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Abstract

In this paper, we consider the solution of a large linear system of equations
which is obtained from discretizing the Euler Lagrange equations associated
with the image deblurring problem. The coefficient matrix of this system
is of the generalized saddle point form with high condition number. One of
the blocks of this matrix has the block Toeplitz with Toeplitz block (BTTB)
structure. This system can be efficiently solved using the minimal residual
(MINRES) iteration method with preconditioners based on the fast Fourier
transform (FFT). Eigenvalue bounds for the preconditioner matrix are ob-
tained. Numerical results are presented.

Keywords: Preconditioning technique, Saddle-point problems, Image
deblurring, Krylov subspace method, TV Regularization, Primal dual
formulation, BTTB matrix, FFT.
2010 MSC: 65F10, 65F08, 65F15, 65N22, 68U10, 94A08

1. Introduction

Image deblurring problem requires solving a large, dense, ill-conditioned
linear system of equations. For example an image with 256 × 256 resolu-
tion requires solving system of size 2562. The suitable choice of linear solver
is an iterative method such as a Krylov subspace method. Unfortunately,
Krylov subspace methods such as the conjugate gradient (CG) method or
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the minimal residual (MINRES) method are very slow with ill-conditioned
linear system of equations. One technique to overcome this slowness prop-
erty is using an appropriate preconditioner. A good preconditioner which
accelerates the convergence needs to be easy to construct and cheap to in-
vert. Moreover, the preconditioned matrix should have eigenvalues clustering
behavior. Many preconditioners in [4] are developed for a saddle point prob-
lem. In this research work, we convert the linear system resulted from image
deblurring problem into a saddle point problem and we develop block precon-
ditioners with two parameters. These preconditioners are of Murphy, Golub
and Wathen type [20]. Moreover, we give a bounds on all positive and nega-
tive eigenvalues. These bounds depend on the values of the parameters. The
selection of these two parameters will affect the clustering behavior of the
eigenvalues. Our preconditioners involve a Schur complement matrix which
contains a product of a Toeplitz matrix with Toeplitz blocks (BTTB) and
its transpose. This product may not be a BTTB. So, we approximate this
product by a symmetric BTTB matrix [23]. The benefit of this approxi-
mation is to reduce the storage and operation numbers due to fast Fourier
transformation (FFT) and the convolution theorem. This paper is organized
as follows: In section 2, we introduce the problem and invert it into a saddle
point problem. We develop a block diagonal preconditioner with two param-
eters in section 3. We drive bounds on the eigenvalues of the preconditioned
matrix in section 4. Approximation of the blurring matrix is given in section
5. We give some numerical examples and show the algorithm’s performance
in sections 6. Finally, we give a short summary in section 7.

2. Problem Setup

To deblur an image, we need a mathematical model of how it was blurred.
Blurring and noise affect the quality of the received image. The recorded
image z and the original image u are related by the equation

z = Ku+ ε, (1)

where K denotes the blurring operator and ε denotes the noise function. K
is typically a Fredholm integral operator of the first kind,

(Ku)(x) =

∫
Ω

k(x, x′)u(x′)dx′, x ∈ Ω (2)
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with translational invariance, the kernel k(x, x′) = k(x− x′) is known as the
point spread function (PSF). The operatorK is compact, so problem (1) is ill-
posed [17]. Ω will denote a square inR2 on which the image intensity function

u is defined. x = (x, y) denotes the location in Ω; | x |=
√

x2 + y2 denotes

the Euclidean norm, and ∥ · ∥ denotes the norm in L2(Ω). To stabilize
problem (1) the total variation (TV) regularization functional, which was
introduced in [24] by Rudin, Osher, and Fatemi, is often used. The problem
is then to find a u which minimizes the functional

T (u) =
1

2
∥ Ku− z ∥2 +αJ(u), (3)

with positive parameter α and the total variational functional [1] is given by

J(u) =

∫
Ω

| ▽u | . (4)

However, the derivative of the integrand in equation (4) does not exist at
zero. One remedy of this issue [17] is to add a constant β as follows

Jβ(u) =

∫
Ω

√
| ▽u |2 +β2. (5)

Then the functional to be minimized is

T (u) =
1

2
∥ Ku− z ∥2 +α

∫
Ω

√
| ▽u |2 +β2, (6)

with α, β > 0. The well-posedness of this minimization is established in
[1]. The Euler-Lagrange equations associated with the above minimization
problem are

K∗(Ku− z) + αL(u)u = 0 x ∈ Ω, (7)

∂u

∂n
= 0 x ∈ ∂Ω, (8)

where K∗ is the adjoint operator of the integral operator K. The differential
operator L(u) is given by

L(u)w = −▽.( 1√
| ▽u |2 +β2

▽w). (9)
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Note that (7) is a nonlinear integro-differential equation of elliptic type.
Equations (7-8) can be expressed as a nonlinear first order system [10]

K∗Ku− α▽.v⃗ = K∗z, (10)

−▽u+
√

| ▽u |2 +β2v⃗ = 0⃗, (11)

with the dual, or flux, variable

v⃗ =
▽u√

| ▽u |2 +β2
. (12)

To discretize (10) and (11), we start by dividing the square domain Ω =
(0, 1)× (0, 1) into n2

x equals squares (cells) where nx denotes the number of
equispaced partitions in the x or y directions. The cell centers are denoted
by (xi, yj) and given by

xi = (i− 1
2
)h i = 1, ..., nx,

yj = (j − 1
2
)h j = 1, ..., nx,

where h = 1
nx
. The midpoints of cell edges are given by (xi± 1

2
, yj) and

(xi, yj± 1
2
) where

xi± 1
2
= xi ± h

2
i = 1, ..., nx,

yj± 1
2
= yj ± h

2
j = 1, ..., nx.

The set
eij = {(x, y) : x ∈ [xi− 1

2
, xi+ 1

2
], y ∈ [yj− 1

2
, yj+ 1

2
]},

represents a cell with (xi, yj) as a center. Let

χi(x) =

{
1, if x ∈ (xi− 1

2
, xi+ 1

2
);

0, otherwise.

χj(y)

{
1, if y ∈ (yj− 1

2
, yj+ 1

2
);

0, otherwise,

and
ϕi(xl+ 1

2
) = δil,

ϕj(yk+ 1
2
) = δjk.
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Approximate u as

u(x, y) ≃ U(x, y) =
nx∑
i=1

nx∑
j=1

uijχi(x)χj(y),

where U(xi, yj) = uij and represent the data z as

z(x, y) ≃ Z(x, y) =
nx∑
i=1

nx∑
j=1

zijχi(x)χj(y),

where zij may be calculated as cell averages. Also, approximate v by

v(x, y) ≃
nx−1∑
i=1

nx∑
j=1

V x
ij

(
ϕi(x)χj(y)

0

)
+

nx−1∑
i=1

nx∑
j=1

V y
ij

(
0

ϕi(y)χj(x)

)
Now, applying Galerkin’s method to (10-11) together with midpoint quadra-
ture for the integral term and cell centered finite difference method (CCFD)
for the derivative part (see [15], [30]), one obtains the following system

K∗
hKhU + αB∗

hV = K∗
hZ, (13)

αBhU − αDhV = 0 (14)

Here Kh is a matrix of size n × n and Bh is a matrix of size m × n. Dh is
a matrix of m ×m (here n = n2

x and m = 2nx(nx − 1)). For simplicity we
eliminate the subscript h equipped with the matrices in (13,14) and then one
can re-write them after rearrangement the unknowns as[

αD −αB
−αB∗ −K∗K

] [
V
U

]
=

[
0

−K∗Z

]
, (15)

Both K∗K and L = B∗D−1B are symmetric positive semi definite matrices
[1]. The matrix K is a BTTB matrix. The matrix D is a diagonal with
positive diagonal entries

D =

[
Dx 0
0 Dy

]
,

where Dx is an (nx−1)×nx and Dy an nx× (nx−1) matrices with diagonal
entries obtained by discretize the expression

√
| ▽u |2 +β2. The matrix B is

given by

B =
1

h

[
B1

B2

]
,
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where the matrices B1 (nx(nx − 1) × n) and B2 (nx(nx − 1) × n) have the
following structures

B1 =


−I I 0 0 0
0 −I I 0 0

0 0
. . . . . . 0

0 0 0 −I I

 ,

where I is the identity matrix of size nx by nx.

B2 =


E 0 0 0 0
0 E 0 0 0

0 0
. . . 0 0

0 0 0 0 E

 ,

where E ((nx − 1)× nx) is given by

E =


−1 1 0 0 0
0 −1 1 0 0

0 0
. . . . . . 0

0 0 0 −1 1

 .

Note that one can eliminate V from (13) and (14) to get the following primal
system

(K∗K + αL)U = K∗Z. (16)

If Tikhonov regularization is used then (16) becomes

(K∗K + αI)U = K∗Z, (17)

where I is the identity matrix of the same size of K. The linear system (15)
can be seen as a generalized saddle point version of (16). Another generalized
saddle point version of (16) is[

I K
−K∗ αL

] [
V
U

]
=

[
Z
0

]
. (18)

We note that (15), (16) and (18) are equivalent. In the next paragraph, we
discuss several iterative methods for solving these three equivalent systems.
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In [30], Vogel and Oman introduced product preconditioner for the system
(16) with approximating the BTTB matrix by (block circulant with circulant
block) BCCB. Chan et. al in [8] introduced cosine-transform based precondi-
tioners for the (TV) deblurring problem. Donatelli in [12] used another solver
for the deblurring problem with Dirichlet and periodic boundary conditions.
The blurring matrices are BTTB and BCCB. He solved the resulting sys-
tems by applying a multigrid method and he showed an optimality property
with O(n) arithmetic operations where n is the linear system size. In [13],
Donatelli and Hanke introduced an iterative scheme similar to nonstationary
iterated Tikhonov regularization for (17). The rapid convergence of their
method is determined by adaptive strategy of selecting the regularization
parameters. For the second version of the generalized saddle point prob-
lem (18), NG and Pan in [21] developed new Hermitian and skew-Hermitian
splitting (HSS) preconditioners for solving such system with weighted matrix.
They gave a strategy to choose the HSS parameters to force all eigenvalues
of the preconditioned matrices to be clustered around one and hence the
Krylov subspace method converges very quickly. Axelsson and Neytcheva
[3, 2] introduced a block diagonal preconditioner (PAN ) for generalized sad-
dle point problem in the same structure as (15). They derived bounds on the
eigenvalues of the preconditioned matrix. In this research work, we introduce
block diagonal preconditioners for (15). Our proposed preconditioners can
be seen as an Axelsson and Neytcheva preconditioner with two parameters.
For more detail on iterative methods for image deblurring we refer to [5].

3. The Preconditioner

Let us denote the matrix equation given in (15) by Ax = b, one can
note that the coefficient matrix A is symmetric but not positive definite.
So, the suitable Krylov subspace method for such matrices is the MINRES
method. Unfortunately, the convergence is slow. To overcome this slowness,
we introduce the following symmetric positive definite preconditioner.

P̄ =

[
αγ1D 0
0 γ2S̄

]
, (19)

where S̄ is an approximation to the matrix S = (K∗K+αL). This matrix, S,
is the Schur complement of the matrix A. γ1 and γ2 are positive parameters.
The preconditioner P̄ in (19) is an approximation of the following exact
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preconditioner matrix

P =

[
αγ1D 0
0 γ2S

]
.

In case γ1 = γ2 = 1, the preconditioner matrix P is the Axelsson and
Neytcheva preconditioner PAN . Since the coefficient matrix A is symmet-
ric and indefinite, the appropriate iterative method is the preconditioned
MINRES [22]. In general, MINRES minimizes the residual over the shifted
Krylov subspace. For more detail in preconditioning technique we refer to
see [4], [20] and [6].

4. Eigenvalues Estimates

In order to have information of the spectral properties of the precondi-
tioned matrix P̄−1A, we need to study the spectral properties of the pre-
conditioned matrix P−1A. In this section we give a bound for the positive
and negative eigenvalues of the preconditioned matrix P−1A but before doing
that, we start by discussing the number of the positive and negative eigenval-
ues of the preconditioned matrix P−1A. Note that the preconditioned matrix
P−1A is similar to the matrix P−1/2AP−1/2. The matrix P−1/2AP−1/2 can
be decomposed into[

Im 0

−
√

αγ1
γ2

S−1/2B∗D−1/2 In

] [ 1
γ1
Im 0

0 − 1
γ2
In

][
Im −

√
αγ1
γ2

D−1/2BS−1/2

0 In

]
,

where Im and In are the identities matrices of size m×m and n× n respec-
tively. The above decomposition is known as the congruence transformations
of the matrix P−1/2AP−1/2. By Sylvesters law of inertia (page 403 in [16]),
congruence transformations preserve the signs of the eigenvalues [14]. It fol-
lows that the number of the positive eigenvalues of P−1A ism and the number
of the negatives is n (here m > n). Several bounds on the eigenvalues of the
generalized saddle point matrix are established in [25, 28] and [3, 2]. Here
we state the bounds in [2].

Theorem 4.1 (Theorem 1 in [2] p 4). Let Â =

[
M̂ B̂T

B̂ −Ĉ

]
, where M̂

and Ŝ = Ĉ + B̂M̂−1B̂T are symmetric and positive definite. Let 0 < µ̂1 ≤
µ̂2 ≤ ... ≤ µ̂n, 0 < σ̂1 ≤ σ̂2 ≤ ... ≤ σ̂m be the eigenvalues of M̂ and
B̂M̂−1B̂T , respectively, and let γ2 = ρ(Ŝ−1/2B̂M̂−1B̂T Ŝ−1/2), the spectral
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radius. Then the eigenvalues (λi) of Â are located in the two intervals:

[−λmax(Ŝ),
−λmin(Ŝ)

1+ γ2

µ̂1
λmin(Ŝ)

] ∪ [µ̂1, µ̂n + σ̂m]. If Ĉ is positive semidefinite then

the upper bound can be replaced by the more accurate bound µ̂n

1+
√

1+ 4 ˆσm
µ̂n

2
.

In the following theorem, we give upper and lower bounds for the positive
and negative eigenvalues of P−1A.

Theorem 4.2. The m+ n (µ−n ≤ µ−n+1 ≤ ... ≤ µ−1 < 0 < µ1 ≤ µ2 ≤ ... ≤
µm) eigenvalues of the generalized eigenvalue problem,[

αD −αB
−αB∗ −K∗K

] [
x
y

]
= λ

[
αγ1D 0
0 γ2S

] [
x
y

]
(20)

satisfy the following:

µi ∈

 1

γ1
,
1 +

√
1 + 4αγ1

γ2
σm

2γ1

 i = 1, ...,m, (21)

µ−j ∈
[
− 1

γ2
,− 1

γ2 + αγ1τ

]
j = 1, ..., n, (22)

where γ1 and γ2 are positive parameters. σm is the maximum eigenvalue of
S−1/2LS−1/2 and τ = ρ(S−1/2LS−1/2), the spectral radius.

Proof: We start expressing the preconditioned matrix P−1A in a generalized
saddle point matrix. P−1A is similar to P

1
2 (P−1A)P− 1

2 = P− 1
2AP− 1

2 =

=

[
1√
αγ1

D− 1
2 0

0 1√
γ2
S− 1

2

] [
αD −αB

−αB∗ −K∗K

][ 1√
αγ1

D− 1
2 0

0 1√
γ2
S− 1

2

]
(23)

=

[
α√
αγ1

D
1
2

−α√
αγ1

D− 1
2B

−α√
γ2
S− 1

2B∗ −1√
γ2
S− 1

2K∗K

][
1√
αγ1

D− 1
2 0

0 1√
γ2
S− 1

2

]
(24)

=

 1
γ1
I −

√
α

γ1γ2
D− 1

2BS− 1
2

−
√

α
γ1γ2

S− 1
2B∗D− 1

2
−1
γ2
S− 1

2K∗KS− 1
2

 (25)

=

[
M̂ B̂∗

B̂ −Ĉ

]
= Â. (26)
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Now one can use Theorem 4.1 with the matrices

M̂ =
1

γ1
I, B̂ = −

√
α

γ1γ2
S− 1

2B∗D− 1
2 ,

Ĉ =
1

γ2
S− 1

2K∗KS− 1
2 , Ŝ =

1

γ2
In,

and

λmax(Ŝ) =
1

γ2
, λmin(Ŝ) =

1

γ2
,

µ̂1 =
1

γ1
, µ̂n =

1

γ1
,

σ̂m = maximum eigenvlaue of
α

γ2
S− 1

2LS− 1
2 ,

γ2 = ρ(αS−1/2LS−1/2),

to obtain the bound given in (21) and (22).

Remark 4.1. In the above theorem and its proof, since both P and S are
positive definite then P−1/2, P 1/2 and S−1/2 are well defined.

Remark 4.2. If γ1 = γ2 = 1 (PAN), then (21) and (22) are given by

µi ∈
[
1,

1 +
√
1 + 4ασm

2

]
i = 1, ...,m,

µ−j ∈
[
−1,− 1

1 + ατ

]
j = 1, ..., n.

Remark 4.3. From (21) and (22), one can note that the smaller value of
γ1
γ2

yields the smaller length of both intervals. This means that we have a
good clustering behavior for the negative and positive eigenvalues. Hence, we
expect fast convergence.

4.1. Numerical results for the eigenvalues analysis

Our aim is to verify that the bounds given in Theorem 4.2 are matched
with the following numerical example. In this example we take nx = 4, β = 1
and α = 8 × 10−5 with the kernel described in (2). Table 1 shows the up-
per and lower (positive/negative) bounds of the intervals given in the above
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theorem. Also it shows the maximum and the minimum (positive/negative)
eigenvalues of the preconditioned matrix P−1A. These eigenvalues are com-
puted using the built-in Matlab command eig.

γ1, γ2 Bounds in (21,22) Computed eigenvalues

PAN [−1,−6.42e − 1] ∪ [1, 1.39] [−1,−7.59e − 1] ∪ [1, 1.31]

1e − 3, 1 [−1,−9.99444e − 1] ∪ [1e + 3, 1.0005555e + 3] [−1,−9.99445e − 1] ∪ [1e + 3, 1.0005552e + 3]

1e − 6, 1 [−1,−9.999994441e − 1] [−1,−9.999994442e − 1]

∪ ∪

[1e + 6, 1.0000005558257e + 6] [1e + 6, 1.0000005558255e + 6]

Table 1: Bounds on eigenvalues of the preconditioned matrix P−1A

In Table 1, observe that all intervals in the third column are contained in
the second column. This observation verifies the bounds given in Theorem
4.2.

It is known that the PMINRES convergence estimate [14] can be written
as

∥ r(k) ∥P−1

∥ r(0) ∥P−1

≤ min
qk∈Πk qk(0)=1

max
λ∈σ(P−1A)

| qk(λ) |, (27)

where Πk is the space of all polynomial of degree less than or equals k and

∥ r(0) ∥2P−1= r(0)
T
P−1r(0). To minimize the right hand side of the above

inequality (27) we need to cluster both the positive and negative eigenvalues.
This can be obtained by reducing the lengths of the intervals in (21) and
(22).

5. Approximating K∗K

An n× n matrix M is Toeplitz if the entries along each diagonal are the
same. A circulant matrix is a Toeplitz matrix for which each column is a
circular shift of the elements in the preceding column (so that the last entry
becomes the first entry). In our problem, K is BTTB matrix and it has the
block form

K =


T0 T−1 · · · T1−n

T1 T0 T−1 · · ·
...

. . . . . . T−1

Tn−1 · · · T1 T0

 , (28)
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where each block Tj is a Toeplitz matrix. The first row and the first column
uniquely define a Toeplitz matrix. Circulant preconditioning for Toeplitz sys-
tems was introduced by Strang [29] and extended by others to block Toeplitz
systems [11]. Many researchers use a Toeplitz preconditioners and block
Toeplitz preconditioners for Toeplitz systems see for instance [9] and [18].
Band Toeplitz preconditioner and band BTTB preconditioner are proposed
in Chan [7] and Serra [27]. In [19], BTTB preconditioners for BTTB systems
are discussed.
In our preconditioner P̄ given in (19), note that K is a BTTB matrix but
K∗K need not be BTTB. So, we follow [23] to approximate K∗K given in
the preconditioner matrix P by a symmetric BTTB matrix T . Symmetric
BTTB matrices can always be extended to form symmetric BCCB matrices.
The benefit of this approximation is that the matrix-vector products that
involve n2

x×n2
x matrices can be computed in O (n2

x log nx) operations due to
the FFT’s and the Convolution Theorem. Moreover, all that is needed for
computation is the first column of the matrix, which decreases the amount
of required storage. Note that, the preconditioner P̄ requires the solution of
T + αL. We use the Conjugate Gradient (CG) method to solve the system
(T + αL)x = y. In CG, we need only matrix-vector product in the form
(T + αL)v which is simply Tv + αLv.

6. Numerical Experiments

In this section, we solve the linear system (15) using preconditioned MIN-
RES method (PMINRES) with P̄ in (19) as a preconditioner. PMINRES
needs to compute matrix-vector product in the form (K∗K + αL)v which is
simply K∗(Kv) + αLv. Here, both K∗q and q = Kv can be done quickly.
In each PMINRES iteration, a linear system of type P̄ v = w needs to be
solved. The (1,1)-block in the matrix P̄ is a diagonal matrix and hence easy
to invert. Conjugate Gradient (CG) method is used to solve the second part
of P̄ v = w. We present some results based on the image data given in Fig-
ure 1. The blurred image is shown in Figure 3. Figure 2 shows the kernel
described in (2). In this experiment, we used PMINRES as a linear solver,
we take nx = 256, the resulting system has 2562 ≈ 6.55 × 104 unknowns.
We take α = 8 × 10−5, β = 1, tol = 1e − 4 and we fix γ1 = γ2 = 1 in the
preconditioner matrix P̄ . Figure 4 displays the deblurred image achieved by
using the total variation (TV) reconstruction algorithm.

Figures (5-6) show the efficiency of the different preconditioners. In each
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exact image

50 100 150 200 250

Figure 1: The exact image.

Figure 2: The kernel.
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blured image

50 100 150 200 250

Figure 3: The blurred image.

deblured image

50 100 150 200 250

Figure 4: The deblurred image.
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PMINRES iteration, the logarithm of
∥r(n)∥P̄−1

∥r(0)∥P̄−1
(P̄ is the preconditioner and

r is the residual) is calculated and then plotted in Figures (5-6). In this
comparison study we have chosen nx = 128 and β = 0.01. Here P0 refers
to no-preconditioner, P11 (where P11 ia an approximation to PAN) to the
preconditioner P̄ with γ1 = γ2 = 1, P12 to the preconditioner P̄ with γ1 =
1, γ2 = 10, P2 to the preconditioner P̄ with γ1 = 1e− 3, γ2 = 1 and finally
P3 refers to the preconditioner P̄ with γ1 = 1e−6, γ2 = 1. In Figures 5 and 6
observe that unpreconditioned MINRES converged most slowly, followed by
PMINRES P11 and then both P0 and P11 are followed by P12. We note that
PMINRES P3 is the fastest one. This has the smallest value of the parameter
γ1 which leads to the best clustering behavior of the eigenvalues (see Remark
4.3 and Table 1). The CPU time and the measure of image quality, Peak
Signal-to-Noise Ratio, (PSNR) for the preconditioners P11, P12, P2 and P3

are given in Table 2. In this table, we compute the CPU time for 15 iterations
for P11 to reach tol = 1e − 3, 10 iterations for P12 to reach tol = 1e − 3, 7
iterations for P2 to reach tol = 1e − 3 and 6 iterations for P3 to reach the
same tolerance (see Figure 5). Through this comparison, we find that the
PSNR for the blurred image is (21.2004) while the PSNR for deblurred image
can be seen in Table 2.

P11 P12 P2 P3

CPU(in second) 23.59 14.52 12.53 11.24

PSNR for deblurred image 26.6606 26.6673 26.6609 26.6609
(in decibels)

Table 2: The CPU time and the PSNR for the preconditioners P11, P12, P2 and P3

Condition number for the preconditioned matrices with several values of
γ1 ∈ [1e − 6, 9e − 6] and γ2 ∈ [0.4, 1.3] are computed and plotted in Figure
7.

7. PMINRES .vs. FGMRES

Using a Krylov subspace method as a preconditioner within a different
kyrlov subspace method may lead to a changing preconditioner. In such
cases, the preconditioner matrix changes from step to step. Flexible GMRES
(FGMRES) [26], allows the preconditioner to vary from step to step. For
sake of comparison, we solve the linear system (15) using PMINRES and
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Figure 5: Residual .vs. iteration α = 8e− 5
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Figure 6: Residual .vs. iteration α = 8e− 4
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Figure 7: Condition numbers with different γ1 and γ2.

FGMRES with P̄ given in (19)as a preconditioner. In this experiment, we
take nx = 128, α = 8e−4, β = 0.1 and tol = 1e−7. The results are based on
the image data given in Figure 1. In each PMINRES iteration, the logarithm

of
∥r(n)∥P̄−1

∥r(0)∥P̄−1
is calculated and then plotted in Figure 8. In each FMINRES

iteration, the logarithm of ∥r(n)∥2
∥r(0)∥2

is calculated and then plotted in Figure

9. In these figures, we observe that in both PMINRES and FGMRES, the
unpreconditioned converged most slowly, followed by P̄AN and then both P0

and P11 are followed by P12. We note that P3 is the fastest one.
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Figure 8: Residual .vs. iteration (PMINRES)
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Figure 9: Residual .vs. iteration (FGMRES)

8. Summary

Block diagonal preconditioning techniques for the image deblurring prob-
lem using primal-dual formulation are presented. Bounds on the eigenvalues
of the preconditioned matrix are obtained and verified with several experi-
ments. The proposed preconditioner is used to accelerate the reconstruction
of the blurred image. Residual plot shows fast convergence of the method.
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