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Abstract: In this paper we propose a new model to detect multiple objects of various intensities in images having

maximum, minimum, or middle-intensity background by evolving only one level set function. In this model, a new

signed pressure force function based on novel generalized averages is used for segmentation of images with maximum or

minimum intensity background. For images with middle-intensity backgrounds, which are indeed challenging for 2-phase

models, we propose a new product generalized signed pressure force function. Finally, to give experimental and qualitative

evidence, our model is tested on both synthetic and real images with the Jaccard similarity index. The experimental

and qualitative results reveal that the proposed method is efficient in both global and selective segmentation. Our new

model is also tested on color images and the results are compared with the state-of-the-art models.
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1. Introduction

Image segmentation aims to extract or distinguish objects from each other in images. In simple words, image

segmentation extracts objects by distinguishing the foreground and background in images [1–6]. Variational

image segmentation models are categorized into two classes, namely edge-based models and region-based models.

In edge-based models objects are extracted by capturing their boundaries, while in region-based models objects

are detected by detecting their occupied optimal regions. For edge detection most of the models use an edge

detector function, which mainly depends on the gradient of a given image [4,7,8]. On the other hand, region-

based segmentation models use region detectors, known as fidelity terms, which use image statistical information

to capture objects/regions [9–11]. In region-based models one of the famous models is the Mumford–Shah (MS)

model [10], which is given by:

F (u,K)MS =

∫
Ω

(u− u0)
2dxdy + α∗

∫
Ω−K

|∇u|2dxdy + β

∫
K

ds, (1)

where u0 is the given image, u is the required solution and is a smooth approximation of u0, α∗, β > 0,Ω

is the image domain, and K is the set of edges (discontinuities) in the image. This model is theoretically

very strong but computationally very complex. The first variation of this model is the piecewise constant

MS model, which considers u to be piecewise constant in each region. The level set methods [12] provided a
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good numerical implementation of piecewise constant (PC) MS models [5,13], but unfortunately for multiregion

image segmentation multilevel set functions are usually evolved, which is a time-consuming approach in many

situations. To enhance the performance of the PC model, Li et al. [9] proposed the local binary fitting model

by incorporating the image local statistical information in the PC model [5,14,15]. This model may segment

images with intensity inhomogeneity and gives competing results compared to the state-of-the-art models. In

this model Gaussian kernel functions are used instead of average intensities. This model works well for images

having intensity inhomogeneity, but the computational cost is very high [16]. To overcome this drawback, Wang

et al. proposed a local energy-based model (local Chan–Vese (LCV)), [15] which is given by:

F (ϕ, c1, c2, d1, d2)
LCV = µ

∫
Ω

|∇H(ϕ)| dxdy + λ1

∫
Ω

(
(u0 − c1)

2 + (u∗
0 − u0 − d1)

2
)
H(ϕ)dxdy

+λ2

∫
Ω

(
(u0 − c2)

2 + (u∗
0 − u0 − d2)

2
)
(1−H(ϕ)) dxdy, (2)

(2)

where u∗
0 denotes the smooth version of given image u0 [15]. µ, λ1, λ2 > 0 are trade-off parameters and

c1, c2, d1, d2 are average intensities of the given image and difference image inside and outside the level set

function ϕ, respectively. H (ϕ) is the Heaviside function, which is 0 if ϕ < 0 and 1 if ϕ > 0. Similarly, Zhang et

al. proposed an active contour model based on local image fitting [16] for images with intensity inhomogeneity.

Recently, Zhang et al. [16–18] combined the idea of geodesics [4] and the Chan–Vese [5] model and proposed

the geodesic-aided Chan–Vese (GCV) model as follows:

∂φ
∂t = α(spf). |∇φ| , in Ω,

φ (t, x, y) = φ0 (x, y) , in Ω,
(3)

where spf denotes the signed pressure force function [16–18] and α > 0. Similarly, Akram et al. [1] modified

the model in Eq. (3) for images with intensity inhomogeneity by replacing the spf function with their local-spf

function [1]. Although these models have improved the performance of the region-based active contour models,

they are not designed to handle images having multiple intensity objects [16,17]. For quantitative comparison

we will use the Jaccard similarity (JS) for different models. If we denote the segmented region by R1 and the

ground truth (GT) by R2 , the JS is the ratio of the areas of the intersection by the union of the regions, i.e.

JS(R1, R2) =
|R1∩R2|
|R1∪R2| . For better results we want JS to be close to 1. The GT used in this paper is obtained

manually in the following way: based on the maximum intensity we set a threshold value and then we choose

GT as image ≤ threshold value. In the hardware image, the intensity values of all objects are at the most 230;

we choose threshold value 240 and take GT as image ≤ 240.

In this paper, we will propose models to handle the problems discussed above. Our novel model uses a

single level set function for segmentation of multiregion images having backgrounds of either maximum intensity,

minimum intensity, or average intensity and the objects are of homogeneous intensities. The new model is tested

on both synthetic and real images. Moreover, some tests on color images are also conducted and results are

compared with a standard model.

Furthermore, for quantitative comparison of different segmentation models, the JS index [13] is presented.

From experimental results, it can be seen that our proposed model perform better than the state-of-the-art

models. It can also be seen that our proposed model works equally well in both global and selective segmentation.

The rest of paper is organized in the following way. In the next section some important materials and
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methods are discussed and the proposed model is given. In Section 3 experimental results and discussions about

the experiments are given. In Section 4 conclusions are given.

2. The proposed model for multiregion segmentation

In the 2-phase framework, the averages of the Chan–Vese (CV) model [5] consider objects of high intensities

as background and objects with low intensities as foreground, so the CV and GCV models are only capable of

detecting objects of either high or lower intensities. To handle this type of issue we design a new model based on

generalized averages, which is defined in the next section. In images with maximum intensity background, we

need larger values of generalized averages than the CV averages to detect all the objects. Similarly, in images

with minimum intensity background, we need smaller values of generalized averages than the CV averages to

detect all the objects.

2.1. Generalized averages in the segmentation framework

Definition 1 We define generalized averages in the following way:

Gc1 =

∫
Ω

uβ
0H (φ) dxdy∫

Ω

uβ−1
0 H (φ) dxdy

,Gc2 =

∫
Ω

uβ
0 (1−H (φ)) dxdy∫

Ω

uβ−1
0 (1−H (φ)) dxdy

, (4)

where β is any real number,u0 is the given image, and H is the Heaviside function whose value is 0 if ϕ < 0

and 1 if ϕ > 0 . The above family of averages is called the Av-family.

Remark 1 The value of parameter β should be chosen greater than 1 for images of maximum intensity

background, like β = 2.For images of minimum intensity background the value of parameter β should be chosen

smaller than 1, such as β = −2 . For images of middle-intensity background, it has been observed that β and the

number of pixels carrying maximum intensity are proportional. Experimentally we have derived the following

relation, where 0.03 is the average of ratios of β to number of pixels carrying maximum intensity:

β = 0.03× number of pixels carrying maximum intensity

Now we consider the generalized averages in discrete form as

Gaverage =

∑
(i,j)

u0(i, j)
β

∑
(i,j)

u0(i, j)β−1
. (5)

Let us consider the following theorem for analysis.

Theorem 1 For any positive real numbers x1, x2, ...,xn , then

(I) lim
β→∞

Gaverage = Max {x1, x2, ..., xn} ,

(II) lim
β→−∞

Gaverage = Min {x1, x2, ..., xn} .
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Proof Let us suppose that x1≥x2≥, ...,≥ xn (which is possible by relabeling and combining terms together).

Then lim
β→∞

Gaverage(x1, x2, ..., xn) = lim
β→∞

n∑
i=1

xβ
i

n∑
i=1

xβ−1
i

= lim
β→∞

xβ
1

n∑
i=1

(
xi
x1

)β

xβ−1
1

n∑
i=1

(
xi
x1

)β−1 = x1 = Max {x1, x2, ..., xn} .Next,

to prove the second part, we proceed as follows:

lim
β→−∞

Gaverage = lim
β→−∞

n∑
i=1

xβ
i

n∑
i=1

xβ−1
i

= lim
β→−∞

xβ
n

n∑
i=1

(
xi

xn

)β

xβ−1
n

n∑
i=1

(
xi

xn

)β−1
= xn = Min {x1, x2, ..., xn} .

This result validates that the more β deviates from 1 in a positive direction, i.e. β = 2, 3, 4, 5, ..., the averages

deviate from the central value and tend towards the maximum value of their respective data set. Similarly,

the more β deviates from 1 in a negative direction, i.e. β = 0, −1, −2, −3, ..., the averages deviate from the

central value and tend towards the minimum value of their respective data set. Thus, we now have Eq. (2),

which can provide averages according to the images.

Remark 2 Although Gaverage finds minimum and maximum value as β → −∞, and β → ∞ respectively is

shown mathematically in double precision, this is not the case for numerical overflows. This is given in Figures

1a and 1b by taking a set of ten numbers 3, 5, 7, . . . , 21} and Gaverage is plotted against β .

2.2. Segmenting images with minimum or maximum intensity background

In this subsection we design a new formulation based on the spf function with generalized averages to segment

images having minimum or maximum intensity background. For this, we define a novel generalized spf function

based on generalized averages as follows:

Definition 2 The generalized spf function, denoted by Gspf, is defined as follows:

Gspfβ(u0) =
u0(x, y)−

Gc1+Gc2

2

max
(∣∣∣u0(x, y)−

Gc1+Gc2

2

∣∣∣) ,where (x, y) ∈ Ω. (6)

In particular, for β = 1 , we have averages of the CV model [6] and consequently we have the spf function of

[18]. The quality of detection in spf-based models is totally dependent on signs of an spf function and the 2-phase

homogeneous case is simple and can be seen in [18]. For complete detection of the foreground and background

in an image, the Gspf function must have opposite signs in the foreground and background; otherwise, the result

will be incomplete. The signs of the Gspf function depend on the values of averages, which are clear from Eq.

(2), and we validate from the following tests that the types of averages that we use influence the quality of

detection. Figures 1c–1f illustrate that for different values of parameter β we have different values of averages,

which help in capturing all multiple-intensity objects in an image. The given image in this case is a maximum

background image and the increment in β causes the detection of all the objects. Now we give some theoretical

results for justification of the proposed model.
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Figure 1. In (a) and (b) numerical overflow is given for β < −679 and β > 233 for a set of values 3, 5, . . . , 21} and

Gaverage → −∞, ∞ respectively. In (c), (d), (e), and (f) signs of the Gspf function inside and outside of the object are

given for different values of averages. Clearly the above figures illustrate that a single pair of averages may not help

in obtaining the desired result of segmentation. The suitable value of parameter β helps us obtain a suitable pair of

averages from the Av-family.

Theorem 2 Consider an image having q-objects with intensities I1, I2, . . . , Iq , and let Ib be the background

intensity. Also let Gb and Gf be background and foreground averages. Then:

(I) If I1<I2<, ..., <Iq<Ib (i.e. background intensity is maximum), then for large values of β,Gspf > 0 in the

background region and Gspf < 0 in the foreground.

(II) If Ib<I1<I2< ..., <Iq (i.e. background intensity is minimum), then for large or small β,Gspf > 0 in the

foreground and Gspf < 0 in the background region.

Proof (I) For investigating the sign of Gspf in the background and foreground regions, we proceed as follows:

lim
β→∞

Gspfβ = lim
β→∞

Ib − Gb+Gf

2

max
(∣∣∣Ib − Gb+Gf

2

∣∣∣) =
Ib − Ib+Iq

2

max
(∣∣∣Ib − Ib+Iq

2

∣∣∣) > 0,

which means that the sign of the Gspf functions is positive in the background region.
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Next, we consider

lim
β→∞

Gspfβ = lim
β→∞

Iq − Gb+Gf

2

max
(∣∣∣Iq − Gb+Gf

2

∣∣∣) =
Iq − Iq+Ib

2

max
(∣∣∣Iq − Iq+Ib

2

∣∣∣) < 0,

which means that the sign of the Gspf functions is negative in the foreground region.

Consequently, the sign of Gspf is negative for objects I1<I2<I3<, ..., <Iq−1 . This means that the sign

of Gspf is opposite in the background and foreground. Thus, by choosing a suitably large β , all the objects in

the image can be detected.

(II) When the background has the minimum intensity and in the foreground we have multiple objects of

different intensities, let us have Ib<I1<I2<I3<, ..., <Iq .

Adopting the same approach, we have:

lim
β→∞

Gspfβ = lim
β→∞

Ib − Gb+Gf

2

max
(∣∣∣Ib − Gb+Gf

2

∣∣∣) =
Ib − Ib+Iq

2

max
(∣∣∣Ib − Ib+Iq

2

∣∣∣) < 0,

which means that the sign of the Gspf function is negative in the background region.

Next, we consider

lim
β→∞

Gspfβ = lim
β→∞

I1 − Gb+Gf

2

max
(∣∣∣I1 − Gb+Gf

2

∣∣∣) =
I1 − Iq+Ib

2

max
(∣∣∣I1 − Iq+Ib

2

∣∣∣) > 0,

if I1 >
Iq+Ib

2 . This means that the sign of the Gspf function is positive in the region with intensity I1 . Thus,

in this case the sign of Gspf will be positive in the remaining objects I2<I3<, ..., <Iq and consequently all the

objects in the foreground can be detected. However, if I1 <
Iq+Ib

2 then we have an option to choose other

suitable values of β for all objects’ detection in the foreground because

lim
β→−∞

Gspfβ = lim
β→−∞

I1 − Gb+Gf

2

max
(∣∣∣I1 − Gb+Gf

2

∣∣∣) =
I1 − Ib+I1

2

max
(∣∣I1 − Ib+I1

2

∣∣) > 0.

From Theorem 2 above it can be seen that images with maximum or minimum intensity background can be

segmented with this formulation.

Thus, we utilize the Gspf function defined in Eq. (6) in the following manner [10]:

∂ϕ

∂t
= αGspf. |∇ϕ| , inΩ, and ϕ (t, x, y) = ϕ0 (x, y) , inΩ. (7)

The above proposed partial differential equation contains the generalized statistical image intensity information,

which derives the contour to the edges that truly represent the objects’ boundaries. For numerical solution of

Eq. (7) we used an explicit scheme in similar steps as done in [18]. Now we turn our attention towards images

having backgrounds of average intensity, which is a challenging case for 2-phase image segmentation models. In

the following section we propose a new model to tackle this serious issue.
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2.3. Segmenting images of middle-intensity background

Here we propose a new model for segmentation of images having middle-intensity background. For this, let us

have an image containing q-objects with the following intensities: I1<I2<I3<, ..., < Ik−1<Ik=Ib<Ik+1<, ..., <

Iq .

Using Eq. (6) we define two functions denoted by GB and GF , given by:

GB(u0) =
u0(x, y)−

Gc1

θ

max
(∣∣∣u0(x, y)−

Gc1

θ

∣∣∣) , GF (u) =
u0(x, y)−

Gc2

θ

max
(∣∣∣u0(x, y)−

Gc2

θ

∣∣∣) , θ > 0. (8)

The function GB is obtained by putting Gc2 equal to zero, and similarly the function GF is obtained by putting

Gc1 equal to zero in Eq. (4).

For images whose background is neither of maximum nor minimum intensity, we define a new product

spf function, given as:

PGspfβ,θ = GBGF . (9)

For segmentation of images we need to have a positive sign of GB in the background and a negative sign in

foreground objects having intensities smaller than Ib , i.e. objects having intensities I1, I2, ..., Ik−1. Similarly, we

need to have a negative sign of GF in the background and a positive sign in foreground objects having intensities

smaller than Ib , i.e. objects having intensities I1, I2, ..., Ik−1 . This leads the product function PGspfβ,θ to

have a negative sign in the background and a positive sign in the complete foreground in all the objects. Figure

2 exhibits a middle-intensity background image and explains the idea behind the design of the PGspf function,

where the aim is to get the image (PGspf function) where the background and foreground have opposite signs.

The given image u as shown in Figure 2 is the image to be segmented. The image u1 as shown in Figure 2

is the first image obtained by subtracting
Iq
θ from the given image, where Iq denotes the maximum intensity,

and for this particular image θ ∈ (1, 2.5) is a parameter and in this case we can take 2.1. Next, image u2 is

the image shown in Figure 2 and it can be easily seen that the signs of the background and the foreground are

opposite.

Figure 2. Illustration of the PGspfβ,θ function in segmenting a real image having middle-intensity background where

maximum intensity (Iq) is 255, background intensity (Ib) is 100, and we choose θ in an interval (1,
Iq
Ib

= 2.5). (a)

Given Image u ; (b) image u1 = u− Iq
θ
; (c) image u2 = u− Ib

θ
; (d) product image u1 × u2 , where θ = 2.1.

Now to obtain the desired results from GB and GF we establish bounds on parameter θ . Mathematically,

we have the following constraints on θ :

Ib −
Ib
θ

> 0, Iq −
Iq
θ

> 0, Ib −
Iq
θ

> 0.
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From the first two inequalities we get the lower bound 1 < θ and from the third the upper bound θ <
Iq
Ib
. Thus,

the parameter θ exists and its value lies in the interval 1 < θ <
Iq
Ib
.

Thus, based on PGspfβ,θ we consider the following evolution problem:

∂ϕ

∂t
= αPGspfβ,θ. |∇ϕ| , in Ω, whereϕ (t, x, y) = ϕ0 (x, y) , in Ω. (10)

For the numerical solution we use an explicit scheme in similar steps as done in [18].

The overall algorithm can be described in the following steps:

1. Initialize the level set function φ as a binary function.

2. Evolve the level set function φ according to Eq. (7) if an image is either of maximum or minimum

intensity background and evolve it according to Eq. (10) if an image is of middle-intensity background

(we solve Eqs. (7) and (10) explicitly).

3. Smooth the function φ by Gaussian kernel, i.e. φ= Gσ∗φ , where σ is the standard deviation.

4. Check whether the evolution is stationary. If not, return to step 2.

For segmentation of color images the above algorithm is applied on each channel (R, G, and B) of the image

separately.

In the next section we give some experimental results of the proposed model and some state-of-the-art

models.

3. Numerical experiments

In this section, we give experimental results of the proposed generalized signed pressure function-based (GSF)

model and compare its results with the state-of-the-art models like the GCV [18], LCV [15], and locally computed

spf (LCS) models [1]. From the experimental results it can be seen that our proposed method performs efficiently

for images having maximum, minimum, or middle-intensity background.

3.1. Performance of the proposed model for noisy images

In Figure 3, the proposed method is tested on a noisy image. In Figure 3a an original noisy satellite image is

given and in Figure 3b the final result of the proposed GSF model is given. Figure 3c displays a multiregion

noisy synthetic image and Figure 3d shows the successful detection by the GSF model. We conclude that our

proposed model works very well for noisy images. In Figure 4, experimental results of all four models are given

on an airplane image.

3.2. Comparison of the four models on images with minimum intensity background

In Figure 5 the proposed model’s performance on a saw image having multiple intensity regions and minimum

intensity background is compared with LCV, GCV, and LCS. Better performance of our proposed model can

be seen in the experimental results and is also verified by JS values.
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Figure 3. Performance of the GSF model in segmenting real noisy satellite image and a multiregion synthetic noisy

image. (a) Real noisy satellite image; (b) result by the GSF model, β = 2, µ = 10, iterations = 100; (c) multiregion

synthetic noisy image; (d) result by the GSF model, β = 1.5, µ = 13, iterations = 250, size(u) = 200× 200.

Figure 4. Experimental test exhibiting that all the four models work well for a simple image: (a) initial guess, (b) GCV

result, (c) LCV result, (d) LCS result, (e) GSF result.

Figure 5. Segmenting a real hardware image having minimum intensity background: (a) initial guess, (b) GCV result,

(c) LCV result, (d) LCS result, (e) GSF result. GCV: JS = 0.78, LCV: JS = 0.79, LCS: JS = 0.7, GSF: JS = 0.88. For

the proposed model, parameters used are β = −0.906, µ = 77, iter = 65, size (u) = 200× 200.

3.3. Comparison of all models on images with maximum intensity background

In Figure 6, all four models are tested on a real hardware image, which has maximum intensity background

and inhomogeneity in its foreground. Our proposed method performs very well for this type of image, while the

other methods fail to segment this image. For comparison the JS value for our proposed model is 1.

3.4. Comparison of all models on images with middle-intensity background

The four models are tested on a real multiobject image containing a bird and moon and having middle-intensity

background, as given in Figure 7. Our proposed model detected both objects in the image while the other

models, the GCV, LCV, and LCS models, could also detect both objects. The JS value for our model is 0.9.

3.5. Selective segmentation results of the proposed model

For selective image segmentation, GCV and GSF are tested on the image given in Figure 8, where the initial

contour encloses the kidney to be captured. The GCV model detected the kidney with an undesirable region,

9
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Figure 6. Segmenting a real hardware image having maximum intensity background: (a) initial guess, (b) GCV result,

(c) LCV result, (d) LCS result, (e) GSF result. GCV: JS = 0.8, LCV: JS = 0.8, LCS: JS = 0.85, GSF: JS = 1. For the

proposed model, parameters used are β = 3, µ = 15, iter = 100.

Figure 7. Segmenting a real-world image having background intensity neither maximum nor minimum: (a) initial

guess, (b) GCV result, (c) LCV result, (d) LCS result, (e) GSF result. GCV: JS = 0.48, LCV: JS = 0.48, LCS: JS =

0.1, GSF: JS = 0.9. For the proposed model, parameters used are β = 3, µ = 40, iter = 120, θ = 4.

whereas the GSF model purely captured the kidney of interest without any undesirable results. Next, it can be

easily observed that the proposed GSF model captured the true boundaries of the internal structure of the given

brain CT image, whereas the result by the GCV model can also be seen. JS values are given for comparison.

Figure 8. Testing the performance of the two models in single and multiple organ segmentation using real medical

images: (a) object of interest; (b) GCV result (JS = 0.992); (c) GSF (JS = 0.996); (d) object of interest; (e) GCV result

(JS = 0.6); (f) GSF result (JS = 0.8). For GSF the parameters are β = 2, µ = 5(a), β = 2, µ = 15.

10
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3.6. Performance of the GSF model for color images

To exhibit the performance of the proposed model with color images, first, the proposed GSF model and the

vector valued Chan–Vese (VVCV) model [5,12] are tested on color images having multiple intensity objects,

as in Figure 9. It can be easily observed from these figures that the GSF model successfully captured all the

different intensity objects completely in contrast with the standard VVCV model. Similarly, Figure 9 displays

an airplane in sky of inhomogeneous intensity. The proposed GSF model successfully detected the airplane in

contrast with the VVCV model.

Figure 9. Testing the performance of the GSF and vector valued CV (VVCV) model: for (a) VVCV (JS = 0.81), GSF

(JS=0.996), for (d) VVCV (JS=0.5), GSF (JS=0.992). For GSF the parameters used are β = 5, µ = 20, iter = 100 for

(a) and β = 0.5, µ = 10, iter = 100 for (d).

3.7. Speed comparison of all four models

Next, using the image in Figure 3a, the time comparisons of all four models are given in Table 1. These

experiments were done using MATLAB 7.11.0, with Windows 7 and a 2.53 GHz Intel Core i3 personal computer

with 2 GB RAM. The following notations are used in Table 1: Size, the size of given image m×n ; Iter, the total

number of iterations; CPU, the CPU time in seconds. From the table it can be seen that our model is as fast as

GCV, because in both models we are solving the same partial differential equation, but we are using different

spf functions. LCV is fast in time but its performance is limited in the above discussed problems. In Table 2, a

quantitative comparison of different models in terms of the mean ± SD of JS values is given, where SD is the

Table 1. CPU time comparison of the LCV, GCV, LCS, and our proposed GSF model.

Size
GSF GCV method LCV method LCS method
Iter CPU Iter CPU Iter CPU Iter CPU

200 ×200 17 0.4 17 0.4 2 0.3 62 3.4
400 ×400 50 3 50 3 2 0.7 166 36
600 ×600 80 17 80 17 2 2 290 208
800 ×800 110 31 110 31 2 2.6 430 498
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Table 2. Mean and SD of JS values for state-of-the-art models tested on images with different background intensities.

Intensity GCV model LCV model LCS model GSF model
Maximum 0.68 ± 0.1 0.6 ± 0.1 0.88 ± 0.03 0.98 ± 0.02
Minimum 0.73 ± 0.04 0.8 ± 0.11 0.8 ± 0.1 0.96 ± 0.02
Middle 0.57 ± 0.2 0.53 ± 0.2 0.5 ± 0.3 0.93 ± 0.03

standard deviation. For JS value comparisons we have used synthetic images with maximum, minimum, and

middle-intensity backgrounds like the images given in Figures 1, 2, 5, 6, and 7. It can be observed that our

proposed model gives better JS values for different problems.

4. Conclusion

In this paper we have proposed a novel active contour model based on generalized averages and spf functions

for segmenting images that have multiple objects, having either maximum, minimum, or middle-intensity

backgrounds. For images with constant intensities, all four state-of-the-art models work well, but images having

multiple regions can only be segmented by our proposed GSF model, which can be seen from the experiments.

However, images in which objects have intensity inhomogeneity may not be segmented efficiently by the proposed

algorithm, which is our future task.
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