where c1 ≈ c2. This occurs commonly when we
segment the lung in CT scans, as the lung has low intensity (so c1 is small) but the pixels outside of
the patient are all of low intensity too, therefore c2 is very similar to c1. In this case, using the Chan-
Vese intensity fitting terms in the segmentation model normally fails, however the fitting term in (9)
is robust and allows accurate segmentations in cases with c1 ≈ c2.

3. A unified optimizationmodel and difficulties in fast solution

We now consider a generic variational model and a unified image segmentation model (which is a
special case of the generic model). We will give the key issues associated with developing a fast non-
linear multigrid full approximation scheme solver for the unified model specifically, but which also
apply to the generic model.

A Generic Variational Model. Although our application interest is in image segmentation models,
the techniques discussed in this paper can be in principle applied to any model of the form:

min
u∈[0,1]

{
μ

∫
�

R(u) d�+ λ

∫
�

G(u) d�
}

(10)

e.g. from modeling an inverse problem. Here R(u) represents a regulariser term (generally non-
linear) and G(u) is a data fidelity term. There are a huge number of variational models which fall
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into this class, some examples being Badshah et al. [6], Klodt et al. [41], Nguyen et al. [48], Brown et
al. [18], Goldluecke and Cremers [29], Cremers et al. [25], Ochs and Brox [49], Tai et al. [62] and Liu
et al. [44]. Therefore, our approach can potentially be applied to a large set of existing models.

Application to Image Segmentation Models. Below we consider a specific form of (10) by fixing
the regularization term asR(u) = g(|∇z(x)|)|∇u| the weighted total variation (TV) regulariser [51],
with μ a fixed non-negative tuning parameter and g an edge detector as defined for (2). The data
fidelity term G(u) is the same as in the generic model. The key difference from the generic model
to the unified segmentation model is the fixing of the regulariser to one used throughout image seg-
mentation (edge weighted TV) and the inclusion of the convex-relaxation penalty term νε2(u) to
enforce the constraint that u ∈ [0, 1].We therefore propose to study the unconstrained convex unified
segmentation model

min
u

{
μ

∫
�

g(|∇z(x)|)|∇u| d�+ λ

∫
�

Fu d�+ θ

∫
�

Du d�+ α

∫
�

νε2(u) d�
}

(11)

which we shall denote as model A0 . In the interests of completion, we show how the models
discussed earlier fit into this class:

• Convex CV : F = λ1(z(x)− c1)2 − λ2(z(x)− c2)2,D = 0.
• Euclidean Model: F = λ1(z(x)− c1)2 − λ2(z(x)− c2)2,D = Euclidean Distance.
• Geodesic Model: F = λ1(z(x)− c1)2 − λ2(z(x)− c2)2,D = Geodesic Distance.
• SFB Model: F = (z − c1)2 − f̃ (z),D = Geodesic Distance.

The corresponding Euler-Lagrange equation from minimizing the convex imaging functional
in (11) is given by

μ∇ ·
(
g(|∇z(x)|) ∇u|∇u|ε1

)
− λF − θD − αν′ε2(u) = 0, (12)

with Neumann boundary condition ∂u/∂n = 0 for n the unit outward normal and ε1 and ε2 small
positive values as in (4). Our aim is to develop a fast algorithm to solve the non-linear PDE (12).
However this is a challenging task.

Discretisation of the PDE. Using standard second order finite differences, the PDE (12) is dis-
cretized to the form

μ(Gi+1/2,j(ui+1,j − ui,j)+ Gi−1/2,j(ui−1,j − ui,j)+ Gi,j+1/2(ui,j+1 − ui,j)

+ Gi,j−1/2(ui,j−1 − ui,j))− λFi,j − θDi,j − αν′ε2(ui,j) = 0, (13)

whereF andD are defined appropriately, Gi+1/2,j = g(|∇z(x)|)i+1/2,j/h2x(|∇u|ε1)i+1/2,j and Gi−1/2,j,
Gi,j+1/2,Gi,j−1/2 are defined similarly. We want to solve the system ofN equations resulting from this
discretisation using an iterative method.

Non-Linear Multigrid (NMG). Multigrid algorithms are known to be optimal for certain applica-
tions, so we consider them first. They have optimal complexityO(N)whereN is the number of pixels
in the image. Fundamentally, we seek to perform the majority of the computations on more coarsely
discretized grid than the initial grid. We first must discretize the image domain � for a given coarse
and fine grid spacing.

For image domain � = [0, 1]2, denote by �h the discretized image domain with grid spacing h,
and similarly �2h has grid spacing 2h.

Full Approximation Scheme. There are various non-linear multigrid algorithms, see [34,37] and
references therein, we will focus on the popular Full Approximation Scheme (FAS) of Brandt [12].
The key aspects of the algorithm are:
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• Interpolation: The operator Ih2h transfers values from�2h to�h. We use bilinear interpolation [63].
• Restriction: The operator I2hh transfers values from �h to �2h. We use full-weighting restriction

[63].
• Coarse Grid Solution: This is the exact solver on�2h, which consumes the majority of the compu-

tational power. The solver should be accurate. We use Additive Operator Splitting (AOS) [65], but
we may use any accurate algorithm for solving non-linear equations.

• Smoothing: This part of the algorithm removes high-frequency components in the error terms eh
and e2h.
This ensures that a coarse grid solution focuses on removing low-frequency errors, so that we
obtain an accurate error approximation on the fine grid. There is some degree of choice in which
smoother we use. This step tends to be the most crucial in a multigrid method.

Choice of Smoothers. Typically, when solving a non-linear problem using FAS or some other multi-
grid framework, the choice of smoother is incredibly important and must be made with care. This is
due principally to the potential for discontinuous coefficients in the discretized PDE or anisotropies
in the PDE. In this section we will briefly review three smoothers used in the linear and non-
linear multigrid frameworks. Two of the most commonly used smoothing schemes are lexicographic
Gauss-Seidel (GSLEX) and line Gauss-Seidel (GSLINE), these perform well usually for a PDE with
continuous coefficients. We also consider a non-standard smoother (GSHYBRID) introduced in an
earlier work [58]. GSHYBRID is demonstrated to overcome the poor performance of GSLEX and
GSLINE for PDEs with discontinuous coefficients by focusing on the pixels at discontinuities and
performing non-standard iterations of a smoothing scheme.

GSLEX. This is simply the pixel-by-pixel update of the values ui,j in a sequential manner for
(i, j) ∈ �.

GSLINE. With this smoother we collectively update a line of pixels at a time. This type of smoother
is used for anisotropic PDEs, where smoothing is preferred in one direction along the grid [63]. We
can rearrange the discretized PDE by moving all u·,· terms which are in the same column j to the left
hand side to derive an iteration method.

GSHYBRID. This is a non-standard smoother. See [56,58]. It is designed for PDEs with non-
smooth coefficients, i.e. PDEs such as∇ · (K∇u) = f , whereK is discontinuous. Briefly, the smoother
isolates those pixels which have discontinuous coefficients and performs partial line smoothing
operations locally (for the identified pixels only). It performs GSLEX on all pixels without discon-
tinuous coefficients. This smoother is found to be theoretically and experimentally effective in an
FAS algorithm to solve PDEs with discontinuous coefficients.

Local Fourier Analysis. Local Fourier Analysis (LFA) gives a quantitative measure for the effec-
tiveness of a smoother [12,24,63]. The technique measures the largest amplification factor that the
smoother has on high-frequency errors. Using LFA, we may compute the smoothing rates and show
that the abovementioned smoothers for the discretized segmentationmodels are not suitable for FAS.
Hence NMGmethods for (11) do not converge in a reliable way.

3.1. Key problems for convergence of NMG

The following important remark explains why we cannot implement a multigrid scheme for model
A0 (11) directly, which leads us to consider reformulations of the model.

Remark 3.1: The solution u of the Euler-Lagrange equation for the general convex model we con-
sider, given by (12), is binary almost everywhere [23]. Therefore, the majority of pixels have values in
the interval Iδ = [−δ, δ] ∪ [1− δ, 1+ δ] for arbitrary small δ. However, it is precisely for values in Iδ
that for small changes in the value of ui,j we have significant jumps in the value of ν′ε2(ui,j) (see [23,61]
for details). This leads to instability in the fixed point smoothing scheme used in the FAS algorithm.
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Therefore, we find that we simply cannot implement FAS directly for model A0, given by (11), as the
instability in the smoothing scheme leads to a non-converging multigrid algorithm.

To motivate our solution, we identify four key issues in implementing the above FAS algorithm
directly on Equation (13). We detail each below, some can be seen directly from the equation and the
rest are noted through experimentation.

Problem 3.1 (Jumps in ν′
ε2

(u)): The value of ε2 influences convergence and the algorithm will simply
not converge unless ε2 is large (i.e. ε2 ≥ 1). This is due to the jumps in the function ν′ε2(ui,j) around 0
and 1 and the smoothing iterative scheme is unstable. So as u almost binary, if ε2 is too small then a
small change in the value of ui,j (being around 0 or 1) can lead to a significant change in ν′ε2(ui,j).

Problem3.2 (Convergence dependent on ε1): The quantity ε1 should be a very small number, its only
purpose is to ensure that a singularity isn’t obtained in the PDE (12) when |∇u| = 0. However we, and
other authors [2,17,21,28], find that the convergence rate of the overall FAS scheme is heavily dependent
on the value of ε1. It also changes dependent on the image size and values ε > 10 can be necessary to
ensure convergence. This is not true to the model (11) however as the parameter should be almost zero.

Problem 3.3 (Inaccurate approximations of g and |∇u| at half points): The discretisation (13)
requires us to approximate accurately the values gi+1/2,j, (|∇u|ε1)i+1/2,j etc. However, the edge detector
g is generally non-smooth, and the function u is binary almost everywhere so it is highly non-smooth.
Hence, these approximations at half pixels can be very inaccurate.

Problem 3.4 (Inaccurate approximation of the non-linear operator): The first term in the PDE
(12) is very non-linear and, in the FAS algorithm (see, e.g. [63]),we require the accurate computation of
the non-linear operator N everywhere. However, the approximation of this operator in (13) around the
interfaces (jumps) in g and u is inaccurate (as in Problem 3.2). Therefore we obtain an incorrect error
correction term and inaccurate solution overall.

Problems 3.1 and 3.2 are solved by setting the respective values ε2 and ε1 large, however we would
like to develop a framework in which the solver does not depend on these values for convergence. In
the case of Problems 3.3 and 3.4, we could use the Immersed Interface techniques of [1,43] to obtain
more accurate solutions around the interfaces. However, these are very non-trivial to implement and
we are looking for a simpler solution.

Belowwe consider how to reformulate modelA0 in order to applymultigridmethods. Before that,
we mention some related works.

3.2. Related fast iterativemethods

Recently, a few papers have considered fast solvers for segmentation models. We briefly review three
papers related to this one.

D’Ambra-Tartaglione [26]. The work in [26] proposed a linear multigrid algorithm for solving a
coupled PDE system stemming from the Ambrosio-Tortorelli segmentation model. This model, not
of the form (5), approximates the length term (related to�) by two�-convergence termswhich lead to
Laplacian type operators without the non-linearity as in (5). They choose to use a smoother similar
to GSLEX. The CPU times (T) in numerical experiments of [26] show that their algorithm is sub-
optimal (since the CPU ratioTh/T2h is more than 4). It is potentially interesting to employ alternative
smoothers and to add LFA to guide such choices, and also to extend [26] further to segment objects
selectively.

Zhang-Chen-Gould [69]. The algorithmgiven in [69] is amore traditional gradient descentmethod
for a local banded variant of the Badshah-Chenmodel [5] which only considers pixels in a small band
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around the interface where φ = 0. This banding idea drastically reduces the number of unknowns to
be updated in each iteration. To ensure the underlying level function φ remains as a signed-distance
function, a multigrid method is employed to solve the equation ∇φ = 1 in a domain that includes
the boundary �. When such � is of smooth rounded shape (e.g. the liver), the method works well but
it performs poorly for other irregular or large shapes where the solution domain may be close to, or
coincide with �.

Jumaat-Chen [39]. The work by [39] proposed amultilevel algorithm for the Rada-Chen [53] non-
convex model and its modified variant using the band idea. The algorithm solves the discretized
(non-linear and smooth) using a discretize then optimize approach. That algorithmmay be applicable
to our variational models, however we must smooth the functional first. Another potential drawback
is that the algorithm cycles through pre-set search directions and it is not yet possible to accelerate it
further or select part of these directions to save time.

4. Reformulation of the non-linear model (eqn11)

Wenow consider how to reformulate the unconstrained convexmodel (11) so that resulting PDEs are
much simpler than (12). Two ideas respectively from Bresson et al. [15] and Goldstein et al. [30] are
first employed to this reformulation purpose. As it turns out, none can solve the problem satisfactorily.
We then combine the two ideas in order to solve all of the four problems described in Section 3.1.
This does not come for free, and we have to solve four subproblems, however three of these have
closed form solutions and the other is linear. We also introduce two new parameters, however we will
see later that these are fixed for most experiments and the results are robust to changes in the new
parameters.

Specifically, we propose two reformulations of themodelA0. The first reformulatedmodelA1 still
requires us to solve a non-linear problem, whereas model A2 only requires solving a linear problem.
A2 is our recommended choice. For both A1 and A2 we are able to develop convergent multigrid
methods.

4.1. The first AlgorithmA1

Using an idea from Bresson et al. [15] (for a different minimization problem), we reformulate the
model (11) to remove the penalty term νε2(u) from the formulation. This is done by introducing a
new variable v andminimizing over both the u and v variables separately. Initially, (11) is reformulated
to the equivalent

min
u,v

{
μ

∫
�

g(|∇z(x)|)|∇u| d�+ λ

∫
�

Fv d�+ θ

∫
�

Dv d�+ α

∫
�

νε2(v) d�+
θB

2
‖u− v‖2L2

}
,

(14)

and weminimize over u and v alternately where θB is a fixed non-negative tuning parameter, typically
taking a large value to enforce u and v being similar. Notice that if we assume u = v this reformulation
reduces back to (11).

u minimization. We first minimize over u, solving the minimization problem

min
u

{
μ

∫
�

g(|∇z(x)|)|∇u| d�+ θB

2
‖u− v‖2L2

}
. (15)

Minimisation of (15) with respect to u results in the non-linear PDE

μ∇ ·
(
g(|∇z(x)|) ∇u|∇u|ε1

)
− θB

(
u− v(k)

)
= 0, (16)

assuming Neumann boundary condition ∂u/∂n = 0 for n the unit outward normal. This refor-
mulation simply attempts to solve Problem 3.3 described in Section 3.1. Notice that this is the
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Euler-Lagrange equation for weighted TV denoising, a problem which has been tackled before in
the literature [20,51]. But a reliable NMG algorithm is still missing.

v minimization. Then we minimize over v, solving the minimization problem

min
v

{
λ

∫
�

Fv d�+ θ

∫
�

Dv d�+ α

∫
�

νε2(v) d�+
θB

2
‖u− v‖2L2

}
, (17)

which has a closed form solution [15]

v(k+1) = v = min
{
max

{
u− λF + θD

θB
, 0

}
, 1

}
. (18)

We note that, as we wanted, we have removed ν′ε2 from the formulation. In summary, A1 is given by
the following algorithm:

(1) Solve PDE (16) for u.
(2) Update v by (18).
(3) If ‖u(k+1) − u(k)‖ < tolerance and ‖v(k+1) − v(k)‖ < tolerance, stop, else return to 1.

The outstanding problem with this algorithm is that it relies on another reliable NMG algorithm
for (16).

4.2. Further splitting of A1

To remove non-linearity in the TV term in (11), we now consider the idea of Split-Bregman iteration,
as introduced by Goldstein et al. [30] for image restoration. This is a fast and accurate iterative solver
for models with TV like functionals. Here we replace the weighted TV term in the minimization with
a new variable d. This splitting does not rely on a regularization parameter in the PDE and leads
therefore to reduction of non-linearity. We can rewrite the minimization problem (11) as

min
u,d

{
μ

∫
�

|d|g d�+ λ

∫
�

Fu d�+ θ

∫
�

Du d�+ α

∫
�

νε2(u) d�+
λB

2
‖d −∇u− b‖2L2

}
,

(19)

where |d|g = g(|∇z(x)|)|∇u| and λB is a fixed non-negative tuning parameter. Note that b is the
Bregman update which has a simple update formula. We minimize over u and d in (19):

u minimization. This minimization is given by

min
u

{
λ

∫
�

Fu d�+ θ

∫
�

Du d�+ α

∫
�

νε2(u) d�+
λB

2
‖d −∇u− b‖2L2

}
. (20)

d minimization. This minimization is given by

min
d

{
μ

∫
�

|d|g d�+ λB

2
‖d − ∇u− b‖2L2

}
⇒ d = shrink

(
∇u+ b,

μg(|∇z(x)|)
λB

)
, (21)

where shrink(u, a) = sgn(u)max{|u| − a, 0} from [30] and we update b using the formula b(k+1) =
b(k) +∇u(k+1) − d(k+1). See [30] for the proof that these closed form solutions solve the minimiza-
tion problem for d. The essential step in the above Bregman iterations is the solution of (20) which is
unfortunately still non-linear, not amenable to fast NMG solution. Further refinement is required.
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4.3. The second and recommended AlgorithmA2

Our recommended algorithm A2 tries to tackle the non-linearity in u minimization, given by (15)
in A1, by using the Split-Bregman idea of Section 4.3 to solve this subproblem. This incidentally
addresses Problems 3.2–3.4 from Section 3.1. Specifically we use the ideas, as with (20), to replace
the weighted TV term in (15) with new variables d and b and split the minimization into a total of
4 problems (for u, d, b and v). Three subproblems (d, b and v) have a closed form solution and the
other problem is linear (as we will see in (22)). We reformulate the minimization problem (15) to

min
u,d

{
μ

∫
�

|d|g d�+ θB

2
‖u− v‖2L2 +

λB

2
‖d − ∇u− b‖2L2

}
. (22)

using Bregman splitting where θB and λB are fixed non-negative parameters. At convergence, we aim
to have d = |∇u| and therefore b is near zero, see [30] for proof that this reformulation is equivalent
to (15). Therefore this splits into three subproblems, the u and d minimization and b update, which
along with the v update (18) gives us the following four subproblems.

u minimization. This is obtained as the solution of

u(k+1) = argmin
u

{
θB

2
‖u− v(k)‖2L2 +

λB

2
‖d(k) −∇u− b(k)‖2L2

}
,

and the minimizer is the solution of

− λB�u+ θBu = θBv(k) − λB∇ ·
(
d(k) − b(k)

)
. (23)

withNeumann boundary conditions. This linear PDE is solved by any convergent algorithm, e.g. AOS
[65] or linear multigrid [63].

d minimization.

d(k+1) = shrink
(
∇u(k+1) + b(k),

μg(|∇z(x)|)
λB

)
. (24)

b update.

b(k+1) = b(k) +∇u(k+1) − d(k+1). (25)

v minimization. As for A1, we set

v(k+1) = min
{
max

{
u(k+1) − λF + θD

θB
, 0

}
, 1

}
. (26)

Remark 4.1: Note that with this 4 step minimization we have solved the four problems detailed in
Section 3.1. Although this requires solving three more problems than we would traditionally, and
introduces two new parameters. Thankfully the problems all have closed form solutions which can
be computed very efficiently.

In summary, A2 is given by the following algorithm:

(1) Solve PDE (23) for u.
(2) Update d by (24).
(3) Update b by (25).
(4) Update v by (26).
(5) If ‖u(k+1) − u(k)‖ < tolerance, ‖d(k+1) − d(k)‖ < tolerance, ‖b(k+1) − b(k)‖ < tolerance and
‖v(k+1) − v(k)‖ < tolerance, stop, else return to 1.
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Remark 4.2: In [9] the authors prove that the multigrid algorithm converges for the class of PDEs of
the form−∇(a∇u)+ bu = f , where a ∈ C1(�̄), b ∈ C(�̄), a(x), b(x) ≥ 0 and zeroDirichlet bound-
ary conditions. Clearly, the PDE (23), which we are solving as part of A2 belongs to this class of PDEs.
However, we have zero Neumann boundary conditions, rather than the zero Dirichlet boundary con-
ditions in the paper. It would be an interesting piece of work to determine if the proof applies in the
case of zeroNeumannboundary conditions also as thiswould give an explicit proof thatA2 converges.
We will see later that, experimentally, there is always convergence.

5. Solution algorithms on a single level andmultilevels

In the previous section we discussed several PDEs whose solution is the minimizer for a given energy
functional. In this section, we will discuss the two solution frameworks; single level and multilevel.
We begin in Section 5.1 by discussing the single level solver for the models A0, A1 and A2. Then
in Sections 5.2–5.4 we will discuss the multilevel solutions for A1 and A2. We do not consider the
multilevel solution for A0 as the algorithm simply does not converge for any parameters.

5.1. Single level algorithm – additive operator splitting for A0, A1 and A2

Additive Operator Splitting (AOS) [31,45,65] is a widely used method [3–6,53,61] for solving equa-
tions of the form ∂u/∂t = μ∇ · (K(u)∇u)− f . It allows us to split the two-dimensional problem into
two one-dimensional problems, which we solve separately and then combine the results. Each one-
dimensional problem gives rise to a tridiagonal system of equations which can be solved efficiently,
hence AOS is a very efficient method for solving diffusion-like equations. AOS is a semi-implicit
method and permits far larger time-steps than the corresponding explicit schemes would. Hence,
AOS is more stable than an explicit method [65]. For our case where the source term f depends on u
and the standard AOS must be modified using the idea of [61] (as shown below).

AOS Scheme forA0. Rewriting the PDE (12), resulting fromminimization ofmodelA0, as ∂u/∂t =
μ(∂x(G(u)∂xu)+ ∂y(G(u)∂yu))− f (u) where f (u) = λF + θD + αν′ε2(u), the discretized form of
PDE (12) can be solved by AOS:

u(k+1) = 1
2

2∑
�=1

(
I − 2τμA�

(
u(k)

))−1 (
u(k) + τ f

(
u(k)

))
, (27)

where τ is the time-step, A1(u) = ∂x(G(u)∂x) and A2(u) = ∂y(G(u)∂y). For notational convenience
we write G = G(u). The matrix A1(u) can be obtained as follows

(A1(u(k))u(k+1))i,j = (∂x(G∂xu(k+1)))i,j

=
(
Gi+1/2,j

h2x

)
u(k+1)
i+1,j +

(
Gi−1/2,j

h2x

)
u(k+1)
i−1,j −

(
Gi+1/2,j + Gi−1/2,j

h2x

)
u(k+1)
i,j ,

where hx is the grid spacing in the x-direction and, similar to [53,61], for the half points in G we
take the average of the surrounding pixels, e.g. Gi+1/2,j = (Gi+1,j + Gi,j)/2. Since f depends on u via
ν′ε2(u) in (11), following [61], we consider the Taylor expansion of ν

′
ε2

(u) around u = 0: νε(u) = a0 +
b0u+O(u2) and around u = 1: νε(u) = a1 + b1u+O(u2). As b0 = b1, we denote the linear term
as b from now on. Define the interval in which ν ′ε2(u) jumps as Iζ := [0− ζ , 0+ ζ ] ∪ [1− ζ , 1+ ζ ],
and the function b̃(k)

i,j = b if u(k)
i,j ∈ Iζ (and set b̃(k)

i,j = 0 elsewhere. Then as with [61], we have the
modified AOS below:

u(k+1) = 1
2

2∑
�=1

(
I − 2τμ(I + B̃(k))−1A�

(
u(k)

))−1 (
u(k) + τ

(
I + B̃(k)

)−1
f
(
u(k)

))
, (28)

which does satisfy the convergence conditions of Weickert [65].
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AOS Scheme forA1. Rewriting PDE (16), which results from the uminimization of A1, as ∂u/∂t =
μ(∂x(K(u)∂xu)+ ∂y(K(u)∂yu))− f (u)where f (u) = θB(u− v), the PDE (16) can be similarly solved
by

u(k+1) = 1
2

2∑
�=1

(
I − 2τμB�

(
u(k)

))−1 (
u(k) − τ f (u(k))

)
(29)

where τ is the time-step, B1(u) = ∂x(K(u)∂x) and B2(u) = ∂y(K(u)∂y). For notational convenience
we write K = K(u). The matrix B1(u) can be obtained as follows

(B1(u(k))u(k+1))i,j = (∂x(K∂xu(k+1)))i,j

=
(
Ki+1/2,j

h2x

)
u(k+1)
i+1,j +

(
Ki−1/2,j

h2x

)
u(k+1)
i−1,j −

(
Ki+1/2,j + Ki−1/2,j

h2x

)
u(k+1)
i,j ,

where hx is the grid spacing in the x-direction. Notice that that B�(u(k)) is tridiagonal for � = 1, 2 and
the above iterations can be performed very efficiently using the Thomas algorithm.

AOS Scheme for A2. Finally, rewriting PDE (23), which results from the uminimization of A2, as
∂u/∂t = λB(∂xxu+ ∂yyu)− f (u)where f (u) = λB∇ · (d − b)+ θB(u− v), the PDE (23) is solved by
the AOS in the form:

u(k+1) = 1
2

2∑
�=1

(
I − 2τλBC�

(
u(k)

))−1 (
u(k) − τ f

(
u(k)

))
, (30)

where C1(u(k)) = ∂xxu and C2(u(k)) = ∂yyu. When � = 1, the matrix C1 can be obtained as follows

(
C1u(k+1)

)
i,j
=

(
∂xxu(k+1)

)
i,j
=

(
1
h2x

)
u(k+1)
i+1,j +

(
1
h2x

)
u(k+1)
i−1,j −

(
2
h2x

)
u(k+1)
i,j ,

where hx is the grid spacing in the x-direction. We treat � = 2 similarly.

5.2. Multilevel algorithm for A1 and A2

The multilevel framework permits us to solve the discretized forms of these PDEs quickly, as the
multigrid method has optimal complexity O(N) (in certain situations) [63]. We will first introduce
Linear Multigrid (LMG), which is the precursor to the non-linear multigrid (NMG) FAS algorithm
introduced earlier. We use LMG to solve linear PDEs and NMG to solve non-linear PDEs.

As far as implementation is concerned, NMG and LMG are almost identical except that the error
correction quantity eh for NMG can only be obtained by taking the difference eh = wh − w̄h of two
approximations wh, w̄h while the LMG can compute the error correction eh directly. That is, the dif-
ference lies in storage (or approximation). More precisely, denote a discretized linear PDE and a
non-linear PDE respectively by Lhu = f h and N hu = f h. If we have an approximation uh to u on
�h, the residual is denoted by rh = f h − Lhuh or for NMG rh = f h −N huh. Then the error eh in
our approximation is found respectively by the relation

LMG: Lh eh = rh,

NMG: N hwh = rh +N hw̄h, eh = wh − w̄h.

We update our approximation by u = uh + eh. See [24,34,63].
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5.3. Linearmultigrid algorithm

For completeness, we show the linearmultigrid algorithm in Algorithm 5.1.We introduce the param-
eter η which permits a general η-cycling, i.e. if η = 1 this is a simple V-cycle, if η = 2 we have a
W-cycle, etc, see [33,63]. The most important component, smoothing, will be discussed shortly. For
the other two components, restriction I2hh and interpolation Ih2h, used to transfer information between
the grids �h, �2h, . . . , we use full-weighting restriction and bilinear interpolation [27,63].

Algorithm 5.1 Linear Multigrid Scheme, uh ← LMG(uh,Nh, f h, ν1, ν2, Smoother, level,max_level, η)

Pre-smoothing: Perform ν1 iterations of the smoother: uh← Smoother(uh, f h).
Coarse grid correction: Compute the residual: rh = f h − Lhuh.

Transfer the residual to �2h by restriction: r2h = I2hh rh.
if level = max_level then

Compute: e2h = [L2h]−1r2h
else

Do η cycles (steps) of
e2h← LMG(0,L2h, r2h, ν1, ν2, Smoother, level+ 1,max_level, η).

end if
Interpolation: Transfer the error to �h by interpolation:eh = Ih2h e

2h.
Correct the fine grid approximation: uh = uh + eh.

Post-smoothing: Perform ν2 iterations of the smoother: uh← Smoother(uh, f h).

5.4. Multigrid solutions ofmodels A1 and A2

The choice of smoother for each model is an incredibly important decision in determining how
quickly the multigrid method will converge. For problems with discontinuous coefficients a non-
standard smoother is recommended. We find that for A1, the term ∇ · (g(|∇z(x)|)(∇u/|∇u|)ε1)
introduces these discontinuous coefficients in its discretisation. Therefore for A1 we will recom-
mend the use of the hybrid smoother GSHYBRID from Section 3.1. In the case of A2, we must
solve a linear PDE with constant coefficients, hence the discontinuities aren’t present. In this case,
we will show that the simple cheap GSLEX scheme from Section 3.1 is effective at damping the
errors.

5.4.1. Smoother forA1
In the PDE for A1 (16), the term ∇ · (g(|∇z(x)|)(∇u/|∇u|)ε1) is discretized to give

Gi+1/2,j
(
ui+1,j − ui,j

)+ Gi−1/2,j
(
ui−1,j − ui,j

)
+ Gi,j+1/2

(
ui,j+1 − ui,j

)+ Gi,j−1/2
(
ui,j−1 − ui,j

)
, (31)

whereGi+1/2,j = g(|∇z(x)|)i+1/2,j/h2x(|∇u|ε1)i+1/2,j, etc. One problem which results from this is that
the coefficients G·,· can be highly variable and may jump significantly. Therefore, solving the PDE for
ui,j using standard smoothers, such as GSLEX and GSLINE, we have poor smoothing rates at pixels
(i, j) where the coefficients are very different from one another. This leads to slow or no convergence
of FAS. This phenomenon was studied in [17,58] and new non-standard smoothers were proposed
which perform different smoothing steps at the pixels with jumping coefficients. We take our lead
from [58] and use the smoother GSHYBRID proposed in that paper which has much improved
smoothing rate and leads to a faster converging FAS. For reasons of brevity, we will not detail the
algorithm for GSHYBRID, but refer the reader to the paper [58].
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5.4.2. Smoother forA2
In Section 3 we considered the GSLEX smoother. This is the simplest Gauss-Seidel smoother and,
to justify its choice as the smoother for A2, we will consider the LFA for this smoothing scheme
and show that it is effective at damping the errors for our PDE. We recall that the PDE we are
solving is

−λB�u+ θBu = θBv(k) − λB∇ ·
(
d(k) − b(k)

)
,

which discretises to

(
4λB
h2
+ θB

)
ui,j − λB

h2
(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1

) = fi,j, (32)

where fi,j = θBv
(k)
i,j − λB∇ · (d(k) − b(k))i,j and assuming equal grid spacing in each dimension, i.e.

h = hx = hy.

Lemma: If we use the GSLEX smoother on the discretisation (32) of the PDE for A2, then we have
global smoothing rate μ̂ < 1

2 .

Proof: Follows as a natural extension from the result of Brandt [13] thatμ = 1
2 for Poisson’s equation−∇u = f . �

Figure 1. Test model 1 – Global segmentation for a synthetic image. (a) The given image. (b) The segmentation result. (c)
Algorithm Comparisons (a * indicates the algorithm took over 24 hours). (d) Corresponding error plot with iteration number ver-
sus the base 10 logarithm of the error. From left to right are error plots for A0 (AOS), A1 (AOS), A2 (AOS), A1 (MG) and A2 (MG)
respectively.
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6. Numerical results

In this paper, we wish to demonstrate that our proposed multigrid algorithms for modelsA1 and A2
are efficient for solving a class of segmentation models given by (11) and especially A2 outperforms
A1. The variational models considered earlier, in Section 3.1, only differ in choices of regularization,
data fitting and distance terms. Since the variational framework implied by form (11) is general, we
believe that other models of this form beyond our tested cases can be solved similarly by our new
algorithms.

The number of unknowns that we shall consider are large, ranging from 16384 (for 128× 128
images) to 4194304 ≈ 4× 106 (for 2048× 2048).

Stopping Criteria. The stopping criterion is the same for the algorithms. We stop the algorithms
when ‖u(k+1) − u(k)‖2 < ξ where we fix ξ = 10−4 for all experiments. We note however, that in
practical implementation, ξ = 10−2 is sufficient as � has generally stabilized by then.

Algorithm Comparisons. We will compare the practical performance at various resolutions of the
following algorithms:

• A0 (AOS): Single level AOS for the original model A0 (28).
• A1 (AOS): Single level AOS for the first reformulation A1 (29).
• A2 (AOS): Single level AOS for the second reformulation A2 (30).
• A1 (MG):Multigrid for the first reformulation A1.
• A2 (MG):Multigrid for the second reformulation A2.

An optimal algorithm should only take O(N) = kN CPU times if N is the number of
unknowns; however large k implies still a slower convergence rate. Here the parentheses for a
model denote whether we use the single level solver AOS or multigrid MG. We omit the case of

Figure 2. Testmodel 1 –Global segmentation for a real (MRI) image. (a) Image. (b) Segmentation Result. (c) AlgorithmComparisons
(a * indicates the algorithm took over 24 hours). (d) Corresponding error plot with iteration number versus the base 10 logarithm of
the error. From left to right are error plots for A0 (AOS), A1 (AOS), A2 (AOS), A1 (MG) and A2 (MG) respectively.
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a multigrid algorithm for A0 because there does not exist such a converging MG algorithm by
Remark 3.1.

Parameters. For the models A0, A1 and A2 we have many independent parameters to consider.
For all models we must consider μ, θ and λ. For A1 and A2 we additionally have θB and for A2 we
also have λB. Firstly, we fix λB = 1 for A2 in all experiments. We perform an extensive grid search
over all remaining parameters for each model varying them from 10−3 through to 1010 by factors of
10. The results quoted are for those parameter values which converged in the fewest iterations and
also gave Jaccard coefficient [38] over 0.95, compared to the ground truth. We test only the v-cycle,
fixing η = 1 and set the edge detector parameter β = 10−2. Finally, in those models where f depends
on u, we update its value every 5 iterations of the AOS algorithms to permit reasonable update of u
and no undue computational burden from repeated computation of f. Hence, all iteration numbers
are multiples of 5.

Machine Specification. All experiments were run in MATLAB 2018b on a Linux x64_64 machine
with 30GB RAM and 40 Intel Xeon Gold 5115 2.40GHz CPUs. Note that parallelization was not
built into the code. Each algorithm implementation uses the same underlying codes (e.g. for gradient
calculation) to permit fair comparison using CPU times.

Test Model 1: Convex Chan-Vese Global Segmentation Model (3). We give three results; a synthetic
segmentation in Figure 1 and twosegmentations for real images in Figures 2 and 3. In each case we
compare the time for the five algorithms to converge for five different image resolutions.

We find that the fastest algorithm is the multigrid A2 (MG). For the single level solvers, we find
that the timings for A1 and A2 are better than for the original A0 with A2 faster than A1. Finally,
we find experimentally that the CPU times for each iteration of A2 (MG) have a linear relationship
O(N) with the number of pixels, N, in an image, i.e. if we compare the CPU times for an image with

Figure 3. Test model 1 – Global segmentation for a real (standard cameraman) image. (a) Image. (b) Segmentation Result. (c)
Algorithm Comparisons (a * indicates the algorithm took over 24 hours). (d) Corresponding error plot with iteration number ver-
sus the base 10 logarithm of the error. From left to right are error plots for A0 (AOS), A1 (AOS), A2 (AOS), A1 (MG) and A2 (MG)
respectively.
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Figure 4. Test model 2 – Selective segmentation (geodesic) for a real (MRI) image. (a) Image and Marker SetM (green). (b) Seg-
mentation Result. (c) Algorithm Time Comparisons (a * indicates the algorithm took over 24 hours). (d) Corresponding error plot
with iteration number versus the base 10 logarithm of the error. From left to right are error plots for A0 (AOS), A1 (AOS), A2 (AOS),
A1 (MG) and A2 (MG) respectively.

N/4 = (n/2)2 pixels and another with N = n2 pixels, we find that there is a factor 4 increase in the
computational time. Therefore, A2 (MG) has complexity near the optimal O(N). Clearly A1 (MG)
is a few times slower than A2 (MG). This (approximately) ‘constant’ ratio can be observed in all the
subsequent tables.

Test Model 2: Geodesic Selective Segmentation Model (7). We give results for a real knee MRI scan.
Here the object we are looking to segment is of high intensity compared to the background. The image
and the correct segmentation result are shown in Figure 4.

As in the previous test, we find that A2 (MG) gives the fastest segmentation compared to the
other algorithms and A2 outperforms A1 for both the multigrid and the single level solver. All
methods outperform A0 (AOS). We also note again that A2 (MG) gives near optimal, i.e. O(N)

performance.
Test Model 3: SFB Selective Segmentation Model (9). This test addresses segmenting one lung from

a CT image. The challenge in this test image is that both the background and foreground have similar
average intensities (where the foreground is a single segmented lung). The results of the segmentation
are shown in Figure 5.

As with the previous tests we find that the multigrid implementation of A2 performs much bet-
ter than the alternative models. We also note again that A2 (MG) gives near optimal, i.e. O(N)

performance.

7. Conclusions

In this paper we have introduced two new reformulations for solving a class of convex non-
linear image segmentation minimization problems. Typically, the PDEs which result from such
minimization problems cannot be directly solved by non-linear multigrid (FAS) due to non-linearity,
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Figure 5. Testmodel 3 – Selective segmentation (SFB) of a lung in a CT scan. (a) Image andMarker SetM (green) (b) Segmentation
Result (c) Algorithm Time Comparisons (a * indicates the algorithm took over 24 hours). (d) Corresponding error plot with iteration
number versus the base 10 logarithm of the error. From left to right are error plots for A0 (AOS), A1 (AOS), A2 (AOS), A1 (MG) and A2
(MG) respectively.

instability and no convergence. Using splitting ideas we reformulate the models and obtain two algo-
rithms; A1 (MG) which uses non-linear FAS on a more stable problem, and A2 (MG) which solves a
linear problem using linearmultigrid.We have proven experimentally that the extra splittings used to
obtain A2 (MG) lead to a faster converging algorithm. This work allows other researchers who have
non-linear minimization problems to consider using splittings to reformulate their problem into a
more stable non-linear problem, or even to obtain a linear problem.
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