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Abstract

Mean curvature-based image registration model firstly proposed by Chumchob-Chen-Brito (2011)
offered a better regularizer technique for both smooth and non-smooth deformation fields. However,
it is extremely challenging to solve efficiently this model and the existing methods are slow or become
efficient only with strong assumptions on the smoothing parameter β. In this paper, we take a different
solution approach. Firstly, we discretize the joint energy functional, following an idea of relaxed fixed
point is implemented and combine with Gauss-Newton scheme with Armijo’s Linear Search for solving
the discretized mean curvature model and further to combine with a multilevel method to achieve fast
convergence. Numerical experiments not only confirm that our proposed method is efficient and stable,
but also it can give more satisfying registration results according to image quality.
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1 Introduction

Image registration which is also called image matching or image warping is one of the most useful and

fundamental tasks in imaging processing domain. Its main idea is to find a reasonable spatial geometric

transformation between given two images of the same object taken at different times or from different

devices or perspectives, such that a transformed version of the first image is similar to the second one as

much as possible. It is often encountered in many fields such as astronomy, art, biology, chemistry, medical

imaging and remote sensing and so on. For a good overview about these applications, see e.g. [4, 5, 6, 1, 2, 3].

Usually, a variational image registration model can be described by following form: given two images,

one kept unchanged is called reference R and another kept transformed is called template image T . They

can be viewed as compactly supported function, R, T : Ω → V ⊂ R+
0 , where Ω ⊂ Rd be a bounded convex

domain and d denotes spatial dimension of the given images. The purpose of registration is to look for a

transformation ϕ defined by

ϕ : Rd → Rd,

such that transformed template image Tϕ(x) := T (ϕ(x)) is similar to R as much as possible. To be more

intuitive to understand how a point in the transformed template T (ϕ(x)) is moved away from its original
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position in T , we can split the transformation ϕ into two parts: the trivial identity part and displacement

u, u : Rd → Rd, u : x→ u(x) = (u1(x), u2(x), · · · , ud(x))>, that is to say

ϕ(x) = x+ u(x),

thus it is equivalent to find the transformation ϕ and the displacement u. The transformed template image

T (ϕ(x)) = T (x+u(x)) can be denoted T (u). In summary, the desired displacement u is a minimizer of the

following joint energy functional

min
u
{Jα[u] = D(u) + αR(u)}, (1)

where

D(u) =
1

2

∫
Ω

(T (x+ u(x))−R(x))
2
dx (2)

represents similarity measure which quantifies distance or similarity of transformed template image T (u)

and reference R, R(u) is regularizer which rules out unreasonable solutions during registration process, and

α > 0 is a regularization parameter which balance similarity and regularity of displacement.

And non-surprisingly, different regularizer techniques can produce different registration model, and the

choice of regularizer techniques is very crucial for the solution and its properties, more details see [5]. At

present, the common regularizer techniques such as diffusion-, elastic-, or linear curvature-based image

registration can generate globally smooth displacement, more details see [7, 8, 9, 12, 11, 10, 5, 13] and

reference therein. However, these techniques become poor when displacement u is discontinuous. Total

variation-based image registration is better for preserving discontinuities of the displacement, see [14, 15, 16].

Nevertheless, the TV model may not give satisfactory registration results for smooth displacement. In this

paper, we consider mean curvature regularizer which is able to solve both smooth and non-smooth registration

problems as introduced by Chumchob-Chen-Brito [23]:

RCCB(u) =
1

2

2∑
l=1

∫
Ω

(κ(ul))
2dx, (3)

here κ(ul) = ∇ · ∇ul|∇ul|β
, and β is a very small positive parameter to avoide non-differentiable at zero, more

details see [23, 14, 15, 16]. Thus the original joint energy functional (1) becomes

min
u

{
Jα[u] =

1

2

∫
Ω

(
T (u)−R(x)

)2
dx+ α · RCCB(u)

}
, (4)

and the corresponding Euler-Lagrange (EL) equation for (4) is the following (T (u)−R)∂u1
T (u) + α∇ · ( 1

|∇u1|β
∇κ(u1)− ∇u1·∇κ(u1)

(|∇u1|β)3
∇u1) = 0

(T (u)−R)∂u2
T (u) + α∇ · ( 1

|∇u2|β
∇κ(u2)− ∇u2·∇κ(u2)

(|∇u2|β)3
∇u2) = 0,

(5)

with boundary conditions 〈∇ul,ν〉R2 = 〈∇κ(ul),ν〉R2 = 0 on ∂Ω, l = 1, 2 and ν is the unit outward normal

vector. It is very difficult to solve efficiently equation (5) due to its high nonlinearity. Some possible numerical

methods such as fixed point methods [20, 21, 38] and Newton method do not work for (5). Next we briefly

review the existing numerical algorithms.

1) Time marching method. Time marching method [23] is applied to solve the nonlinear parabolic system

of (5) instead of the nonlinear elliptic system of (5) by introducing time variable t:∂tu1 + (T (u)−R)∂u1
T (u) + α∇ · ( 1

|∇u1|β
∇κ(u1)− ∇u1·∇κ(u1)

(|∇u1|β)3
∇u1) = 0

∂tu2 + (T (u)−R)∂u2
T (u) + α∇ · ( 1

|∇u2|β
∇κ(u2)− ∇u2·∇κ(u2)

(|∇u2|β)3
∇u2) = 0,
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although this scheme is very easy to implement, it is very slow to converge because the length of the time-step

is required to be very small for stability.

2)Stabilized fixed point (SFP) method. The general fixed point schemes don’t work for (5) due to its

high nonlinearity. In [23], the authors proposed a stabilized fixed point method by adding suitable stabilizing

terms. Its main idea is to split the EL equation (5) into the convex part which is treated implicitly and

the non-convex part which is treated explicitly. The corresponding stabilized fixed point equation takes the

following form: 

−γ1∇ · ∇u
(k+1)
1∣∣∣∇u(k)
1

∣∣∣
β

− α∇ · (∇u
(k)
1 ·∇κ(u

(k)
1 )∣∣∣∇u(k)

1

∣∣∣3
β

∇u(k+1)
1 ) + σ

(k)
11 u

(k+1)
1 + σ

(k)
12 u

(k+1)
2

= −γ1∇ · ∇u
(k)
1∣∣∣∇u(k)
1

∣∣∣
β

+ σ
(k)
11 u

(k)
1 + σ

(k)
12 u

(k)
2 − f1(u(k))− α∇ · (∇κ(u

(k)
1 )∣∣∣∇u(k)

1

∣∣∣
β

)

−γ2∇ · ∇u
(k+1)
2∣∣∣∇u(k)
2

∣∣∣
β

− α∇ · (∇u
(k)
2 ·∇κ(u

(k)
2 )∣∣∣∇u(k)

2

∣∣∣3
β

∇u(k+1)
2 ) + σ

(k)
22 u

(k+1)
2 + σ

(k)
21 u

(k+1)
1

= −γ2∇ · ∇u
(k)
2∣∣∣∇u(k)
2

∣∣∣
β

+ σ
(k)
21 u

(k)
1 + σ

(k)
22 u

(k)
2 − f2(u(k))− α∇ · (∇κ(u

(k)
2 )∣∣∣∇u(k)

2

∣∣∣
β

)

(6)

where

fl(u
(k)) = (T (u(k))−R)∂ulT (u(k)),

σ
(k)
l1 = (∂ulT (u(k)))(∂u1

T (u(k))),

σ
(k)
l2 = (∂ulT (u(k)))(∂u2

T (u(k))), l = 1, 2.

The stabilized fixed point method is convergent providing that the smoothing parameter β in (6) is not too

small, otherwise, convergence is very slow.

3) Primal-dual fixed point method. We note that above SFP method tackles the nonlinearity in some

direct way. The authors [23] also proposed primal-dual fixed point method which treat the nonlinearity in an

indirect way. The main idea is to reduce high-order derivatives in (5) by introducing suitable intermediate

variables

ν1 = −κ(u1) = −∇ · ∇u1

|∇u1|β
and

ν2 = −κ(u2) = −∇ · ∇u2

|∇u2|β
,

the corresponding equivalent system of EL equation (5) is given by

−∇ · ∇u1

|∇u1|β
− ν1 = 0

−∇ · ∇u2

|∇u2|β
− ν2 = 0

f1(u)− α∇ · ( ∇ν1|∇u1|β
+ ∇u1·(−∇ν1)

|∇u1|3β
∇u1) = 0

f2(u)− α∇ · ( ∇ν2|∇u2|β
+ ∇u2·(−∇ν2)

|∇u2|3β
∇u2) = 0

(7)

with the boundary conditions transferred into ∇ul = 0 and ∇νl = 0 for l = 1, 2. They adopted pointwise

collective Gauss-Seidel (PCGS) relaxation method to solve (7), we name this method as PDFP-1. To be more

efficient, they introduced a relaxation parameter ω ∈ (0, 1) and iterate the ω−PCGS steps, we name this

method as PDFP-2. The PDFP method has been proven to be very efficient as a smoother for a nonlinear

multi-grid by local Fourier analysis providing that the smoothing parameter is large enough (for example:

β ≥ 5× 10−3).
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As a matter of fact, the smoothing parameter β is smaller, and the corresponding nonlinearity is stronger,

thus the convergence of many numerical methods can be slowed down. Small β does offer better residual,

so we want to develop a new algorithm that converges even for very small β.

The rest of the paper is organized as follows. Section 2 proposes an efficient numerical scheme which

doesn’t impose a strong assumption on smoothing parameter β to solve (4). Section 3 illustrates the ex-

perimental results from syntectic and real images. Finally, conclusions and future work are summarized in

Section 4.

2 A new numerical method for mean curvature-based registration
model (4)

Over the past decades, there are two main types of numerical schemes to compute a numerical solution

of minimization problem (1) for a given α. The first is optimize-discretize scheme, and its main idea

is to let the first order variation of (1) vanish and obtain corresponding EL equations in the continuous

domain and then solve its discrete forms on the corresponding discrete domain by appropriate methods,

see [23, 5, 7, 8, 13, 9, 12, 16]. The second is the discretize-optimize approach which aims to discretize

the joint functional Jα in (1) and then solve the discrete minimization problem by standard optimization

methods; see, e.g. [11, 10, 28, 27, 26]. In this paper, we prefer the second method. Although our work is

related to previous work [11], they are totally different on their regularizer techniques and equations. Elastic

regularizer with first order derivative was considered in [11], and it is convex. Mean curvature regularizer

with high-order derivative is considered in this paper, and it is non-convex. If we use directly the scheme

proposed in [11], it is very difficult to solve efficiently for (4). However, motivated by the idea of [11],

we can change high-order regularizer RCCB(u) into convex by introducing a lagging into the denominator

of RCCB(u) by using a previous and known iterate value, then solve the discrete energy functional using

optimization methods. Next we shall first briefly introduce the discretization we use and then specifically

describe the details of numerical algorithms.

2.1 Finite difference discretization

Let given discrete images have n1 × n2 pixels. For the sake of simplicity, we also assume further that image

domain Ω = [0, 1] × [0, 1] ⊂ R2, then each side of these n1×n2 cells has width hi = 1/ni, i = 1, 2. Let the

discrete domain be denoted by

Ωh = {x ∈ Ω|x = (x1i , x2j )
> = ((i− 0.5)h1, (j − 0.5)h2)>, i = 1, 2, · · · , n1; j = 1, 2, · · · , n2}.

2.1.1 Discretizing displacement field u and the mean curvature-based regularizer RCCB(u)

Let the discrete form of the continuous displacement field u = (u1, u2)> be denoted by uh = (uh1 , u
h
2 )>,

where uh1 and uh2 are denoted grid function and are discretized on the discrete domain Ωh. For simplicity, let

(uhl )i,j = uhl (x1i , x2j ), i = 1, 2, · · · , n1; j = 1, 2, · · · , n2 and l = 1, 2. Since the mean curvature regularizers

RCCB(u) is represented by the operators gradient ∇ and divergence ∇·, we first define discrete gradient
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operator ∇h at each pixel (i, j) by

(∇huh)i,j = ((∇huh1 )i,j , (∇huh2 )i,j)
>

with

(∇huhl )i,j = ((∂h1 u
h
l )i,j , (∂

h
2 u

h
l )i,j)

>

(∂h1 u
h
l )ij =

{
(uhl )i+1,j − (uhl )i,j , if i < n1

0 , if i = n1

(∂h2 u
h
l )ij =

{
(uhl )i,j+1 − (uhl )i,j , if j < n2

0 , if j = n2.

Here homogeneous Neumann boundary conditions on u are assumed:

∂ul
∂ν

= 0, l = 1, 2 on ∂Ω.

We know that the discrete divergence operator is the negative adjoint of the gradient operator by the analysis

of the continuous setting, that is to say ∇· = −∇∗. Thus, we can define the divergence operator ∇· by the

following form:

(∇ · vl)i,j =


(v1
l )i,j − (v1

l )i−1,j

(v1
l )i,j

− (v1
l )i−1,j

+


(v2
l )i,j − (v2

l )i,j−1 if 1 < i < n1 , 1 < j < n2

(v2
l )i,j if i = j = 1

− (v2
l )i,j−1 if i = n1 , j = n2.

For convenience, we change the grid functions uh1 and uh2 into the columns vectors uh1 and uh2 according to

lexicographical ordering, respectively

uh1 = (uh11,1
, uh12,1

, · · · , uh1n1,1
, uh11,2

, uh12,2
, · · · , uh1n1,2

, · · · , uh11,n2
, uh12,n2

, · · · , u1n1,n2
)>,

uh2 = (uh21,1
, uh22,1

, · · · , uh2n1,1
, uh21,2

, uh22,2
, · · · , uh2n1,2

, · · · , uh21,n2
, uh22,n2

, · · · , uh2n1,n2
)>,

then uh1 ∈ RN , uh2 ∈ RN and Uh = (uh1 ;uh2 ) ∈ R2N , where N = n1n2. Furthermore, the kth com-

ponent of the vectorized discrete mesh function uhl can be denoted by (uhl )k, here k = (j − 1)×n1 + i ,

i = 1, 2, · · · , n1; j = 1, 2, · · · , n2. The discrete gradient (∇huhl )i,j can also be represented by the product of

the matrix A>k ∈ R2×N and the vector uhl (l = 1, 2):

A>k u
h
l =



((uhl )k+1 − (uhl )k; (uhl )k+n2
− (uhl )k), if k mod n1 6= 0 and k + n2 ≤ N

(0; (uhl )k+n2 − (uhl )k), if k mod n1 = 0 and k + n2 ≤ N

((uhl )k+1 − (uhl )k; 0), if k mod n1 6= 0 and k + n2 > N

(0; 0), if k mod n1 = 0 and k + n2 > N .

Let

A = (A1, A2, · · · , AN ) = (A1,1, A1,2, · · · , AN,1, AN,2) ∈ RN×2N ;

Ax = (A1,1, A2,1, · · · , AN,1) ∈ RN×N ,

and

Ay = (A1,2, A2,2, · · · , AN,2) ∈ RN×N .
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In this notation, we can get

∇huh1 =

[
Ax
>

Ay
>

]
uh1 , Buh1 , ∇huh2 =

[
Ax
>

Ay
>

]
uh2 , Buh2 .

Thus, for discrete gradient operator ∇h, we have

∇hUh =

[
∇h 0
0 ∇h

] [
uh1
uh2

]
=

[
B 0
0 B

] [
uh1
uh2

]
, CUh.

Let

B[u] = (∇ · ∇u1

|∇u1|β
)2 + (∇ · ∇u2

|∇u2|β
)2 , (8)

and

D =

 B

|Buh1 |β
0

0 B

|Buh2 |β

 .

Hence, we can get the discretization of (8) as following

Bh[Uh] = |−B
>Buh1

|Buh1 |β
|2 + |−B

>Buh2
|Buh2 |β

|2

=
(uh1 )

>
B>BB>Buh1
|Buh1 |2β

+
(uh2 )

>
B>BB>Buh2
|Buh2 |2β

= ((uh1 )>, (uh2 )>)

 B>BB>B
|Buh1 |2β

0

0 B>BB>B
|Buh2 |2β

[ uh1
uh2

]

= (Uh)>(

[
B

|Buh1 |β
0

0 B
|Buh2 |β

]> [ B
|Buh1 |β

0

0 B
|Buh2 |β

]
)(

[
B 0
0 B

]> [
B 0
0 B

]
)Uh

= (Uh)>D>DC>CUh.

Thus by a midpoint quadrature rule, the mean curvature regularizer R(u) = 1
2

∫
Ω
B[u]dx is descretized as

Rh(Uh) =
1

2
hd(U

h)
>
D>DC>CUh, (9)

where hd = h1h2.

2.1.2 Discretizing template image T and reference image R

For given discrete image, an image interpolation is needed to assign image intensity values for any spatial

positions which are not necessarily grid points. Although linear interpolation is a reasonable tool in image

registration due to its low computational costs, it isn’t differentiable at grid points. In order to make

full use of fast and efficient optimization method, a smooth interpolation is required. Thus a cubic B-

spline approximation is used in our implementation. Further influence of higher or lower order B-spline

interpolation to the quality of registration, see [36]. The continuous smooth approximations for template T

and reference R are denoted by T and R, respectively.

Next we derive discrete analogues for the particular building blocks . Let

xc,1 = [x11,1 , x12,1 , · · · , x1n1,1
, x11,2 , x12,2 , · · · , x1n1,2

, · · · , x11,n2
, x12,n2

, · · · , x1n1,n2
]>,

xc,2 = [x21,1
, x22,1

, · · · , x2n1,1
, x21,2

, x22,2
, · · · , x2n1,2

, · · · , x21,n2
, x22,n2

, · · · , x2n1,n2
]>,
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and Xh
c = [xc,1;xc,2].

We can get discrete reference image

~R = R(Xh
c ) (10)

and discrete transformed template image

~T (Uh) = T (Xh
c +Uh), (11)

here ~T (Uh) is the discrete analogue of the transformed template image T (x + u(x)) as a function of dis-

placement u. The Jacobian of ~T can be denoted by

~TUh =
∂ ~T

∂Uh
(Uh) =

∂T
∂Uh

c

(Uh
c )

where Uh
c = Xh

c +Uh, and the Jacobian of ~T is a block matrix with diagonal blocks.

2.1.3 Discretizing distance measure D

In the discrete analogue, the integral is approximated by a midpoint quadrature. According to (10) and (11)

our discretization of distance measure D (2) is straightforward:

Dh(Uh) =
1

2
h1h2(~T (Uh)− ~R)> · (~T (Uh)− ~R)

and the derivative of the discretized functional Dh(Uh) with respect to Uh can still be computed

dDh(Uh) = h1h2(~T (Uh)− ~R)> · ~TUh .

In addition, the second derivative d2Dh(Uh) of the distance measure D can also be calculated straightfor-

wardly,

d2Dh(Uh) = h1h2(~TUh)> · ~TUh + h1h2

n1n2∑
i=1

di(U
h)∇2di(U

h) ,

where d(Uh) = ~T (Uh) − ~R ∈ Rn1n2 . On one hand, it is consuming and numerically unstable to compute

higher order derivatives in registering two images for practical applications; On the other hand, the difference

between ~T (Uh) and ~R will become smaller if template image is well registered. To have an efficient and

stable numerical scheme as proposed by several works ([5],[40]), we approximate d2Dh(Uh) by the following

form

d2Dh(Uh) = h1h2(~TUh)> · ~TUh . (12)

2.2 Solving the discrete optimization problem

The discretized joint energy functional (4) reads as follows:

min
Uh
{Jα(Uh) = Dh(Uh) + α · Rh(Uh)}. (13)

Obviously, the above functional in an algebraic form is nonlinear. In subsequent solutions, we need to

differentiate it twice. To reduce nonlinearity, we shall introduce a lagging into the denominator of the mean

curvature regularizer Rh(Uh). The lagged quantity in (13) uses a previous and known iterate Uh(k)
=

(uh1
(k)
,uh2

(k)
)>. We note that the lagging method by ’frozen coefficients’ is well known for variational
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approaches related to total variation (TV ) operator (see e.g. [37, 35, 22, 19]). Thus we obtain the following

form

min
Uh
{Jα(Uh) = Dh(Uh) +

1

2
α · hd · (Uh)>(D(k))

>
D(k)C>CUh} , (14)

where

D(k) =

 B

|Buh1
(k)|

β

0

0 B

|Buh2
(k)|

β

 .

To solve the above problem (14) numerically, standard optimization technique Gauss-Newton scheme is used.

The main idea is to linearize Jα which is replaced by a quadratic Ĵα near the previous iterative value Uh(k)

by the Taylor expansion given by

Jα(Uh(k)
+ δUh) ≈ Ĵα(Uh(k)

+ δhU ) = Jα(Uh(k)
) + dJα(Uh(k)

) · δUh +
1

2
δ>UhHδUh ,

where dJα(Uh(k)
),H are the Jacobian and the approximation of the Hessian of Jα atUh(k)

. For d2Dh(Uh(k)

)

and (D(k))
>
D(k)C>C are both positive semi-define, we know that H is also positive semi-definite. Hence,

Ĵα is convex. see [30] for an extended description. Next we describe the specific steps.

Given initial value Uh(k)
, we compute Jacobian dJα(Uh(k)

) and Hessian H at each outer iteration step

by the following form, respectively

dJα(Uh(k)
) = dDh(Uh(k)

) + α · hd · (Uh(k)
)>(D(k))>D(k)C>C (15)

and

H = d2Dh(Uh(k)
) + α · hd · (D(k))

>
D(k)C>C. (16)

Then perturbation δUh can be obtained by solving linear equation

HδUh = −dJα(Uh(k)
). (17)

Usually, H is positive definite, thus we can use a preconditioned conjugate gradient method to solve the

quasi-Newtons equation (17), on the preconditioning techniques, we can refer to [31, 32, 33, 34]. In this

paper, a standard Armijo line search scheme is used to guarantee the reduction of the objective function

Jα(Uh), details see [30]. The procedure will be terminated when stopping rules are met. In this section we

use following common stoping rules for the above Gauss-Newton scheme; see also [29, 24].

1. Stop(1) = abs(Jold − Jc) ≤ 10−3 ∗ (1 + abs(Jstop));

2. Stop(2) = norm(uc − uold) ≤ 10−2 ∗ (1 + u0);

3. Stop(3) = norm(dJc) ≤ 10−2 ∗ (1 + abc(Jstop));

4. Stop(4) = norm(dJc) ≤ eps;

5. Stop(5) = (iter ≥ maxIter);

If the first three of the above stopping criteria are met or the latter two are met at the same time, the iteration

is terminated. Where Jold and Jc are previous iterative objective function value and current iterative one,

respectively. Jstop is the value of original objective function at u = 0. uc is current iterative value and

uold is previous iterative one. u0 is initial iterative value. dJc is the Jacobian of current objective function
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Algorithm 1: Gauss-Newton scheme with Armijo Line Search for image registration: u ←
GNIRArmijo(α,u)

Compute Jα(u), dJα(u) and H using (14), (15) and (16), respectively;
while true do

Update iteration count: iter←iter + 1;
Check the stopping rules;
Solve quasi-Newton’s equation: H · δu = −dJα(u) by using a preconditioned conjugate gradient
method;
Perform Armijo Line Search: ut ← Armijo(α, δu,u) ;
if line search fail;
break then

end
Update current values: u← ut;
Compute Jα(u), dJα(u) and H using (14), (15) and (16), respectively

end

value. eps denotes the machine precision and maxIter is an a priori chosen number. The numerical scheme

is summarized in Algorithm 1.

In this section the Armijo Line Search can be briefly explained as follows. Starting with t = 1, the new

iterate Uh(k+1)
= Uh(k)

+ t · δUh is used. Standard sufficient decrease condition can be written by the

following form: Jα(Uh(k+1)
) < Jα(Uh(k)

) + tol · t · ((dJα(Uh(k)
))> · Uh(k)

), where let tol = 10−4. If the

above sufficient decrease condition couldn’t be met, we set t := 1
2 t. To be safe, Armijo Linear Search would

be terminated if an increment becomes relatively small. When this case occurs, optimization algorithm is

concluded that it fails to converge. The algorithm is summarized in Algorithm 2.

Algorithm 2: Armijo Line Search: u← Armijo(α, δu,u)

Compute Jα(u) and dJα(u) using (14) and (15), respectively;
Set k ← 0, t← 1, MaxIter← 10, and η ← 10−4;
while true do

Set ut ← u+ tδu;
Compute Jα(ut) using (14);

if Jα(ut) < Jα(u) + tη(dJα(u))>δu;
break then

end
if k > MaxIter;
break then

end
Set t← t

2 and k ← k + 1;

end
Set u← ut.

In order to save computational work and to speed up convergence, we combine Gauss-Newton method

with multilevel scheme to solve (14). First, we provide an initial value by multilevel affine linear preregis-

tration on the coarsest level, then solve (14) by using Gauss-Newton method with Armijo Linear Search.

Second, we interpolate the coarse solution to next fine level as a initial value, then solve (14) on fine level by

using the same scheme. Third, repeating the process, until the loop terminates. There are two major advan-

tages in using multilevel scheme. Firstly, computing a minimizer need less iterations to solve optimization

problems on the coarser levels. Secondly, the risk of getting in the trap of unwanted minimizers is highly



10

reduced. Note that every part of the discrete problem (13) is required to be continuously differentiable to

make full use of efficient optimization techniques. Thus multilevel representation of given images is necessary.

The objective of multilevel representation is to derive a family of continuous models for given images. Next

the multilevel scheme is summarized in Algorithm 3. Where bi-linear interpolation operator is denoted by

IhH .

Algorithm 3: Multilevel Image Registration: u← MLIR(MLData)

Maxlevel← ceil(log2(min(n1,n2))), % The finest level;
Minlevel← 3, % The coarsest level;
MLData, % Multilevel representation of given images R and T;
for l = Minlevel:Maxlevel do

if l = Minlevel;
Providing initial guess u0 by using multilevel affine linear preregistration then

end
if l = Minlevel;
u0← u0;
else;

u0← IhH(u) then

end
u← GNIRArmijo(α,u0) ;

end

3 Numerical experiments

In this section, our primary aim is to illustrate the effectiveness of our new Algorithm 3 and show it is more

robust among the existing implementations for the mean curvature-based image registration model. From

the experiment results in [23], we can see that primary-dual fixed point (PDFP-2) method as a smoother is

much better than other fixed point methods for nonlinear multigrid. For ease of comparison, we shall denote

by NMG for nonlinear multigrid method with smoother PDFP-2 and by A3 for our proposed new Algorithm

3.

To be fair on the measure of the quality of the registered images, the relative reduction of the dissimilarity

rel.SSD proposed by Chumchob-Chen-Brito [23] is used, and it is defined as follows

rel · SSD =
D(u)

Dstop
× 100%

Where u is the current optimal value and Dstop is the value of D(u) at u = 0.

We select three representative data sets shown respectively in Figure 1 (Two non-smooth registration

problems and a smooth registration problem to be denoted respectively as Example 1 , Example 2 and

Example 3) for the experiments.

In the first experiment, we first focus on the capabilities of our new Algorithm 3 for registration of the

three test Examples 1−3 in resolution 32×32, 512×512. The registered images by our new Algorithm 3 are

shown in Figure 1 (right column). For three tests, smoothing parameter β is taken 10−6. Clearly, registered

images from our new Algorithm 3 is very satisfying. Below we mainly focus on the further gains from our

new Algorithm 3.
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3.1 Comparisons with previous methods for model (4)

No fast solvers existed for image registration model (4) before the work of [23], i.e. nonlinear multigrid

method with smoother PDFP-2 which is denoted by NMG. To further show that our new Algorithm 3 is

efficient and robust, next we compare it with NMG. Three specific comparisons are implemented with respect

to parameters α, β in the model and the mesh parameter h. As the same model is solved, it’s natural that

we use the same parameters for the same example for fair comparison.

Reference image Template image Transformed template rel.SSD=0.016473%

Example 1 (32× 32)
Reference image Template image Transformed template rel.SSD=5.0832%

Example 2 (512× 512)
Reference image Template image Transformed template rel.SSD=0.5914%

Example 3 (512× 512)

Figure 1: Registration results for three representative data sets(Example 1 − 2 (non-smooth registration
problems) and Example 3 (smooth registration problem)) using our new Algorithm 3 . Left column: reference
image R, center column: template image T . right column: the deformed template image T (u) obtained from
Algorithm 3.

3.1.1 h-independent convergence test

We shall resolve the same Example 2−3 as above using an increasing sequence of resolutions (or a decreasing

mesh parameter) and show the results from A3 and NMG in Table 1. The required parameters in the
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experiments are taken: α = 0.75 × 10−4, β = 5 × 10−3 for Example 2 and α = 10−4, β = 1 for Example

3. In Table 1, we compare the registration quality via rel.SSD and efficiency via CPU. The numerical

experiments prove that two registration Algorithms are both converge and they are also accurate because

the dissimilarities between the reference and transformed images have been reduced more than 92% for

Example 2 and 96% for Example 3. For overall performance the experimental results suggest that our new

Algorithm 3 is more efficient and would be preferred for practical applications because this method can find

a highly accurate solution in a relatively short time and produce excellent image registration results in term

of image quality.

A3 NMG
Example h rel.SSD CPU(S) rel.SSD CPU(S)

1/128 4.49% 7 6.98% 213
2 1/256 5.03% 15 7.01% 240

1/512 5.08% 47 7.12% 267
Example h rel.SSD CPU(S) rel.SSD CPU(S)

1/128 0.72% 5 2.58% 133
3 1/256 0.61% 9 3.86% 160

1/512 0.59% 26 3.79% 160

Table 1: Registration results of A3 and NMG for processing Examples 2 and 3 shown respectively in Figure 1.
A3 means our new Algorithm 3; NMG means nonlinear multigrid with smoother PDFP-2 [23]. CPU means
the total runtimes including Image output and pre-registration. For Example 2, parameters α = 0.75×10−4,
β = 5× 10−3; for Example 3, α = 10−4, β = 1.

3.1.2 α-dependence test

Here we compare the sensitivity of A3 and NMG with respect to varying the regularization parameter α.

To this end, two methods were tested on Example 3 (see Figure 1 last row) with the results shown in Table

2. Here the following parameters are used: β = 1 and h = 1/512 for all experiments and α is varied from

10−4 to 10−1. In table 2, we can see a clear process of the changes of rel.SSD using our new Algorithm 3

and nonlinear multigrid with smoother PDFP-2. Although both of them improve the registration quality as

α decrease, we can see that the performance of our new Algorithm 3 is more consistently behaved.

α method rel.SSD
10−4 A3 0.59%

NMG 3.79%
10−3 A3 0.60%

NMG 15.28%
10−2 A3 0.64%

NMG 30.19%
10−1 A3 0.71%

NMG 47.09%

Table 2: α-sensitivity comparison using Example 3 (see Figure 1 last row) with varying α and other fixed
parameters.
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3.1.3 β-dependence test

As is well known, the quantities of results and the performances of some numerical schemes in solving the

nonlinear system related to the total variation (TV) regularization technique are affected significantly by the

value of β. Theoretically β should be selected to be as small as possible, thus the solution of (4) converges

to the solution of original problem (1), more details see [18]. Here we analyze how β affects the performance

of our new Algorithm 3 (A3) and nonlinear multigrid method with smoother PDFP-2 (NMG). To this end,

two methods were tested on Example 2 (see Figure 1 middle row) with the results shown in Table 3, where

∗ means no convergence. Here the following parameters are taken: α = 0.75 × 10−4, and h = 1/512 for all

experiments and β is varied from 10−16 to 1. For this example, on one hand we can see our Algorithm is

still convergent when β is very small; On the other hand, we can also observe the quality of registered image

by Algorithm 3 is not sensitive as β reduces.

β method rel.SSD
10−16 A3 4.68%

NMG ∗
10−12 A3 4.68%

NMG ∗
10−6 A3 4.75%

NMG ∗
10−4 A3 5.12%

NMG ∗
5× 10−3 A3 5.14%

NMG 7.01%
10−2 A3 5.25%

NMG 8.93%
10−1 A3 5.30%

NMG 23.24%
10−0 A3 5.32%

NMG 45.57%

Table 3: β-sensitivity comparison using Example 2 (see Figure 1 middle row) with varying β and other fixed
parameters.

4 Conclusions

The mean curvature-based image registration model is known to be effective to deliver better registration

results for both smooth and non-smooth deformation fields. However, it is difficult to solve efficiently this

model. Although Chumchob-Chen-Brito [23] developed a convergent multigrid method using primary-dual

fixed-point method as a smoother to solve this model providing that the smoothing parameter β is larger

enough (e.g.≥ 5× 10−3). We are interested in obtaining a numerical algorithm that converges even for

very small β. In this paper, we adopt discretize-optimize method, follow an idea of relaxed fixed point and

combine with Gauss-Newton scheme with Armijo’s Linear Search for solving the discretized mean curvature

model and further to combine with a multilevel method to achieve fast convergence. Numerical experiments

not only confirm that our proposed method is efficient and stable, but also it can give more satisfying

registration results according to image quality. In our future work, we plan to use homotopy method which

has become a useful tool for solving nonlinear problems to solve discrete registration model (13).
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