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Abstract. In this work, we investigate image registration by mapping one image to another in4
a variational framework and focus on both model robustness and solver efficiency. We first propose5
a new variational model with a special regularizer, based on the quasi-conformal theory, which can6
guarantee that the registration map is diffeomorphic. It is well known that when the deformation is7
large, many variational models including the popular diffusion model cannot ensure diffeomorphism.8
One common observation is that the fidelity error appears small while the obtained transform is9
incorrect by way of mesh folding. However direct reformulation from the Beltrami framework does10
not lead to effective models; our new regularizer is constructed based on this framework and added11
to the diffusion model to get a new model, which can achieve diffeomorphism. However the idea is12
applicable to a wide class of models. We then propose an iterative method to solve the resulting13
nonlinear optimization problem and prove the convergence of the method. Numerical experiments14
can demonstrate that the new model can not only get a diffeomorphic registration even when the15
deformation is large, but also possess the accuracy in comparing with the currently best models.16
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1. Introduction. Image registration is to find a transformation to map the cor-20

responding image data, which are taken at different times, from different sensors, or21

from different viewpoints, for the purpose of telling the difference or merging informa-22

tion. Nowadays, image registration is widely used in many areas, such as computer23

vision, biological imaging, remote sensing and medical imaging [6, 21, 26, 32, 36, 38,24

40, 47, 57].25

In reality, according to the specific application, image registration can be classified26

into two categories: mono-modal registration and multi-modal registration. For multi-27

modal registration, finding a suitable distance measure is the most essential step [22,28

35, 36, 47, 57]. The idea of this paper will be applicable to multi-modal registration29

framework, but we focus on the mono-modal registration in this work.30

In dealing with the mono-modal registration, there are many choices of a data31

fidelity term [33] and a common approach for computing this transformation is to use32

the sum of squared differences (SSD) to measure the difference between the reference33

image R and the deformed template image T [11]. However, minimization of SSD34

alone in image registration is an ill-posed problem in the sense of Hadamard since35

it may have many solutions. In order to overcome this difficulty, regularization is36

indispensable [38, 52]. However, the choice of the regularization term, which needs37

some prior information about physical properties and helps to avoid the local minima,38

depends on the specific application.39

All registration models are nonlinear but they can be classified into two main40

categories according to the way deformation mapping is represented: linear registra-41

tion and nonlinear registration. In linear registration, the deformation model is linear42
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and global, including rotation, translation, shearing and scaling [11, 38]. Although43

the computation speed of a linear model is fast since it contains few variables, it is44

commonly used as the pre-registration for starting a more sophisticated model. This45

is mainly because linear models can not accommodate the local details (differences).46

In contrast, nonlinear registration models inspired by physical processes of trans-47

formations [47] such as the elastic model [5], fluid model [9], diffusion model [16],48

TV (total variation) model [19], MTV (modified TV) model [12], linear curvature49

model [17, 18], mean curvature model [14], Gaussian curvature model [27] and total50

fractional-order variation model [56] are proposed to account for localised variation51

in details, by allowing many degrees of freedom. The particular free-form deforma-52

tion models based on B-splines lying between the above two types possess simplicity,53

smoothness, efficiency and ability to describe local deformation with few degrees of54

freedom [44, 45, 47]. For relatively small deformation, all models can be effective,55

but for large deformation, not all models are effective and in particular few models56

can guarantee a one-to-one mapping unless one fine tunes the coupling parameters57

to reduce the deformation magnitude allowed (since the mapping quality is perfect if58

deformation is zero) which in turn loses the ability of modeling large deformation.59

Over the last decade, more and more researchers have focused on diffeomorphic60

image registration where folding measured by the local invertibility quantity det(Jy)61

is reduced or avoided. Here, y denotes the transformation in the registration model62

and det(Jy) is the Jacobian determinant of y. Under desired assumptions, obtaining63

a one-to-one mapping is a natural choice as reviewed in [47].64

In 2004, Haber and Modersitzki [23] proposed an image registration model im-65

posing volume preserving constraints, by ensuring det(Jy) is close to 1. Although66

volume preservation is very important in some applications where some underlying67

(e.g. anatomical) structure is known to be incompressible [47], it is not required or68

reasonable in others. In a later work, the same authors [25] relaxed the constraint to69

allow det(Jy) to lie in a specific interval. Yanovsky et al. [55] applied the symmetric70

Kullback-Leibler distance to quantify det(Jy) to achieve a diffeomorphic mapping.71

Burger et al. [7] designed a volume penalty term that ensured that shrinkage and72

growth had the same cost in their variational functional. The constrained hierar-73

chical parametric approach [41] ensures that the mapping is globally one-to-one and74

thus preserves topology in the deformed image. Sdika [46] introduced a regularizer to75

penalize the non-invertible transformation. In [51], Vercauteren et al. proposed an ef-76

ficient non-parametric diffeomorphic image registration algorithm based on Thirion’s77

demons algorithm [49]. In addition, a framework called Large Deformation Diffeomor-78

phic Metric Mapping (LDDMM) can generate the diffeomorphic transformation for79

image registration [37, 3, 15, 50]. An entirely different framework proposed by Lam80

and Lui [30] obtains diffeomorphic registrations by constraining Beltrami coefficients81

of a quasi-conformal map f = y1(x) + iy2(x), instead of controlling the map y(x)82

directly.83

In this paper, we aim to reformulate the Lam and Lui Beltrami measure as a84

direct regularizer for controlling det(Jy) and to assess the effectiveness of the resulting85

variational models; though the idea applies to any commonly used models, we apply86

it to the diffusion model as one simple example. Our contributions are two-fold:87

• We propose a new Beltrami coefficient based regularizer that is explicitly88

expressed in terms of det(Jy). This establishes a link between the Beltrami89

coefficient of the transformation and the quantity det(Jy).90

• An effective, iterative scheme is presented and numerical experimental results91

show that the new registration model has a good performance and produces92
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a diffeomorphic mapping while remaining competitive to the state-of-the-art93

models from non-Beltrami frameworks.94

We remark that several interesting works that are concerned with reversible transfor-95

mations (such as [8, 54]) may also benefit from this study.96

The rest of the paper is organized as follows. Section 2 briefly reviews the basic97

mathematical formulation of image registration modeling, several typical regulariza-98

tion terms and how to get a diffeomorphic transformation for image registration. In99

Section 3, we propose a new regularizer and a new registration model. The effective100

discretization and numerical scheme are discussed in Section 4. Numerical experiment101

results are shown in Section 5, and finally a summary is concluded in Section 6.102

2. Preliminaries, Regularization and Diffeomorphic Transformation. In103

general, image registration aims to compare, in space Rd, two or more images or104

image sequences in a video. In this work, we consider the case of a pair of images105

T,R : Ω ⊂ Rd → R and d = 2. Here by convention, R is the Reference image and T106

is the (moving) Template image.107

The aim of image registration is to find a transformation y(x) such that108

T ◦ y(x) = T (y(x)) ≈ R,109

where x = (x1, x2) and y(x) = (y1(x), y2(x)). That is, the transformation y(x) moves110

T to match R. If we define y(x) = x + u(x), then u(x) = (u1(x), u2(x)) indicates111

how much T moves i.e. u(x) is the displacement. Thus, the determination of the112

transformation y(x) is equivalent to the determination of the displacement field u(x).113

2.1. Data fidelity. One way to ensure that T (y) can approximate R is to min-114

imize the difference T (y) − R. A commonly used difference measure is the sum of115

squared differences (SSD) defined by116

(1) D[y] =
1

2

∫
Ω

(T (y)−R)2dx =
1

2
‖T (y)−R‖2 =

1

2
‖T (x + u)−R‖2 = D[u]117

where ‖ · ‖2 denotes the squared L2-norm. Of course, there are some other typical118

distance measures, including normalized cross correlation [38], mutual information119

[35, 38], normalized gradient fields [24, 39] and mass-preserving measure [7].120

2.2. Regularization. Minimizing any of the above mentioned measures is inef-121

ficient to obtain a unique transformation y for image registration, because minD[y]122

is ill-posed [38, 39]. In order to overcome this problem, regularization is necessary.123

Combining distance measure and regularization gives the variational model for image124

registration:125

(2) min
u
J(u) = D[u] + αS[u],126

where D[u] is the distance measure from (1), S[u] is the regularizer to be discussed127

and α is a positive parameter to balance these two terms.128

There exist many regularizers and we can classify them into three categories:129

• First order regularizers involving |∇u| or |∇ · u|. The diffusion regularizer130

[16] and the TV regularizer [19] are well-known first order regularizers. The131

former one aims to control smoothness of the displacement and the latter one132

can preserve the discontinuity.133

• Fractional order regularizer ∇αu with α ∈ (1, 2). In [56], a fractional or-134

der regularizer is used for image registration. Because the fractional order135

This manuscript is for review purposes only.



4 DAOPING ZHANG AND KE CHEN

regularizer is a global regularizer, its implementation must explore the struc-136

tured Toeplitz matrices. This regularizer can not only produce accurate and137

smooth solutions but also allow for a large rigid alignment [56].138

• Second order regularizers involving ∇2u or ∇ · (∇u/|∇u|). These include139

the linear curvature regularizer [17, 18], mean curvature regularizer [14] and140

Gaussian curvature regularizer [27].141

The first two categories of models require an affine linear transformation in an initial142

pre-registration step while the latter category does not need a linear transformation143

in pre-registration.144

Differing from the above three categories, an important class of fluid like models145

based on partial differential equations were developed to capture large deformations.146

Christensen et al. [10] proposed an effective viscous fluid model characterized by a147

spatial smoothing of the velocity field. For the viscous fluid model, the deformation148

is governed by the Navier-Stokes equation:149

(3) η∇2v + (η + λ)∇(∇ · v) + F = 0, v = ∂tu + v · ∇u.150

Here, η and λ are the viscosity coefficients, the term ∇2v constrains the velocity151

field to vary smoothly, the term ∇(∇ · v) allows structures in the template to change152

in mass and F is the nonlinear deformation force field, which can be defined by153

(T (x + u)−R)∇T . The velocity field v is initialized as 0 in implementation. In [10],154

the condition |det(Jy)| ≥ 0.5 is checked at each iteration and if not satisfied, restarting155

the numerical solver is initiated so that a diffeomorphic transform is obtained; see also156

[38]. Further in [55], the model is enhanced by incorporating a volume preservation157

idea relating to minimizing |det(Jy) − 1| again to ensure diffeomorphism without158

restarting.159

Next, we review the Diffusion model [16]160

(4) min
u
J(u) = D[u] + αS[u] =

1

2

∫
Ω

(T (x + u)−R)2dx +
α

2

∫
Ω

2∑
`=1

|∇u`|2dx.161

It leads to the Euler-Lagrange equation:162

(T (x+u)−R)∇uT (x+u)− α∆u = 0 i.e.
(T (x+u)−R)∂u1

T (x+u)− α∆u1 = 0,
(T (x+u)−R)∂u2

T (x+u)− α∆u2 = 0,
163

subject to 〈∇u`,n〉 = 0 on ∂Ω and ` = 1, 2. Particularly, there exits a fast implemen-164

tation based on the so-called additive operator splitting (AOS) scheme [38, 53]. In165

[13], a fast solver was developed for this model.166

However, as with other models reviewed in the three categories, the obtained167

solution u or y is mathematically correct but often incorrect physically. This is due168

to no guarantee of mesh non-folding which is measured by det(Jy) > 0 i.e. a positive169

determinant of the local Jacobian matrix Jy of the transform y.170

2.3. Models of diffeomorphic transformation. To achieve det(Jy) > 0, one171

can find several recent works that impose this constraint in some direct ways. We172

review a few of such models before we present our new constraint. In the form of (4),173

the idea is to choose S1[·] in the following (note y = x + u)174

(5) min
u
J(u) = D[u] + αS[u] + βS1[y].175
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Volume control. In 2004, Haber and Modersitzki [23] used volume preserving176

constraint (area in 2D) for image registration, namely177

det(Jy) = 1.178

As a consequence, we can ensure that the transformation is diffeomorphic. However,179

volume preservation is not desirable when the anatomical structure is compressible in180

medical imaging.181

Slack constraint. Improving on [25], the constraint det(Jy) = 1 is relaxed and182

a slack constraint is proposed183

Ma ≤ det(Jy) ≤Mb,184

where a positive interval [Ma,Mb] is provided by the user as prior information in the185

specific application e.g. [Ma,Mb] = [0.1, 2].186

Unbiased transform. In [55], according to the information theory, det(Jy) is187

controlled by the symmetric Kullback-Leibler distance188 ∫
Ω

|det(Jy)− 1| log(|det(Jy)|)dx.189

It can help to get an unbiased diffeomorphic transformation. This idea was tested190

with the fluid regularizer (first order).191

Balance of shrinkage and growth. Geometrically det(Jy) = 1 implies volume192

preservation. Similarly det(Jy) < 1 implies shrinkage while det(Jy) > 1 implies193

growth. A function that treats the cases of shrinkage and growth identically is φ(x) =194

((x− 1)2/x)2 since φ(1/x) = φ(x). A volume penalty195

(6)

∫
Ω

(
(det(Jy)− 1)2

det(Jy)

)2

dx196

is used in the hyperelastic model [7], which ensures that shrinkage and growth have197

the same price.198

LDDMM Framework. In LDDMM framework, the deformation is modeled by199

considering its velocity over time according to the transport equation. We can write200

its variational formulation as follows:201

min
T ,v
D(T (·, 1), R) + αS(v)

s.t. ∂tT (x, t) + v(x, t) · ∇T (x, t) = 0 and T (x, 0) = T,
202

where v : Ω× [0, 1]→ R2 is the velocity and T : Ω× [0, 1]→ R is a series of images.203

For more details, please see [37, 3, 15, 47, 50]204

Beltrami indirect control. In 2014, Lam and Lui [30] presented a novel ap-205

proach in a Beltrami framework to obtain diffeomorphic registrations with large defor-206

mations using landmark and intensity information via quasi-conformal maps. Before207

introducing this model, we first describe some basic theories about quasi-conformal208

map and Beltrami coefficient.209

A complex map z = x1 + ix2 7−→ f(z) = y1(x1, x2) + iy2(x1, x2) from a domain210

in C onto another domain is quasi-conformal if it has continuous partial derivatives211

and satisfies the following Beltrami equation:212

(7)
∂f

∂z̄
= µ(f)

∂f

∂z
,213
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for some complex-valued Lebesgue measurable µ [4] satisfying ‖µ‖∞ < 1. Here µ =214

µ(y) ≡ fz̄/fz is called the Beltrami coefficient explicitly computable from y since215

(8)


fz =

∂f

∂z
≡ 1

2

( ∂f
∂x1
− i

∂f

∂x2

)
=

(y1)x1
+ (y2)x2

2
+ i

(y2)x1
− (y1)x2

2
,

fz̄ =
∂f

∂z̄
≡ 1

2

( ∂f
∂x1

+ i
∂f

∂x2

)
=

(y1)x1
− (y2)x2

2
+ i

(y2)x1
+ (y1)x2

2
,

216

where (y1)x1
= ∂y1/∂x1. Conversely y = yµ can be computed for a given µ through217

solving µ(y) = µ.218

A quasi-conformal map is a homeomorphism (i.e. one-to-one) and its first-order219

approximation takes small circles to small ellipses of bounded eccentricity [20]. As a220

special case, µ = 0 means that the map f is holomorphic and conformal, characterized221

by fz̄ = 0 or y1, y2 satisfying the Cauchy-Riemann equations (y1)x1
= (y2)x2

, (y1)x2
=222

−(y2)x1
.223

Thus in the context of image registration, enforcing ‖µ‖∞ < 1 provides the con-224

trol for the transform f and ensures homeomorphism. The quasi-conformal hybrid225

registration model (QCHR) in [30] is226

(9) min
y

∫
Ω

|∇µ|2 + α

∫
Ω

|µ|p + β

∫
Ω

(T (y)−R)2
227

subject to y = (y1, y2) satisfying228

1). µ = µ(y);229

2). y(pj) = qj for 1 ≤ j ≤ m (Landmark constraints);230

3). ‖µ(y)‖∞ < 1 (bijectivity),231

which indirectly controls det(Jy) via Beltrami coefficient, where µ(y) is the Beltrami232

coefficient of the transformation y. The above model is solved by a penalty splitting233

method. It minimizes the following functional:234

(10)

∫
Ω

|∇ν|2 + α

∫
Ω

|ν|p + σ

∫
Ω

|ν − µ|2 + β

∫
Ω

(T (yµ)−R)2
235

subject to the constraints that ‖ν‖∞ < 1 and yµ be the quasi-conformal map with236

Beltrami coefficient µ satisfying yµ(pj) = qj for 1 ≤ j ≤ m. Then in each iteration,237

it needs to solve the following two subproblems alternately:238

µn+1 = arg minσ

∫
Ω

|µ− νn|2 + β

∫
Ω

(T (yµ)−R)2

s.t. yµ(pj) = qj for 1 ≤ j ≤ m
(11)239

and240

(12) νn+1 = arg min

∫
Ω

|∇ν|2 + α

∫
Ω

|ν|p + σ

∫
Ω

|ν − µn+1|2.241

In addition, it also solves the equation µ(y) = µ by the linear Beltrami solver (LBS)242

[34] to find y and ensures that y matches the landmark constraints.243

Thus, instead of controlling the Jacobian determinant of the transformation di-244

rectly, controlling Beltrami coefficient is also a good alternative providing the same245

but indirect control. However, since their algorithm [30] has to deal with two main246

unknowns (the transformation y and its Beltrami coefficient µ) and one auxiliary un-247

known (the coefficient ν) in a non-convex formulation, the increased cost, practical248
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implementation and convergence are real issues; for challenging problems, one cannot249

observe convergence and therefore the full capability of the model is not realized.250

We are motivated to reduce the unknowns and simplify their algorithm. Our251

solution is to reformulate the problem in the space of the primary variable y or u,252

not in the transformed space of variables µ, ν. We make use of the explicit formula253

of µ = µ(y). Working with primal mapping y enables us to introduce the advantages254

of minimizing a Beltrami coefficient to the above reviewed variational framework (2),255

effectively unifying the two frameworks.256

Hence, we propose a new regularizer based Beltrami coefficient and, in the numer-257

ical part, we can find that it is easy to be implemented. Moreover the reformulated258

control regularizer can potentially be applied to a large class of variational models.259

3. The proposed image registration model. In this section, we aim to260

present a new regularizer based on Beltrami coefficient, which can help to get a261

diffeomorphic transformation. Then combining the new regularizer with the diffusion262

model, we present a novel model. Of course, combining with other models may be263

studied as well since the idea is the same.264

For f(z) = y1(x1, x2) + iy2(x1, x2), according to the Beltrami equation (7) and265

the definitions (8), we have266

(13) µ(f) =
∂f

∂z̄

/∂f
∂z

=
((y1)x1

− (y2)x2
) + i((y2)x1

+ (y1)x2
)

((y1)x1 + (y2)x2) + i((y2)x1 − (y1)x2)
,267

268

(14) |µ(f)|2 =
((y1)x1

− (y2)x2
)2 + ((y2)x1

+ (y1)x2
)2

((y1)x1 + (y2)x2)2 + ((y2)x1 − (y1)x2)2
=
‖Jf‖22 − 2 det(Jf )

‖Jf‖22 + 2 det(Jf )
.269

Note (y1)x1(y2)x2 − (y2)x1(y1)x2 = det(Jf ). So det(Jf ) can be represented by the270

Beltrami coefficient µ(f)271

(15) det(Jf ) = |fz|2(1− |µ(f)|2)272

Clearly det(∇f) > 0 if |µ(f)| < 1, and by the inverse function theorem, the map273

f is locally bijective. We conclude that f is diffeomorphism if we assume that Ω is274

bounded, simply connected.275

For more details about quasi-conformal theory, the readers can refer to [1, 20, 31].276

3.1. New regularizer. Our new regularizer based on |µ(f)| < 1 to control the277

transformation to get a diffeomorphic mapping is278

(16) S1[y] =

∫
Ω

φ(|µ|2)dx, |µ|2 =
‖Jy‖22 − 2 det(Jy)

‖Jy‖22 + 2 det(Jy)
279

which clearly involves the Jacobian determinant det(Jy) in a non-trivial way and we280

explore the choices of φ below.281

Remark. Our new regularizer has two advantages: one is that the obtained trans-282

formation y do not need to possess det(Jy)→ 1; the other one is that we only compute283

the transformation and do not need to compute its Beltrami coefficient and introduce284

another auxiliary unknown as [30]. In addition, from the numerical experiments,285

we can see that our new regularizer is easy to implement and obtains accurate and286

diffeomorphic transformations.287
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3.2. The proposed model. The above regularizer (16) providing a constraint288

on y is ready to be combined with an existing model. In the framework (5), using289

(16), the first version of our new model takes the form290

(17) min
y

1

2
‖T (y)−R‖22 +

α

2
‖ |∇u| ‖22 + β

∫
Ω

φ(|µ|2)dx291

where u = y(x) − x = (y1(x), y2(x)) − x is the deformation field, |∇u|2 = |∇u1|2 +292

|∇u2|2 and µ = µ(y). To promote |µ(f)| < 1, our first and simple choice is φ(v) =293

φ1(v) = 1
(v−1)2 , which forces (17) and φ(v) to reduce v, at the initial guess v = 0294

when u=0, since φ1(v)→∞ when v → 1.295

Remark. From (9) and (17), we see that the QCHR model focuses on obtaining a296

smooth Beltrami coefficient and our model focuses on the diffeomorphic transformation297

itself. There are major differences between the regularizer in QCHR model and our298

new regularizer: the former is characterized by the Beltrami coefficient µ directly and299

gradient of this Beltrami coefficient µ, while the latter is characterized by the Beltrami300

coefficient indirectly in terms of the transformation y and the gradient of u. Since301

y = x + u is our desired transformation, our direct regularizers such as |∇u|2 make302

more sense than indirect regularizers such as |∇µ|2.303

However as long as |µ(f)| < 1, we would not give a preference to forcing |µ(f)| →304

0. To put some control on bias, similarly to [7], we are led to 2 more choices of a less305

unbiased function to modify S1[y]306

• φ(v) = φ2(v) = v
(v−1)2 : balance |µ(f)| between 0 and 1 as φ2(v) = φ2(1/v);307

• φ(v) = φ3(v) = v2

(v−1)2 : encourage |µ(f)| → 0 and |µ(f)| 6= 1;308

Below, we list first order derivatives and second order derivatives for the above309

different φ(v):310

• φ′1(v) = 2
(v−1)3 and φ′′1(v) = 6

(v−1)4 ;311

• φ′2(v) = − v+1
(v−1)2 and φ′′2(v) = 2v+4

(v−1)4 ;312

• φ′3(v) = − 2v
(v−1)3 and φ′′3(v) = 4v+2

(v−1)4313

which will be used in subsequent solutions. With a general φ(v), the second version314

of our proposed model takes the form:315

(18) min
u

1

2

∫
Ω

(T (x+u)−R)2dx +
α

2

∫
Ω

2∑
`=1

|∇u`|2dx + β

∫
Ω

φ(|µ|2)dx,316

where |µ|2 =
(∂x1u1−∂x2u2)2+(∂x1u2+∂x2u1)2

(∂x1u1+∂x2u2+2)2+(∂x1u2−∂x2u1)2 is written in component form ready for317

discretization, using y1 = x1 +u1(x1, x2), y2 = x2 +u2(x1, x2), and ∂x1
u1 = ∂u1/∂x1.318

Remark. For the existence or uniqueness of a solution of (18), this is out of the319

scope of the present work and will be considered in our forthcoming work.320

4. The numerical algorithm. In this section, we will present a numerical al-321

gorithm to solve model (18). We choose the discretize - optimize approach. Directly322

discretizing this variational model gives rise to a finite dimensional optimization prob-323

lem. Then we use optimization methods to solve this resulting problem.324

4.1. Discretization. We use finite differences to discretize model (18) on a unit325

square domain Ω = [0, 1]2. In implementation, we employ the nodal grid and define326

a spatial partition Ωh = {xi,j ∈ Ω | xi,j = (xi1, x
j
2) = (ih, jh), 0 ≤ i ≤ n, 0 ≤ j ≤ n},327
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where h = 1
n and the discrete domain consists of n2 cells of size h × h. We dis-328

cretize the displacement field u on the nodal grid, namely ui,j = (ui,j1 , ui,j2 ) =329

(u1(xi1, x
j
2), u2(xi1, x

j
2)). For ease presentation, according to the lexicographical or-330

dering, we reshape331

X = (x0
1, ..., x

n
1 , ..., x

0
1, ..., x

n
1 , x

0
2, ..., x

0
2, ..., x

n
2 , ..., x

n
2 )T ∈ R2(n+1)2×1,332

and333

U = (u0,0
1 , ..., un,01 , ..., u0,n

1 , ..., un,n1 , u0,0
2 , ..., un,02 , ..., u0,n

2 , ..., un,n2 )T ∈ R2(n+1)2×1.334

4.1.1. Discretization of Term 1 in (18). According to the cell-centred parti-335

tion in Figure 1(a) and mid-point rule, we get336

D[u] :=
1

2

∫
Ω

(T (x+u(x))−R(x))2dx

=
h2

2

n−1∑
i=0

n−1∑
j=0

(T (xi+
1
2 ,j+

1
2 + u(xi+

1
2 ,j+

1
2 ))−R(xi+

1
2 ,j+

1
2 ))2.

(19)337

i+1,j+1i,j+1

i,j i+1,j

i+0.5,j+0.5

(a) Illustration of cell-centered partition:
Green cell denoted by Ωi,j . Nodal Grid �

i-1,j i-0.5,j i,j i+1,j

i+1,j+1

i+1,j+0.5

(b) Partition for ∂x and ∂y . The left yellow
cell is Ωx1

i,j and the right green cell is Ωx2
i,j .

Fig. 1. Partition of domain Ω = ∪ijΩi,j . Note that solutions u1 and u2 are defined at nodes.

Set ~R = R(PX) ∈ Rn2×1 as the discretized reference image and ~T (PX + PU) ∈338

Rn2×1 as the discretized deformed template image, where P ∈ R2n2×2(n+1)2 is an339

averaging matrix for the transfer from the nodal grid representation of U to the cell340

centered positions.341

Consequently, for SSD, we obtain the following discretization:342

(20) D[u] ≈ h2

2
(~T (PX + PU)− ~R)T (~T (PX + PU)− ~R).343
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4.1.2. Discretization of Term 2 in (18). For the diffusion regularizer,344

(21) Sdiff [u] :=
α

2

∫
Ω

2∑
`=1

|∇u`|2dx,345

according to the the partition in Figure 1(b) and mid-point rule, we have346

(22)

∫
Ω
x1
i,j

|∂x1u`|2dx ≈ h2(∂
i+ 1

2 ,j
x1 u`)

2 1 ≤ j ≤ n− 1,347

or at the boundary half-boxes348

(23)

∫
Ω
x1
i,j

|∂x1
u`|2dx ≈ h2

2
(∂
i+ 1

2 ,j
x1 u`)

2 j = 0, n.349

And for
∫

Ω
x2
i,j
|∂x2u`|2dx, ` = 1, 2, we have similar results.350

As designed, we use compact (short) difference schemes to compute the ∂x1u` and351

∂x2u`, ` = 1, 2:352

(24) ∂
i+ 1

2 ,j
x1 u` ≈

ui+1,j
` − ui,j`

h
, ∂

i,j+ 1
2

x2 u` ≈
ui,j+1
` − ui,j`

h
.353

Then (21) can be rewritten in the following formulation:354

(25) Sdiff [u] ≈ αh2

2
UTATGAU.355

See Appendix A for details on A and G.356

Remark. Note that here the matrix A is the discretized gradient matrix. So357

ATGA is the discretized Laplace matrix.358

V5

V1 V2

V3 V4

Fig. 2. Partition of a cell, nodal point � and center point ◦. 4V1V2V5 is Ωi,j,k.

4.1.3. Discretization of Term 3 in (18). For simplicity, denote |µ(y)| =359

|µ(x + u)| by |µ(u)|. From (18), note that φ(|µ(u)|2) involves only first order deriva-360

tives and all ui,j are available at vertex pixels. Thus it is convenient first to obtain361
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approximations at all cell centres (e.g. at V5 in Figure 2) and second to use local362

linear elements to facilitate first order derivatives. We shall divide each cell (Figure363

2) into 4 triangles. In each triangle, we construct two linear interpolation functions to364

approximate the u1 and u2. Consequently, all partial derivatives are locally constants365

or φ(|µ(u)|2) is constant in each triangle.366

According to the partition in Figure 2, we get367

(26) SBeltrami[u] := β

∫
Ω

φ(|µ(u)|2)dx = β
n∑
i=1

n∑
j=1

4∑
k=1

∫
Ωi,j,k

φ(|µ(u)|)2)dx.368

Set Li,j,k(x) = (Li,j,k1 (x), Li,j,k2 (x)) = (ai,j,k1 x1 + ai,j,k2 x2 + ai,j,k3 , ai,j,k4 x1 + ai,j,k5 x2 +369

ai,j,k6 ), which is the linear interpolation for u in the Ωi,j,k. Note that ∂x1L
i,j,k
1 =370

ai,j,k1 , ∂x2
Li,j,k1 = ai,j,k2 , ∂x1

Li,j,k2 = ai,j,k4 and ∂x2
Li,j,k2 = ai,j,k5 . According to (18), the371

discretization of Beltrami regularizer can be written into following:372

(27) SBeltrami[u] ≈ βh2

4

n∑
i=1

n∑
j=1

4∑
k=1

φ(
(ai,j,k1 − ai,j,k5 )2 + (ai,j,k2 + ai,j,k4 )2

(ai,j,k1 + ai,j,k5 + 2)2 + (ai,j,k2 − ai,j,k4 )2
).373

To simplify (27), define 3 vectors ~r(U),~r1(U),~r2(U) ∈ R4n2

by ~r(U)` = ~r1(U)`~r
2(U)`,374

~r1(U)` = (ai,j,k1 −ai,j,k5 )2 +(ai,j,k2 +ai,j,k4 )2, ~r2(U)` = 1
/

[(ai,j,k1 +ai,j,k5 +2)2 +(ai,j,k2 −375

ai,j,k4 )2] where ` = (k − 1)n2 + (j − 1)n+ i ∈ [1, 4n2]. Hence, (27) becomes376

(28) SBeltrami[u] ≈ βh2

4
φ(~r(U))eT377

where φ(~r(U)) = (φ(~r(U)1), ..., φ(~r(U)4n2)) denotes the pixel-wise discretization of378

u1, u2 at all cell centers, and e = (1, ..., 1) ∈ R4n2

. Here, ~r(U) is the square of the379

discretized Beltrami coefficient; we rewrite it in a compact form in Appendix B.380

Finally, combining the above three parts (20), (25) and (28), we get the discretiza-381

tion formulation for model (18):382

min
U

J(U) :=
h2

2
(~T (PX + PU)− ~R)T (~T (PX + PU)− ~R) +

αh2

2
UTATGAU

+
βh2

4
φ(~r(U))eT .

(29)383

Remark. According to the definition of φ and ~r(U)` ≥ 0, each component of384

φ(~r(U)) is non-negative and differentiable.385

4.2. Optimization method for the discretized problem (29). In the nu-386

merical implementation, we choose line search method to solve the resulting uncon-387

strained optimization problem (29). In order to guarantee the search direction is a388

descent direction, we employ the Gauss-Newton direction as the standard direction389

involving non-definite Hessians does not generate a descent direction. Otherwise, us-390

ing a Gauss-Newton approach presents two agvantages: one is that we do not need391

to compute the second order term and it can save computation time; the other one392

is that this Gauss-Newton matrix is more important than the second term, either393

because of small second order derivatives or because of small residuals [42].394

Let J(U) : R2(n+1)2 → R be twice continuously differentiable, Uk ∈ R2(n+1)2 and395

the approximated Hessian H(Uk) positive definite. We model J at the current point396
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12 DAOPING ZHANG AND KE CHEN

Uk by the quadratic approximation qk(s),397

(30) J(Uk + s) ≈ qk(s) = J(Uk) + dJ(Uk)T s+
1

2
sTH(Uk)T s,398

where s = U − Uk and dJ(Uk) = ∇J(Uk). Minimizing qk(s) yields399

(31) Uk+1 = Uk − [H(Uk)]−1dJ(Uk).400

In order to guarantee the global convergence of the Gauss-Newton method, we401

employ the line search and its iteration is as follows:402

(32) Uk+1 = Uk − θk[H(Uk)]−1dJ(Uk).403

where θk is a step length.404

Next, we will investigate the details about the approximated Hessian H(Uk), step405

length θk, stopping criteria and multilevel strategy.406

4.2.1. Approximated Hessian H. We consider each of the three terms in407

J(U) from (29) separately.408

Firstly, we consider the discretized SSD409

(33)
h2

2
(~T (PX + PU)− ~R)T (~T (PX + PU)− ~R).410

Its gradient and Hessian are respectively411

(34)

{
d1 = h2PT ~TT

Ũ
(~T (Ũ)− ~R) ∈ R2(n+1)2×1,

H1 = h2PT (~TT
Ũ
~TŨ +

∑n2

`=1(~T (Ũ)− ~R)`∇2(~T (Ũ)− ~R)`)P
412

where Ũ = PX + PU and ~TŨ = ∂ ~T (Ũ)

∂Ũ
as the Jacobian of ~T with respect to Ũ.413

For H1, we cannot ensure that it is positive semi-definite. If it is not positive414

definite, we may not get a descent direction. So we omit the second order term of H1415

to obtain the approximated Hessian of (33):416

(35) Ĥ1 = h2PT (~TT
Ũ
~TŨ)P.417

Remark. Evaluation of the deformed template image T must involve interpola-418

tion because Ũ do not in general correspond to pixel points; in our implementation,419

as with [39], we use B-splines interpolation to get ~T (Ũ).420

Secondly, for the discretized diffusion regularizer αh2

2 UTATGAU , its gradient and421

Hessian are the following:422

(36)

{
d2 = αh2ATGAU ∈ R2(n+1)2×1,

H2 = αh2ATGA ∈ R2(n+1)2×2(n+1)2 .
423

Since H2 is positive definite when U is applied with Dirichet boundary conditions, we424

do not approximate it.425

Finally, for the discretized Beltrami term426

(37)
βh2

4
φ(~r(U))eT ,427
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the gradient and the Hessian are as follows:428

(38)

{
d3 = βh2

4 d~rTdφ(~r) ∈ R2(n+1)2×1,

H3 = βh2

4 (d~rTd2φ(~r)d~r +
∑4n2

`=1[dφ(~r)]`∇2~r`) ∈ R2(n+1)2×2(n+1)2
429

where dφ(~r) = (φ′(~r1), ..., φ′(~r4n2))T is the vector of derivatives of φ at all cell centers,430

(39)


d~r = diag(~r1)d~r2 + diag(~r2)d~r1,

d~r1 = 2 diag(A1U)A1 + 2 diag(A2U)A2,

d~r2 = −diag(~r2 �~r2)[2 diag(A3U + 2)A3 + 2 diag(A4U)A4],

431

� denotes a Hadamard product, d~r,d~r1,d~r2 are the Jacobian of ~r,~r1,~r2 with respect432

to U respectively, [dφ(~r)]` is the `th component of dφ(~r) and d2φ(~r) is the Hessian433

of φ with respect to ~r, which is a diagonal matrix whose ith diagonal element is434

φ′′(~ri), 1 ≤ i ≤ 4n2. Here diag(v) is a diagonal matrix with v on its main diagonal.435

More details about ~r1, ~r2, A1, A2, A3 and A4 are shown in Appendix B and some436

illustration of our notation is given in Appendix C.437

To extract a positive semi-definite part out of (38), we omit the second order438

term and obtain the approximated Hessian as439

(40) Ĥ3 =
βh2

4
d~rTd2φ(~r)d~r.440

Therefore for functional J(U) in (29) with any choice of φ, we obtain its gradient441

(41) dJ = d1 + d2 + d3442

and approximated Hessian:443

(42) H = Ĥ1 +H2 + Ĥ3.444

4.2.2. Search Direction. At each iteration, using (41) and (42), we need to445

solve the Gauss-Newton system to find the search direction of (29):446

(43) HδU = −dJ ,447

where δU is the search direction. In our implementation, we use MINRES with448

diagonal preconditioning to solve this linear system [2, 43].449

4.2.3. Step Length. We use the standard Armijo strategy with backtracking450

to find a suitable step length θ. In the implementation, we also need to check that451

~r(U) (54) is smaller than 1. Recall that ~r(U) is the norm square of the discretized452

Beltrami term. As a safe guard, we choose T0 = 10−8 and Tol = 10−12 as the lower453

bound of the step length θ and θ‖δU‖ [7, 28, 42, 48]. The algorithm is summarized454

in Algorithm 1.455

4.2.4. Stopping Criteria. Here, we adopt the stopping criteria as in [39]:456

(1.a) ‖J(U i+1)− J(U i)‖ ≤ τJ(1 + ‖J(U0)‖),457

(1.b) ‖yi+1 − yi‖ ≤ τW (1 + ‖y0‖),458

(1.c) ‖dJ‖ ≤ τG(1 + ‖J(U0)‖),459

(2) ‖dJ‖ ≤ eps,460

(3) i ≥ MaxIter.461
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Algorithm 1 Armijo Line Search: (U, ID)← ALS(U, δU)

Step 1: Initialisation. Set ID = 0, θ = 1, Tol= 10−12, T0 = 10−8 and η = 10−4.
Compute J(U) and dJ .

Step 2: Feasibility checking.
while θ‖δU‖ ≥ Tol do
Unew = U + θδU ;
if ||~r(Unew)|| ≤ 1 then

If θ ≥ T0, exit this while loop and go to Step 3, else if θ < T0, go to Step 4.
end if
Reduce the factor θ by θ = θ/2;

end while
Step 3: Line Search.
while θ‖δU‖ ≥ Tol do

Compute J(Unew);
if J(Unew) < J(U) + θηdJ

T δU then
If θ ≥ T0, exit this algorithm with U = Unew, else if θ < T0, go to Step 4.

end if
Reduce the factor θ by θ = θ/2;
Unew = U + θδU ;

end while
Step 4: Set ID = 1 and U = Unew.

Here, eps is the machine precision and MaxIter is the maximal number of outer462

iterations. We set τJ = 10−3, τW = 10−2, τG = 10−2 and MaxIter= 500. If any one463

of (1) (2) and (3) is satisfied, the iterations are terminated. Hence, a Gauss-Newton464

numerical scheme with Armijo line search can be developed. The resulting Gauss-465

Newton numerical scheme by using Armijo line search is summarized in Algorithm466

2.467

Algorithm 2 Gauss-Newton scheme by using Armijo line search for Image Registra-
tion: (U, ID)← GNAIRA(α, β, U0, T,R)

Step 1: Set i = 0 at the solution point U i = U0.
Step 2: For (29), compute the energy functional J(U i), its gradient diJ and

the approximated Hessian Hi by (42).
while “none of the listed 3 stopping criteria are satisfied” do

— Solve the Gauss-Newton equation: HiδU i = −diJ ;
— (U i+1, ID)← ALS(U i, δU i) by Algorithm 1;
if ID = 1 then

Exit this algorithm.
else
i = i+ 1;
Compute J(U i), diJ and Hi;

end if
end while

Next, we discuss the global convergence result of Algorithm 2 for our reformulated468

problem (29). Firstly, we review some relevant theorem.469
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Theorem 1 ([28]). For the unconstrained optimization problem470

min
U

J(U)471

let an iterative sequence be defined by U i+1 = U i+θδU i, where δU i = −(Hi)−1dJ(U i)472

and θ is obtained by Algorithm 1. Assume that three conditions are met: (i). dJ be473

Lipschitz continuous; (ii). the matrices Hi are SPD (iii). there exist constants κ̄ and474

λ such that the condition number κ(Hi) ≤ κ̄ and the norm ||Hi|| ≤ λ for all i. Then475

either J(U i) is unbounded from below or476

(44) lim
i→∞

dJ(U i) = 0477

and hence any limit point of the sequence of iterates is a stationary point.478

Remark. In the above discretization leading to (29), we do not need to introduce479

the boundary condition. However for theory purpose, in the following, we will prove480

our convergence result under the Dirichlet boundary condition (namely, the boundary481

is fixed) and this condition is needed to prove the symmetric positive definite (SPD)482

property of the approximated Hessians. In practical implementation, such a condition483

is not required as confirmed by experiments.484

In addition, define an important set X := {U | ~r(U)` ≤ 1 − ε, 1 ≤ ` ≤ 4n2}485

for small ε. So U ∈ X means that the transformation is diffeomorphic. Under the486

suitable β, we assume that each U i generated by Algorithm 2 is in the X .487

Secondly we stage a simple lemma that is needed shortly for studying Hi.488

Lemma 2. Let a matrix be comprised of 3 submatrices H = H1 + H2 + H3. If489

H1 and H2 are symmetric positive semi-definite and H3 is SPD, then H is SPD with490

λh3
≤ λh, where λh3

and λh are the minimum eigenvalues of H3 and H separately.491

Proof. According to Rayleigh quotient, we can find a vector v such that492

(45) λh =
vTHv

vT v
.493

Then we have494

(46) λh3
≤ vTH1v

vT v
+
vTH2v

vT v
+
vTH3v

vT v
=
vTHv

vT v
= λh,495

which completes the proof.496

Theorem 3. Assume that T and R are twice continuously differentiable. For497

(29), when φ = φ1, φ2 or φ3, by using Algorithm 2, we obtain498

(47) lim
i→∞

dJ(U i) = 0499

and hence any limit point of the sequence of iterates produced by Algorithm 2 is a500

stationary point.501

Proof. It suffices to show that Algorithm 2 satisfies the requirements of Theorem502

1. Recall ~r(U) and we can see that it is continuous. Here, we use the Dirichlet bound-503

ary condition and we can assume that ‖U‖ is bounded. Then ~r(U) is a continuous504

mapping from a compact set to R4n2×1 and ~r(U) is proper. So for some small ε > 0,505

X is compact.506

This manuscript is for review purposes only.



16 DAOPING ZHANG AND KE CHEN

Firstly, we show that in X , dJ of (29) is Lipschitz continuous. When φ = φ1, φ2507

or φ3, the term φ(~r(U))eT in the (29) is twice continuously differentiable with respect508

to U ∈ X . In addition, T and R are twice continuously differentiable. So (29) is twice509

continuously differentiable with respect to U ∈ X and dJ is Lipschitz continuous.510

Secondly, we show that in X , Hi = Ĥi
1 + Hi

2 + Ĥi
3 is SPD. By the construction511

of Ĥi
1 and Ĥi

3, they are symmetric positive semi-definite. Hi
2 is symmetric positive512

definite under the Dirichlet boundary condition. Consequently Hi is SPD.513

Thirdly, we show that both κ(Hi) and ‖Hi‖ are bounded. We notice that514

in each iteration, Hi
2 = αh2ATGA is constant and we can set ‖Hi

2‖ = M2. For515

Ĥi
1 = h2PT (~TT

Ũ
~TŨ)P , we get its upper bound M1 because T is twice continuously516

differentiable and X is compact. For φ = φ1, φ2 or φ3, φ is twice continuously differ-517

entiable with respect to U ∈ X , then we have ‖Ĥi
3‖ ≤

βh2

4 ‖d~r
T ‖‖d2φ(~r)‖‖d~r‖ ≤M3.518

Hence, we have519

(48) ‖Hi‖ ≤ ‖Ĥi
1‖+ ‖Hi

2‖+ ‖Ĥi
3‖ ≤M1 +M2 +M3.520

So set M = M1 +M2 +M3 and ‖Hi‖ ≤M . Set σ as the minimum eigenvalue of Hi
2.521

According to Lemma 2, the smallest eigenvalue λmin of Hi should be larger than σ.522

The largest eigenvalue λmax of Hi should be smaller than M due to λmax ≤ ‖Hi‖.523

So the conditional number of Hi is smaller than M
σ .524

Finally, we can find that (29) has lower bound 0. So by applying Theorem 1, we525

finish the proof.526

4.3. Multi-Level Strategy. In practice, we employ the multilevel strategy. We527

firstly coarsen the template T and the reference R by L levels. Here, we set TL = T528

and RL = R in the finest level and T1 and R1 in the coarsest level. Then we can obtain529

U1 by solving our model (18) on the coarsest level. In order to give a good initial530

guess for the finer level, we adopt an interpolation operator on U1 to obtain U0
2 as the531

initial guess for the next level. We repeat this process and get the final registration on532

the finest level. A multi-level strategy has several advantages: in the coarse level, only533

important patterns can be considered and it is a standard technique used in order to534

avoid getting trapped in a meaningless local minimum; the computational speed is535

very fast because of less variables than on the fine level; the solution on the coarse536

level can be a good initial guess for the fine level.537

The multilevel scheme representing our main algorithm is summarized below538

where IhH is an interpolation operator based on bi-linear interpolation techniques539

and IHh is a restriction operator for tansferring information to a coarser level.540

5. Numerical Results. In this section, we will give some numerical results to541

illustrate the performance of our model (18). We hope to achieve 3 aims:542

1). Which choice of φ is the best for our model (18)?543

2). We wish to compare with the current state-of-the-art methods (with codes listed544

for readers’ benefit) in the literature for good diffeomorphic mapping:545

(a) Hyperelastic Model [7]: code from http://www.siam.org/books/fa06/546

(b) LDDMM [37]: code from547

https://github.com/C4IR/FAIR.m/tree/master/add-ons/LagLDDMM548

(c) Diffeomorphic Demons (DDemons) [51]: code from549

http://www.insight-journal.org/browse/publication/154550

(d) QCHR [30]; code provided by the author Dr. Kam Chu Lam.551

All of the tests are performed on a PC with 3.40 GHz Intel(R) Core(TM) i7-4770552

microprocessor, and with installed memory (RAM) of 32 GB.553
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Algorithm 3 Multilevel Image Registration: U ← MLIR(α, β, U0, T,R)

Step 1: Compute the largest possible number of levels based on size of T,R:
L =Maxlevel; Define the coarsest level as level 1.

Work out the multilevel representation of given images R and T :
RL = R, TL = T ;
RL−1 = IHh RL,
TL−1 = IHh TL; . . . ;
R1 = IHh R2, T1 = IHh T2 .

Step 2: Set the initial guess on the coarsest level:
UL = U0, U0

j = IHh U
0
j+1, j = L− 1, ..., 1.

Step 3: Apply Algorithm 2 on the coarsest level i = 1 with U0
1 :

(U1, ID)←GNAIRA(α, β, U0
1 , T1, R1);

if ID = 1 then
Exit this algorithm;

end if
for level j = 2 : L do

Interpolate the solution from a coarser level U0
j = IhHUj−1;

Apply Algorithm 2 on level j: (Uj , ID)←GNAIRA(α, β, U0
j , Tj , Rj);

if ID = 1 then
Exit this algorithm;

end if
end for

3). Most importantly, we like to test and highlight the advantages of our new model.554

Let y be the final transform obtained by a particular model for registering two555

given images T,R. We use the following three measures to quantify the performance556

of this model and use them for later comparisons:557

(i). Re SSD (the relative Sum of Squared Differences) which is given by558

(49) Re SSD =
‖T (y)−R‖2

‖T −R‖2
;559

(ii). min det(Jy) and max det(Jy) that are the minimum and the maximum of the560

Jacobian determinant of this transformation;561

(iii). Jaccard similarity coefficient (JSC) as defined by562

(50) JSC =
|DTr ∩Rr|
|DTr ∪Rr|

,563

where DTr and Rr represent respectively the segmented regions of interest564

(e.g. certain image feature such as an organ) in the deformed template (after565

registration) and the reference. Hence, JSC is the ratio of the intersection566

of DTr and Rr to the union of DTr and Rr [29]. JSC = 1 shows that a567

perfect alignment of the segmentation boundary and JSC = 0 indicates that568

the segmented regions have no overlap after registration.569

Before computing JSC, in the first three examples below, we have employed a570

segmentation algorithm to segment the main features in both T and R but for571

the 4th example, the segmentation was manually done for both T and R.572

In practice, we scale the intensity value of T and R to [0, 255]. Here, we state a strategy573

for choosing the parameters. For our model (18), α should be related to energy D[u0]574
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where u0 is the initial guess for the displacement, and β should be related to α.575

Empirically, we set α ∈ [α1, α2], where α1 = 0.5D[u0]10−2 and α2 = 2D[u0]10−2.576

Respectively for φ = φ1, φ2, φ3, we set β ∈ [3α, 5α], [0.5α, 2α] and [α, 5α]. For577

simplicity, we denote by New 1, New 2 and New 3 the model (18) with φ1, φ2 and φ3578

respectively.579

It should be noted that a good registration result should produce a small Re SSD,580

be diffeomorphic and yield a large JSC value for a region of interest.581

5.1. Example 1 — Improvement over the diffusion model. In this ex-582

ample, we test a pair of real medical images, X-ray Hands of resolution 128 × 128.583

Figure 3 (a-b) show the template and the reference. We compare our model with584

the diffusion model and study the improvement over it. In implementation, for both585

models, we use a five-step multilevel strategy.586

We conduct two experiments using different parameters:587

i). Fixed parameters. Our first choice uses fixed parameters. For New 1-3, we588

set β = 7, β = 1 and β = 9 respectively, and fix α = 2. To be fair, we also choose589

α = 2 for the diffusion model. In this case, Figure 3 shows the deformed templates590

T (y) from 4 models. From it, we can see that all four models can produce visually591

satisfactory results. To differentiate them, we have to check the quantitative measures592

from Table 1. We can notice that the transformation obtained by the diffusion model is593

non-diffeomorphic due to min det(Jy) < 0 (i.e. mesh folded, though visually pleasing594

and the Re SSD is small). Figure 4 illustrates the transform y = x + u locally at its595

folding point. In contrast, our New 1-3 can generate diffeomorphic transformations.596

ii). Optimized parameters. The second choice uses the fine tuned parameters597

for the diffusion model. We tested α ∈ [1, 500] and found the smallest α = 430 with598

which the diffusion model generates a diffeomorphic transformation. Then for our599

model, we also set α = 430 (which is not optimized in order to favour the former)600

and set β = 5 for New 1-3 (to test the robustness of our model). Table 1 shows the601

detailed results for this second test. From it, we can see that the Re SSD and JSC602

of our model are similar to the diffusion model. And the transformations obtained603

by New 1-3 are all diffeomorphic while the diffusion model is only diffeomorphic with604

the help of an optimized α. This shows that our model possesses the robustness (in605

the sense of not requiring optimized α) with the help of a positive β.606

Hence, this example demonstrates that our New 1-3 are robust and can all help607

to get an accurate and diffeomorphic transformation.608

Table 1
Test example 1 – Comparison of the new model (New 1-3) with the diffusion model based a

fixed α and an optimized α for the latter. Clearly the latter model can produce an incorrect result if
not tuned while New 1-3 are less sensitive to α with the help of β.

First Test α = 2 Resolution Re SSD min det(Jy) max det(Jy) JSC time (s)

New 1 128× 128 1.84% 0.0032 20.1582 99.35% 38.34
New 2 128× 128 1.25% 0.0003 33.2404 99.54% 30.66
New 3 128× 128 1.63% 0.0014 28.1372 99.26% 21.86

Diffusion Model 128× 128 0.90% −36.7964 72.2924 98.41% 13.42
Second Test α = 430

New 1 128× 128 7.83% 0.1337 4.8247 98.28% 3.16
New 2 128× 128 7.80% 0.1300 4.8364 98.28% 3.24
New 3 128× 128 7.78% 0.1260 4.8472 98.36% 3.03

Diffusion Model 128× 128 7.75% 0.0066 4.8278 98.30% 1.08

5.2. Example 2 – Test of large deformation and comparison of models.609

As known, if the underlying deformation is small, it is generally believed that most610
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(a) Template (b) Reference

(c) T (y) by New 1 (d) T (y) by New 2 (e) T (y) by New 3 (f) T (y) by Diffusion
model

Fig. 3. Test example 1 results of Hand to Hand registration (α = 2): in the top row, there are
the template and reference. In the second row, there are the deformed templates obtained by model
(18) and the diffusion model separately. Though the last column is visually fine, the transform is
not correct – see Table 1.

Fig. 4. Zooming in the transformation (obtained by the diffusion model) where there is folding.

models can deliver diffeomorphic transformations. This belief is true if one keeps611

increasing α, which in turn compromises the registration quality by resulting in an612

increase in Re SSD (as seen in 2 tests of α in Example 1 where the larger α = 430613

achieves diffeomorphism for diffusion with a worse Re SSD value).614

Therefore to test the capability of a registration model, we need to take an exam-615

ple that requires large deformation. To this end, we consider Example 2 – a classic616

synthetic example consisting of a Disc and a C shape of resolution 128 × 128 as617

shown in Figure 5 (a-b). We compare our 3 models (New 1-3) with 5 other mod-618

els: the hyperelastic model, LDDMM, DDemons, QCHR and the diffusion model in619

registration quality and performance. For this example, we use a five-step multilevel620

strategy for our model, the hyperelastic model and the diffusion model. For LDDMM621

and QCHR, we use a three-step multilevel strategy. We use a one-step multilevel622
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Table 2
Test example 2 – Comparison of the new model (New 1-3) with 5 other models.

Resolution Re SSD min det(Jy) max det(Jy) JSC time (s)

New 1 128× 128 0.06% 0.0042 22.4 95.57% 7.00
New 2 128× 128 0.07% 0.0012 19.5 95.84% 10.10
New 3 128× 128 0.06% 0.0034 22.6 95.37% 3.93

Hyperelastic Model 128× 128 0.81% 0.2426 5.9 94.84% 1.84
LDDMM 128× 128 0.06% 0.1175 12.0 96.00% 9.16

DDemons 128× 128 1.71% 1.3× 10−7 8.2 92.69% 57.27
QCHR Model 128× 128 7.69% 0.0255 57.4 85.36% 141.86

Diffusion Model 128× 128 1.25% −10.1612 162.5 94.21% 0.31

strategy for DDemons as we found that multilevel does not improve the results.623

Following our stated strategy for choosing the parameter for our model, we set624

β = 80, 120, 100 for New 1-3 respectively and fix α = 70. To be consistent, we also set625

α = 70 for the diffusion model. For the hyperelastic model, LDDMM and QCHR, we626

set respectively {αl = 100, αs = 0, αv = 18}, α = 400 and {α = 0.1, β = 1} as used in627

the literature [7, 37, 30] for the same example. For the parameters of DDemons, we628

tried to optimize the parameters {σs, σg} in the domain [0.5, 5]× [0.5, 5] and took the629

optimal choice {σs = 1.5, σg = 3.5}.630

We now present the comparative results. Figure 5 (c-j) show that except for631

the diffusion model, all the other models can produce the accepted registered results.632

Especially, our model and LDDMM are slightly better than the hyperelastic model,633

DDemons and QCHR. It is pleasing to see that the new model produces equally634

good results for this challenging example. From Table 2, we see that our New 1-3,635

hyperelastic model, LDDMM, DDemons and QCHR produce min det(Jy) > 0 i.e.636

the transformations obtained by these five models are diffeomorphic but the diffusion637

model fails again with min det(Jy) < 0.638

Because New 1-3 are motivated by the QCHR model, we now discuss the results639

about these two types of models. On the one hand, according to Table 2, we can640

find that our model takes less time. This is because, as we have mentioned, the641

algorithm for QCHR needs to solve alternatively two subproblems (including several642

linear systems) in each iteration. Its convergence cannot be guaranteed. However,643

our model only needs to solve one linear system in each iteration. In addition, we644

employ the Gauss-Newton method which can be superlinearly convergent under the645

appropriate conditions. As we have also remarked, the QCHR algorithm can have646

convergence problems. This is now illustrated in Figure 6 where we plot the relative647

residual of our model (New 3) and the relative residual of QCHR. We observe that648

New 3 decreases to below 10−2 though not monotonically, but the relative residual of649

QCHR does not decrease and is over 0.1.650

On the other hand, we can compare the obtained solutions’ quality by checking651

the energy functionals. Using the same QCHR functional, the QCHR solution for652

Example 2 has the value 1042 while the transformation obtained by New 3 gives the653

value 147 which is much smaller. This indicates that the result obtained by the QCHR654

algorithm is not accurate. This is consistent with the fact that the Re SSD and JSC655

of New 3 are also better than QCHR. Both discussions reach the same conclusion:656

the QCHR algorithm cannot obtain the minimizer of the original QCHR functional.657

5.3. Example 3 – Comparison of models for a challenging test. Here,658

we illustrate the fact that area preservation between images can become unnecessary659

and trying to enforce it (as in the hyperelastic model) can fail to register an image.660

We choose the particular template and reference images, as shown in Figure 7 (a-b),661
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(a) Template T (b) Reference R

(c) T (y) 0.1% by New 1 (d) T (y) 0.1% by New 2 (e) T (y) 0.1% by New 3 (f) T (y) 0.8%
by Hyperelastic

(g) T (y) 0.1%
by LDDMM

(h) T (y) 1.7%
by DDemons

(i) T (y) 7.7% by
QCHR 6 landmarks

(j) T (y) 1.3%
by Diffusion model

Fig. 5. Test example 2 results of Disc to C. The percentage value shows Re SSD error. In the
top row, there are the template and the reference. In the second and third row, there are the deformed
templates obtained by New 1-3 and 5 other models separately. The landmarks in the template and
reference are only used for QCHR and the last result (j) by Diffusion is evidently not correct.

having significantly different areas in their main features – here the area of ’Disc’662

is much larger than ’C’. The resolution of the images is 512 × 512. We test the663

performance of New 1-3 and other models. In this example, we use a seven-step664

multilevel strategy for New 1-3, the hyperelastic model and the diffusion model. For665

LDDMM and QCHR, we use a five-step multilevel strategy. We use a single level for666

DDemons (since multilevels do not help).667

In choosing the parameters for all the models to register this example, we first668

follow our strategy to set β = 250, 50, 100 for New 1-3 respectively and fix α = 50.669

To be consistent, we also set α = 50 for the diffusion model. For the hyperelastic670

model, we also set αl = 50 because it contains the diffusion term, and take αs = 0.671

For the third parameter αv in the hyperelastic model, we test it in the range [55, 150]672

and choose its optimal value αv = 75. For LDDMM and QCHR, we set the default673

value α = 400 and {α = 0.1, β = 1} as the previous example. For the parameters of674

DDemons, we test the parameters {σs, σg} in the domain [0.5, 5]× [0.5, 5] and choose675
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0 5 10 15 20 25 30 35 40 45 50
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10
0

Relative Residual of Our model 3

Relative Residual of QCHR

Fig. 6. Example 2 Relative Residual of New 3 and QCHR: The solid line indicates the relative
residual of New 3. And the dot line shows the relative residual of the second subproblem in QCHR.
Here, we can find that in the same 50 iterations, the relative residual of New 3 is decreasing to below
10−2, however the relative residual of QCHR is not decreasing and over 0.1. Hence, the convergence
of the algorithm for QCHR can not be guaranteed.

its optimal choice {σs = 2, σg = 5}. Hence we would expect the hyperelastic model676

and DDemons to perform well.677

The test results for Example 3 are presented in Table 3 and Figure 7. Although678

all models except for the diffusion model produce diffeomorphic transformations, we679

can see visually that only 3 models (our New 2-3 and LDDMM) produce acceptable680

results, also confirmed by the table:681

• The badly deformed template generated by our New 1 shows that the model682

lacks robustness;683

• The hyperelastic model, though producing a diffeomorphic transform, fails684

(despite using an optimized parameter) because this model including a reg-685

ularization term (det(Jy) − 1)4/(det(Jy))2 tends to preserve area. If we do686

not optimize parameters for the hyperelastic model, our tests show that its687

results are even worse.688

• In the previous example, we have pointed out that QCHR needs more com-689

puting time and, from Table 3, we see that the time for QCHR is about 20690

times as long as our New 3;691

• The DDemons is trapped in a local minimum and its cpu time is also excessive692

(> 5000 seconds). We also try to apply a multilevel strategy to DDemons,693

but for this example the result is not satisfied. The Re SSD, JSC and cpu694

time of our New 3 are all slightly better than the second best LDDMM;695

• Both Tables 2 and 3 show that the diffusion model produces solutions having696

a negative Jacobian (folding) which might be viewed non-physical; this model697

is included only for reference.698

Hence, our model has advantages over other models for large deformation registrations699

not requiring preserving area.700

We now give 2 remarks on comparing New 3 (or New 2) and QCHR. As remarked,701

QCHR regularizes the Beltrami coefficient only and the landmarks supplied to QCHR702

can severely affect the results while our model regularizes the deformation rather than703

Beltrami coefficient. Both points can be further tested below.704

(i). On the first point, regularizing the Beltrami coefficient only leads to smooth705

Beltrami coefficient. To compare smoothness of solutions by New 3 and QCHR, we706

compute three smoothness measures ‖∇u‖L2 , ‖µ(y)‖L2 , ‖∇µ(y)‖L2 and present them707
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Table 3
Example 3 – Comparison of the new model (New 1-3) with 5 other models.

Resolution Re SSD min det(Jy) max det(Jy) JSC time (s)

New 1 512× 512 3.06% 0.0328 38.2272 78.93% 402.87
New 2 512× 512 0.08% 0.0035 64.4950 97.84% 281.95
New 3 512× 512 0.07% 0.0064 60.1743 97.82% 202.17

Hyperelastic Model 512× 512 3.85% 0.4895 7.0781 75.49% 46.16
LDDMM 512× 512 0.41% 0.0184 40.2544 95.05% 218.32

DDemons 512× 512 2.83% 9.6× 10−6 34.8529 80.56% > 5000
QCHR Model 512× 512 2.03% 0.0207 4.4744 84.24% 4716.7

Diffusion Model 512× 512 0.52% −38.8337 286.3411 94.68% 5.52

(a) Template T (b) Reference R

(c) T (y) by our model 1 (d) T (y) by our model 2 (e) T (y) by our model 3 (f) T (y) by Hyperelastic
model

(g) T (y) by LDDMM (h) T (y) by DDemons (i) T (y) by QCHR with
20 pairs of landmarks

(j) T (y) by Diffusion
model

Fig. 7. Example 3 results of a large Disc to small letter C : in the top row, there are the
template and reference. In the second and third row, there are the deformed templates obtained by
model (18) and other models separately. The landmarks in the template and reference are only used
for QCHR.

in Table 4. Clearly the table indicates that QCHR does generate a smoother Beltrami708

coefficient than our model New 3 for both Examples 2-3, not a smoother deformation709

field. Hence, the model which only regularizes the Beltrami coefficient rather than710

the deformation is not sufficient to produce an accurate deformed template.711

(ii). On the second point, we now illustrate the importance of landmarks for712
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(a) T with
4 landmarks

(b) T with
6 landmarks

(c) T with
16 landmarks

(d) R with
4 landmarks

(e) R with
6 landmarks

(f) R with
16 landmarks

(g) T with
4 landmarks

(h) T with
8 landmarks

(i) T with
20 landmarks

(j) R with
4 landmarks

(k) R with
8 landmarks

(l) R with
20 landmarks

(m) T (y) JSC
83.15%

(n) T (y) JSC
85.36%

(o) T (y) JSC
90.16%

(p) T (y) JSC
54.14%

(q) T (y) JSC
65.78%

(r) T (y) JSC
84.24%

Fig. 8. Tests of QCHR with different landmarks: Example 2 (row 1) and Example 3 (row 2).
On the left 3 columns of row 3, we show the registered templates for row 1. On the right 3 columns
of row 3, we show the registered templates for row 2. Here, we can see that the accuracy of QCHR
improves with the increase of landmarks.

Table 4
Comparison of smoothness measures for solutions obtained by New 3 and QCHR. The Beltrami

coefficient µ obtained by QCHR is smoother than New 3 and the displacement u obtained by New 3
is smoother than QCHR.

‖∇u‖L2 ‖µ(y)‖L2 ‖∇µ(y)‖L2 Re SSD

Example 2
QCHR with 16 pairs of landmarks 2.1099 0.6930 0.2782 4.90%

New 3 1.6155 0.5024 0.2800 0.06%

Example 3
QCHR with 20 pairs of landmarks 1.5366 0.5853 0.0868 2.03%

New 3 1.3913 0.3352 0.1090 0.07%

QCHR although for other problems the model can yield good results without any713

landmarks. Fig. 8 shows three sets of increasing number of landmarks for Examples714

2-3. We observe that more landmarks lead to better results in terms of JSC values.715

As a final comparison of New 3 with LDDMM and QCHR, Figure 9 plots the716

magnitudes of the Jacobian determinants of their transformations. It can be seen717

that New 3 and LDDMM give a similar pattern but both are different from QCHR.718

5.4. Example 4— Comparison of the new model with other models. In719

the final test, we test a pair of anonymized CT images in resolution 512 × 512 from720

the Royal Liverpool University Hospital. Figure 10 (a-b) show the template and the721

reference. The template was taken in September 2016 and the reference was taken in722

May 2016. We want to compare the changes of our interested regions of abdominal723

aortic aneurysm with stents inserted inside them (with cross sections shown as two724
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Fig. 9. Example 3 Illustration of Jacobian determinants of the transformations obtained by our
New 3, QCHR and LDDMM for Example 2 (left two plots) and Example 3 (right two plots). Note
all values are positive (since all models are diffeomorphic) and New 3 has similar distributions to
LDDMM, different from QCHR.

Table 5
Example 4 – Comparison of New 1-3 with 5 other models

Resolution Re SSD min det(Jy) max det(Jy) JSC

New 1 512× 512 4.75% 0.0124 52.6802 94.19%
New 2 512× 512 3.49% 0.0068 46.6383 94.39%
New 3 512× 512 3.47% 0.0051 49.9309 95.34%

Hyperelastic Model 512× 512 4.44% 0.4181 3.6192 93.51%
LDDMM 512× 512 5.18% 0.0319 20.8164 93.79%
DDemons 512× 512 18.89% 0.1846 2.6309 87.40%

QCHR Model 512× 512 26.71% 0.0481 16.2555 85.68%
Diffusion Model 512× 512 10.02% 0.0342 7.3450 93.65%

while ‘circles’ in images in Figure 10 (a-b)) during these 4 months. In addition, the725

interested region is used to compute JSC. The small white region on top of the726

images helps us to identify the correct slice to compare.727

Here, following the previous example, we use the same multilevel strategy: a728

seven-step multilevel strategy for our model, the hyperelastic model and the diffu-729

sion model, a five-step multilevel strategy for LDDMM and QCHR and a one-step730

multilevel strategy for DDemons.731

Following our strategy for choosing the parameter of our model, we set α = 20 and732

set β = 100, 40, 75 with New 1-3 respectively. For the diffusion model and LDDMM,733

we test α from [100, 2000] and set the optimal value 1300 and 500 respectively. For734

the hyperelastic model, we set {αl = 20, αs = 0, αv = 50}. We use the default value735

{α = 0.1, β = 1} for QCHR. For the parameters of DDemons, we test the parameters736

{σs, σg} in the domain [0.5, 5]× [0.5, 5] and choose {σs = 4, σg = 4.5}.737

With the optimized parameters, all the models in this example generate diffeo-738

morphic transformations as seen from Table 5. DDemons and QCHR for this example739

are not as good as other models because they give worse Re SSD and JSC. A worse740

JSC means the interested regions obtained by these two methods have significant741

differences from the reference (Figure 10 (h-i)). The diffusion model obtains a good742

JSC, however its deformed template is a bit far (overall) from the reference (since743

Re SSD = 10.02%). The other 2 models (Hyperelastic, LDDMM) generate good744

Re SSD and JSC. However, our models produce the lowest Re SSD and the best745

JSC. Hence, for this example of real images, our model is competitive to the state-746

of-the-art methods. Though there is broad agreement between Re SSD and JSC,747

one has to combine with segmentation models to ensure the strict agreement.748
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(a) Template T (b) Reference R

(c) T (y) by New 1
JSC 94.2%

(d) T (y) by New 2
JSC 94.4%

(e) T (y) by New 3
JSC 95.3%

(f) T (y) by Hyperelastic
model JSC 93.5%

(g) T (y) by LDDMM
JSC 93.8%

(h) T (y) by DDemons
JSC 87.4%

(i) T (y) by QCHR with
5 pairs of landmarks
JSC 85.7%

(j) T (y) by Diffusion
model JSC 93.7%

Fig. 10. Example 4 – Registration results of a pair of CT images: the template T and the
reference R in the top row. The contours show the regions of interest. In the second and third rows,
we show the deformed templates obtained by 8 models. The 5 landmarks in the template and the
reference are only used by QCHR.

Remark. According to the above four examples, our New 1 is not robust while749

New 2-3 can both generate accurate and diffeomorphic transformations. However, we750

recommend New 3 as the first choice because of the least computing time and the best751

quality, and New 2 as the second choice.752

We also test these four examples with the Dirichlet boundary condition. Similar753

results for Examples 1 and 4 are obtained. However, for Examples 2 and 3, the trans-754

formations would be different since the boundary is better modeled by the Neumann’s755

condition.756

6. Conclusions. Controlling mesh folding is a key issue in image registration757

models to ensure local invertibility. Many existing models either do not impose any758

further controls on the underlying transformation beyond smoothness (so potentially759

generating unrealistic or non-physical transforms or mapping) or impose a direct (often760

strongly biased e.g. towards area or volume preservation) control on some explicit761
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function of the measure det(Jy). This paper introduces a novel, unbiased and robust762

regularizer which is reformulated from Beltrami coefficient framework to ensure a763

diffeomorphic transformation. Moreover we find that a direct approach (our New 1)764

from this Beltrami reformulation provides an alternative but less competitive method765

but further refinements (especially our New 3) of this new regularizer can give rise766

to more robust models than the existing methods. We highly recommend our model767

New 3 i.e. (18) with φ = φ3.768

In designing optimization methods for solving the resulting highly nonlinear vari-769

ational model, we give a suitable approximation of the exact Hessian matrix which is770

necessary to derive a convergent iterative method. Our test results can show that the771

new model (New 1-3, especially New 3) is competitive with the state-of-the-art mod-772

els. The main advantage lies in robustness. Our future work will include extensions773

to 3D problems, multi-modality models and development of faster iterative solvers.774

Appendix A. Computation of matrices A and G in §4.1.2. Set B =775

I2 ⊗ In+1 ⊗ ∂1,h
n ∈ R2n(n+1)×2(n+1)2 , C = I2 ⊗ ∂1,h

n ⊗ In+1 ∈ R2n(n+1)×2(n+1)2 ,776

∂1,h
n =

1

h2


−1 1

−1 1
... ... ...

−1 1
−1 1

 ∈ Rn,n+1, A =

[
B
C

]
∈ R4n(n+1)×2(n+1)2 ,777

where ⊗ denotes a Kronecker product. To represent the difference between interior778

and boundary pixels, we need to introduce a diagonal matrix779

(51) G =


G1 0 0 0
0 G2 0 0
0 0 G1 0
0 0 0 G2

 ∈ R4n(n+1)×4n(n+1),780

where G1 and G2 are diagonal matrices. For G1, G1i+1+jn,i+1+jn = 1 if 0 ≤ i ≤ n −781

1, 1 ≤ j ≤ n−1 or 1
2 if 0 ≤ i ≤ n−1, j = 0, n. Similarly, forG2, G2i+1+j(n+1),i+1+j(n+1)

=782

1 if 1 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1 or 1
2 if i = 0, n, 0 ≤ j ≤ n− 1.783

Appendix B. Computation of the vector ~r(U) in §4.1.3. We demonstrate784

how to build the linear interpolation L in 4V1V2V5, in Figure 2.785

First of all, denote the 3 vertices of this triangle by V1 = x1,1, V2 = x2,1 and786

V5 = x1.5,1.5. Set L(V1) = (u1,1
1 , u1,1

2 ), L(V2) = (u2,1
1 , u2,1

2 ) at the vertex pixels, and787

L(V5) = (u1.5,1.5
1 , u1.5,1.5

2 ) at the cell centre (approximated values). Here the linear788

approximations are L(x1, x2) = (a1x1 + a2x2 + a3, a4x1 + a5x2 + a6).789

After substituting V1, V2 and V5 into L, we get790 (
x1

1 − x1.5
1 x1

2 − x1.5
2

x2
1 − x1.5

1 x1
2 − x1.5

2

)(
a1

a2

)
=

(
u1,1

1 − u1.5,1.5
1

u2,1
1 − u1.5,1.5

1

)
,791

792 (
x1

1 − x1.5
1 x1

2 − x1.5
2

x2
1 − x1.5

1 x1
2 − x1.5

2

)(
a4

a5

)
=

(
u1,1

2 − u1.5,1.5
2

u2,1
2 − u1.5,1.5

2

)
.793

Then794

(52)

(
a1

a2

)
=

1

det

(
x1

2 − x1.5
2 −x1

2 + x1.5
2

−x2
1 + x1.5

1 x1
1 − x1.5

1

)(
u1,1

1 − u1.5,1.5
1

u2,1
1 − u1.5,1.5

1

)
,795
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796

(53)

(
a4

a5

)
=

1

det

(
x1

2 − x1.5
2 −x1

2 + x1.5
2

−x2
1 + x1.5

1 x1
1 − x1.5

1

)(
u1,1

2 − u1.5,1.5
2

u2,1
2 − u1.5,1.5

2

)
,797

where det =

∣∣∣∣x1
1 − x1.5

1 x1
2 − x1.5

2

x2
1 − x1.5

1 x1
2 − x1.5

2

∣∣∣∣.798

According to (52) and (53), we can formulate two matrices D1 ∈ R4n2×(n+1)2 and799

D2 ∈ R4n2×(n+1)2 such that800

a1 − a5 = [D1,−D2]U = A1U ∈ R4n2×1, a4 + a2 = [D2, D1]U = A2U ∈ R4n2×1, and801

a1 + a5 = [D1, D2]U = A3U ∈ R4n2×1, a4 − a2 = [D2,−D1]U = A4U ∈ R4n2×1.802

Here, aθ = (a1
θ, ..., a

4n2

θ )T , θ = 1, 2, 4, 5, where alθ = ai,j,kθ and l = (k−1)n2+(j−1)n+i.803

Next using the Hadamard product �, we get a compact form for804

(54)


~r1(U) = A1U �A1U +A2U �A2U,

~r2(U) = 1/((A3U + 2)� (A3U + 2) +A4U �A4U),

~r(U) = ~r1 �~r2 ∈ R4n2×1.

805

Appendix C. Computing the gradient and approximated Hessian of the806

term (37). Here, as an example, we set n = 2 and φ = φ1 to compute the gradient807

and approximated Hessian of the discretized Beltrami term (37).808

Because of n = 2, we have809

U = (u0,0
1 , ..., u2,0

1 , ..., u0,2
1 , ..., u2,2

1 , u0,0
2 , ..., u2,0

2 , ..., u0,2
2 , ..., u2,2

2 )T ∈ R18×1.810

From (52)-(53), we can formulate two matrices D1, D2 ∈ R16×9 respectively by:811 

−2 2
−2 2

−2 2
−2 2

−1 1 −1 1
−1 1 −1 1

−1 1 −1 1
−1 1 −1 1

−2 2
−2 2

−2 2
−2 2

−1 1 −1 1
−1 1 −1 1

−1 1 −1 1
−1 1 −1 1



,



−1 −1 1 1
−1 −1 1 1

−1 −1 1 1
−1 −1 1 1

−2 2
−2 2

−2 2
−2 2

−1 −1 1 1
−1 −1 1 1

−1 −1 1 1
−1 −1 1 1

−2 2
−2 2

−2 2
−2 2



.812

Then we can build A1, A2, A3 and A4 and compute ~r1,~r2 and ~r by (54). According813

to (39), we have d~r ∈ R16×18.814

When φ(v) = φ1(v), we have φ′1(v) = 2
(v−1)3 , φ′′1(v) = 6

(v−1)4 and so dφ(~r) =815

( 2
(~r1−1)3 , ...,

2
(~r16−1)3 )T in (38). In (40) the ith diagonal element [d2φ(~r)]ii = 6

(~ri−1)4 , 1 ≤816

i ≤ 16. Similarly when φ(v) = φ2, dφ(~r) = ( −~r1−1
(~r1−1)2 , ...,

−~r16−1
(~r16−1)2 )T and [d2φ(~r)]ii =817

2~ri+4
(~ri−1)4 . When φ(v) = φ3, dφ(~r) = ( −2~r1

(~r1−1)3 , ...,
−2~r16

(~r16−1)3 )T and [d2φ(~r)]ii = 4~ri+2
(~ri−1)4 .818

Hence, we can get d3 in (38) and Ĥ3 in (40).819
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