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a b s t r a c t

Level set functions based variational image segmentation models provide reliable methods to capture
boundaries of objects/regions in a given image, provided that the underlying intensity has homogeneity.
The case of images with essentially piecewise constant intensities is satisfactorily dealt with in the well-
known work of Chan–Vese (2001) and its many variants. However for images with intensity inhomo-
geneity or multiphases within the foreground of objects, such models become inadequate because the
detected edges and even phases do not represent objects and are hence not meaningful. To deal with
such problems, in this paper, we have proposed a new variational model with two fitting terms based on
regions and edges enhanced quantities respectively from multiplicative and difference images. Tests and
comparisons will show that our new model outperforms two previous models. Both synthetic and real
life images are used to illustrate the reliability and advantages of our new model.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Image segmentation is the task of dividing an image into dif-
ferent regions such that each region is homogeneous in color,
intensity or texture. The aim is to select specific features out of an
image from distinguishing them from the background [1–7]. Var-
ious models have been developed for image segmentation tasks.
The Mumford–Shah functional minimization [5], the snake model
[8], region growing and emerging [9], watershed algorithms [10],
minimum description length criteria [6], graph cuts [11] and
Markov Random Fields [12] are some examples [13]. Edge detec-
tion based on an edge detector function of the gradient of a given
image provides effective segmentation methods in some cases but
often such a function is used in many other models [3,14,15].

Our main concern here is on region based segmentation
models in which objects are detected by optimizing regional
homogeneity using some special terms. Such terms are named as
region detectors or fidelity terms. There is a rich literature on
fidelity terms with the statistical variance as a common choice.
li),
ahoo.com (G.A. Khan).
The most influential and the best known among the segmentation
models is the Mumford–Shah (MS) model [5]. Minimization of the
MS functional leads to a new segmentation image which is very
close to the original image with boundaries of minimal length and
objects having minimal variation. It should be remarked that there
exist many approaches to combine the advantages of both edge-
based and region-based models [3,16,17].

In MS formulation, for a given image u0, we construct an image
u : Ω-R and a set of edges K �Ω by minimizing

Fðu;KÞMS ¼
Z
Ω
ðu�u0Þ2 dx dyþα

Z
Ω⧹K

j∇uj 2 dx dyþβ
Z
K
ds ð1Þ

where α and β are positive. Here the first term is the fidelity term
which keeps the solution image u as close as possible to the given
image u0, the second term is the regularizer which helps to give
the solution image u smooth in the region Ω⧹K inside the objects
away from edges and the third is the length term, which helps to
filter out false edges and to ensure solution uniqueness. With this
mechanism, whenever an image u0 is segmented, a piecewise
smooth image u is obtained with edge information in K. In other
words, a cartoon version u of the given image u0 is obtained. Up to
now, the MS model has not been solved directly (i.e. without
approximations).
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The Chan–Vese model (CV) model [2] (which can be solved
directly) is a special case of the MS model [5] by representing the
set K as the boundary Γ which separates Ω of a given image
u0ðx; yÞ into two subdomains insideðΓÞ and outsideðΓÞ. The CV
model minimizes

FCV ðc1; c2;ΓÞ ¼ λ1
Z
insideðΓÞ

ju0�c1 j 2 dx

þλ2
Z
outsideðΓÞ

ju0�c2 j 2 dxþμ lengthðΓÞ ð2Þ

where c1 and c2 are the average intensities in insideðΓÞ and
outsideðΓÞ respectively, μZ0; λ140; λ240 are fixed parameters, μ
controls the size of objects and λ1;λ2 control the image data driven
force inside and outside the contour respectively.

Let ϕðx; yÞ be a level set function [18,19] such that
Γ ¼ fðx; yÞAΩ : ϕðx; yÞ ¼ 0g and
insideðΓÞ ¼ fðx; yÞAΩ : ϕðx; yÞ40g;
outsideðΓÞ ¼ fðx; yÞAΩ : ϕðx; yÞo0g: ð3Þ

Using ϕ can simplify Eq. (2). By minimizing FCV ðc1; c2;ϕÞ, we
obtain c1 and c2

c1 ¼
R
Ωu0HðϕÞ dx dyR
ΩHðϕÞ dx dy

; c2 ¼
R
Ωu0ð1�HðϕÞÞ dx dyR
Ωð1�HðϕÞÞ dx dy :

Then minimization with respect to ϕ leads to the following
equation:

δðϕÞ μ∇ � ∇ϕ
j∇ϕj

� �
�λ1ðu0�c1Þ2þλ2ðu0�c2Þ2

� �
¼ 0: ð4Þ

Formally HðϕÞ is the Heaviside function and δðϕÞ is the dirac delta
function. For differentiability, regularized Heaviside and delta are
used as given by

HϵðzÞ ¼ 1
2

1þ2
π
arctan

z
ϵ

� �� �
; δϵðzÞ ¼ ϵ

π ϵ2þz2
� 	: ð5Þ

Although the CV model is non-convex, it has been widely used
and has successfully solved many practical problems as long as the
image intensities are close to piecewise constant.

However, beyond its original assumption, extending the CV
model to segment images having objects with inhomogeneous
intensities has been the subject of several recent works [1,3,20]. To
motivate this paper, in Fig. 1, we show two images which cannot
be segmented satisfactorily by the CV model. One may argue that
segmentations are successful in the sense that the correct
boundaries for the dark regions are identified but we desire to
segment the objects (not just dark edges, which do not locate the
complete object); in this sense, even a multiphase model for pie-
cewise constant intensities would give incorrect results due to
Fig. 1. Detection of edges by the CV model for images having regions/objects of varyin
detection by the CV model; (c) original hardware image with initial contour; (d) detecti
objects are not identified correctly.
getting redundant edges inside an object. We shall propose a new
model that extends the TV work.

The rest of this paper is organized in the following way. Section
2 briefly reviews three recent works that attempted to extend the
TV model. Section 3 presents our proposed model, though based
on the CV, that is capable of segmentation images with low con-
trast, inhomogeneous intensities, or noise and edges in multiple
phases. We give some details of numerical solution by an additive
operator spitting method. Section 4 reveals the fast global mini-
mization frame work implementation for the proposed model.
Section 5 gives some final test results for comparing our proposed
model with other related models, showing the reliability and
robustness of the newmodel for a range of challenging images. For
quantitative comparison of segmentation results, section 6 dis-
cusses the Jaccard similarity. Finally the conclusion is made in
Section 7.
2. Some recent works for extension of the TV model

Extension of the TV model may be done in a number of ways.
Here we review two ideas which use different fidelity terms since
the previous terms ðu0�cjÞ2 alone are not adequate.

2.1. The coefficient of variation (COV) based model

For image u0, its coefficient of variation (based on the variance
and the mean) defined by

varðu0Þ
meanðu0Þ
is relatively large in regions which contain the object edges and
small in other regions where there are no strong edges (gradients).
These relative quantities do not reply on the assumption that u0
has piecewise constant intensities. Making use of this observation,
in [1], we proposed the new fidelity terms
Z
insideðΓÞ

ðu0ðx; yÞ�c1Þ2
c21

dx dyþ
Z
outðΓÞ

ðu0ðx; yÞ�c2Þ2
c22

dx dy

and consequently a coefficient of variation based image selective
segmentation model

min
ϕ;c1 ;c2

Fϵðϕ; c1; c2Þ ¼ μ
Z
Ω
dðx; yÞgðj∇uj ÞδϵðϕÞj∇ϕj dx dy

þλ1
Z
Ω

ðu0ðx; yÞ�c1Þ2
c21

HϵðϕÞ dx dy

þλ2
Z
Ω

ðu0ðx; yÞ�c2Þ2
c22

ð1�HϵðϕÞÞ dx dy;

where dðx; yÞ denotes a metric function, used for selective
g/inhomogeneous intensities. (a) Original medical image with initial contour; (b)
on by the CV model. Clearly some prominent edges are correctly identified but the
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segmentation, and g is an edge detection function e.g. for some
pZ1 and a Gaussian function Gsðx; yÞ

gðj∇u0ðx; yÞj Þ ¼
1

1þj∇Gsðx; yÞnu0ðx; yÞj p
:

This model was able to capture objects of interest in examples
where the TV model failed. More examples can be found later in
this paper.

2.2. The local Chan–Vese model (LCV)

To extend the CV model to deal with intensity inhomogeneity,
Wang et al. [20] proposed a model by incorporating the following
new local statistical fitting terms,

R
insideðΓÞðun

0�u0�d1Þ2 dx dyþR
outðΓÞðun

0�u0�d2Þ2 dx dy where un

0ðx; yÞ ¼ gknu0ðx; yÞ is the
smoothed version of the image u0. The local Chan–Vese (LCV)
energy functional in level set formulation is given by

Fϵðϕ; c1; c2; d1;d2Þ ¼ μ
Z
Ω
δϵðϕÞj∇ϕj dx dyþ

Z
Ω

1
2
ð∣∇ϕ∣�1Þ2 dx dy

þλ1
Z
Ω
ðu0�c1Þ2HϵðϕÞ dx dy

þλ1
Z
Ω
ðu0�c2Þ2ð1�HϵðϕÞÞ dx dy

þλ2
Z
Ω
ðun

0�u0�d1Þ2HϵðϕÞ dx dy

þλ2
Z
Ω
ðun

0�u0�d2Þ2ð1�HϵðϕÞÞ dx dy;

ð6Þ
where positive constants μ, λ1, λ2 are used for assigning different
weights and gk is an averaging convolution operator of window of
size k� k. Using un

0ðx; yÞ is the usual trick to deal with noise in u0
(but at the expense of imprecise boundaries).

The first regularizer term
R
ΩδϵðϕÞj∇ϕj dx dy of the energy

functional given in (6) helps to maintain the smoothness of the
active curve. The second term is a metric which keeps the function
ϕ close to a signed distance function in Ω. The global fitting termR
Ωðu0�c1Þ2HϵðϕÞ dx dyþ

R
Ωðu0�c2Þ2ð1�HϵðϕÞÞ dx dy guides the

active contour to capture the main structure of objects/regions of
image u0. The local term

R
Ωðun

0�u0�d1Þ2HϵðϕÞ dx dyþR
Ωðun

0�u0�d2Þ2ð1�HϵðϕÞÞdx dy assists the detection of small and
valuable details.

Minimization of Fϵðϕ; c1; c2; d1; d2Þ leads to the following solu-
tions:

c1ðϕÞ ¼
R
Ωu0ðx; yÞHϵðϕÞ dx dyR

ΩHϵðϕÞ dx dy
; c2ðϕÞ ¼

R
Ωu0ðx; yÞð1�HϵðϕÞÞ dx dyR

Ωð1�HϵðϕÞÞ dx dy
;

d1ðϕÞ ¼
R
Ωðun

0ðx; yÞ�u0ÞHϵðϕÞ dx dyR
ΩHϵðϕÞ dx dy

;

Fig. 2. Strong noise can reduce the effectiveness of the LCV model. (a) Synthetic noisy im
turned on; (c) under detection by the LCV model when the local term is turned off; (d)
d2ðϕÞ ¼
R
Ωðun

0ðx; yÞ�u0Þð1�HϵðϕÞÞ dx dyR
Ωð1�HϵðϕÞÞ dx dy

;

and, with ϕðx; y; tÞ ¼ϕ0ðx; y;0Þ,
∂ϕ
∂t

¼ δϵðϕÞ �λ1ðu0�c1Þ2�λ2ðun

0�u0�d1Þ2
h

þλ1ðu0�c2Þ2þλ2ðun

0�u0�d2Þ2
i

þ μδϵðϕÞ∇:
∇ϕ
j∇ϕj

� �
þ ∇2ϕ�∇:

∇ϕ
j∇ϕj

� �� �
in Ω:

ð7Þ
In contrast with CV model, the LCV model works well in many
examples with image inhomogeneity and low level noise [20]. The
LCV model captures minute details and detects objects/regions
with intensity inhomogeneity better than the CV model. However
for images with high level noise, the LCV model may have to
compromise between retaining noise as objects and keeping
valuable minute details; see Figs. 2 and 3 where the model fails.

2.3. Fast global minimization of the active contour/snake model

To enhance the CV model for the images in which the contrast
between the background and objects of interest is low, Bresson
et al. [3] proposed a fast global minimization model (FGM) by
combining the CV model with a snake model in a global mini-
mization framework. Two new ideas are introduced. First, the
usual length term lengthðΓÞ in a CV model is replaced by a
weighted length. Second, the new variable u¼HðϕÞ is introduced
to define a convex function but the functional is not yet convex
due to uAf0;1g. Then a constraint on u such that uA ½0;1� is
adopted to derive a convex functional. That is, they first refor-
mulate the following minimization functional

Fðu¼ 1ΩC
; c1; c2; λÞ ¼

Z
C
g dsþλ

Z
Ω

ðu0�c1Þ2�ðu0�c2Þ2
� �

1ΩC
dx dy

ð8Þ
as a convex functional for u and then solve the new variational
problem

min
u;v

Z
Ω
gj∇uj dx dyþ 1

2θ
Ju�vJ2þ

Z
Ω
λ ðu0�c1Þ2�ðu0�c2Þ2
� �

vþανðvÞ
h i

dx dy

 �

where g¼ gðj∇u0 j Þ, 1ΩC
denotes the characteristic function and

νðξÞ ¼max f0;2jξ�1=2j �1g helps to impose 0rur1. Equipped
with an edge detector function and image data fidelity terms, this
model is transformed to global minimization framework and,
based on the dual formulation, a fast segmentation algorithm is
derived. Although this model [3] enhancing the CV model gives
better results than the CV model in many examples, it shares some
of the weakness of the CV model especially in locating edges
according to intensities rather than finding objects.
age with initial contour; (b) over detection by the LCV model when the local term is
hardware image with initial contour; (d) detection by the COV model.



Fig. 3. (a) Original image. (b) Corrupted image. (c) 0:1� 2552 ; 0:1; 1. (d) Segmented result. (e) 0:2� 2552 ; 0:1; 1. (f) Segmented result. (g) 0:3� 2552 ; 0:1; 1. (h) Seg-
mented result. (i) 0:5� 2552 ; 1; 1: (j) Segmented result. (k) 0:6� 2552; 1; 1. (l) Segmented result. (m) 0:7� 2552 ; 1; 1: (n) Initial contour. (o) 0:3� 2552 ; 1; 0:1:
(p) Segmented result. Experimental tests of the LCV model, in segmenting a noisy image corrupted with salt & pepper noise with p¼ 0:1; reveal that LCV can avoid noise but
it losses local information as well. Moreover, LCV consider noise as an object, when minute details in an image are important to be detected. For each test, parameters μ; λ1 ;
and λ2 are respectively given, sizeðu0Þ ¼ 200� 200 and number of iterations are 3000.
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The FGM model (8) works well for images having constant inten-
sity regions; if the number of such constants is more than 2, a mul-
tiphase version of it is required. However if an object contains inho-
mogeneous intensities or two constant intensities, both the CV and the
FGM or their multiphase versions cannot segment such objects. The
failure of the FGM model can be seen in Fig. 4 where it fails the first
test in Fig. 4(a) and (b) (unable to capture completely the screw) due
to inhomogeneous intensities and it fails the second test in Fig. 4
(c) and (d) (unable to pick the complete object) due to strong noise.
Similarly, for a third example, Fig. 5 reveals that the FGM model may
capture some objects of a noisy image but lose other minute details.
3. A new segmentation model and its solution by operator
splitting

In this section, we first discuss some motivations behind our
model to present, and then give a solution method based on



Fig. 4. Experimental tests of the FGM model on image having inhomogeneous intensity and/or noise. (a) Original hardware image; (b) detection by the FGM model; (c)
synthetic noisy image; (d) detection by the FGM model. Clearly the first result (b) identified the edges correctly but not the object, while the second result (d) suggests that
the problem is too challenging for FGM.

Fig. 5. (a) Original image. (b) Corrupted image. (c) θ¼ 5. (d) θ¼ 10. (e) θ¼ 15. (f) θ¼ 20. (g) θ¼ 25. (h) θ¼ 30. (i) θ¼ 35. (j) θ¼ 40. (k) θ¼ 45. (l) θ¼ 50. Experimental tests
using FGM model, in segmenting a noisy image corrupted with salt & pepper noise with p¼0.1.
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operator splitting. To segment images having regions/objects of
inhomogeneous intensities and noise, the level set function (LSF)
should be constrained and the fitting terms

R
Ωðu0�c1Þ2

HϵðϕÞdx dyþ
R
Ωðu0�c2Þ2ð1�HϵðϕÞÞdx dy alone are insufficient.

We propose to employ both local and global image infor-
mation to guide a LSF to capture minute details other than noise,
and for complete detection of the global structure of objects in
image u0. Here the local image information helps to handle
varying intensities in a region so that the complete region can
be detected and the global image information works in alliance
with local image information to capture important minute
details other than noise. Also, the global image information is
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responsible for detection of the global structures of objects in
an image.

Motivation towards to the new model can be seen in Fig. 6.
Original image u0 is given, in Fig. 6(a), and in Fig. 6(b) the smooth
version of the given image un

0 is given. Clearly, u0;un

0 seem chal-
lenging to segment, as the edges are not that much prominent,
while in the product image u0un

0 given in Fig. 6(c) and the difference
image 255�ðun

0�u0Þ given in Fig. 6(d) the edges are more promi-
Fig. 6. Illustration of two related but different image functions u0un

0 and 255�ðun

0�u0Þ
with enhanced global and subregion details; (d) difference image 255�ðun

0�u0Þwith edg
for segmentation.

Fig. 7. Another illustration of two related but different image functions u0un

0 and 255�ðu
(c) product u0un

0 with enhanced global and object details; (d) difference image 255�ðu

Fig. 8. Illustration of the non-convexity of the proposed energy functional. (a) An initial g
to correct segmentation.
nent and is less challenging to segment. We also see that although
local details in Fig. 6(c) have disappeared, the main and global
structure is more prominent than u0. Similarly, local and minute
details are now more visible and prominent in Fig. 6(d). These
observations lead us to design functionals capable to guide a LSF
both locally and globally to capture accurately the desired edges/
regions completely. Our new proposed model will make use of both
u0un

0 and un

0�u0. This processing idea is similar to high pass filtering
for a new model: (a) the original image; (b) the smoothed image; (c) product u0un

0
e and local details. Clearly using (d) alone without (c), as in LCV, appears insufficient

n

0�u0Þ for a new model: (a) the original image with noise; (b) the smoothed image;
n

0�u0Þ with edge and local details.

uess contour (circle) leads to incorrect segmentation; (b) another initial circle leads



Fig. 9. (a) Initial contour. (b) 200 iterations. (c) Segmented result. (d) Initial contour. (e) 30 iterations. (f) Segmented result. (g) Initial contour. (h) 5 iterations. (i) Segmented
result. (j) Initial contour. (k) 30 iterations. (l) Segmented result. The complete detection by the proposed DMD method on segmenting noisy images: (Row First) Parameters
used are: λ1 ¼ 0:3, λ2 ¼ 1, μ¼ 5� 103 � sizeðu0Þ, ss ¼ 30; sl ¼ 15; (row second) Parameters used are: λ1 ¼ 1, λ2 ¼ 0:5, μ¼ 5� 103 � sizeðu0Þ, ss ¼ 20; sl ¼ 30; (row third)
Parameters used are: λ1 ¼ 1, λ2 ¼ 1, μ¼ 2� 103 � sizeðu0Þ, ss ¼ 40; sl ¼ 30; (row fourth) parameters used are: λ1 ¼ 0:5, λ2 ¼ 1, μ¼ 25� 102 � sizeðu0Þ, ss ¼ 15; sl ¼ 30.
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in frequency domain where high frequency components like edges
and minute important details are boosted at the expense of the low-
frequency components. The high-pass filtered image in Fig. 6
(d) contains only high frequency components.
In Fig. 7 another example is given. Original noisy image u0 in
given in Fig. 7(a), while the smoothed version of the image un

0 is
given in Fig. 7(b). The product image u0un

0 is given in Fig. 7
(c) and the difference image 255�ðun

0�u0Þ is given in Fig. 7(d). It
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can be seen that the object of interest is enhanced in Fig. 7
(c) and (d).

Based on the above discussion, for images with intensity
inhomogeneity, the term

R
insideðΓÞðu0un

0�c1Þ2 dΩ is used instead ofR
insideðΓÞðu0�c1Þ2 dΩ and same for outside Γ. Thus, we propose the
following new variational model for segmentation of images with
intensity inhomogeneity

min
Γ;c1 ;c2 ;d1 ;d2

FðΓ; c1; c2; d1; d2Þ ¼ μ lengthðΓÞþλ1F1þλ2F2
� 


; ð9Þ
Fig. 10. (a) Given image. (b) LCV. (c) FGM. (d) DMD. Illustration of a s

Fig. 11. (a) (FGM). (b) (FGM). (c) (FGM). (d) (LCV). (e) (LCV). (f) (LCV). (g) (DMD). (h) (DM
1) All the three models are working well; (Column 2) The LCV and DMD model are wo
where

F1 ¼
Z
outsideðΓÞ

ðu0un

0�c1Þ2 dx dyþ
Z
insideðΓÞ

ðu0un

0�c2Þ2 dx dy;

F2 ¼
Z
outsideðΓÞ

wn�w�d1
� 	2 dx dyþ

Z
insideðΓÞ

wn�w�d2
� 	2 dx dy;

and c1; c2; d1; d2 are the average intensities of the difference
image ðwn�wÞ and of w¼ u0un

0 inside and outside Γ respectively.

Our model is not of the CV type, though similar variational

imple noisy image and the performance of all the three models.

D). (i) (DMD). Comparison 1 of three models for images of size 256� 256: (Column
rking well; (Column 3) Only the DMD model is working well.
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framework is used.

In level set formulation we have the following minimization
problem,

Fðϕ; c1; c2; d1; d2Þ ¼ μ
Z
Ω
δðϕÞj∇ϕj dx dy

þ
Z
Ω
λ1ðu0un

0�c1Þ2þλ2ðwn�w�d1Þ2
h i

HðϕÞ dx dy

þ
Z
Ω
λ1ðu0un

0�c2Þ2þλ2ðwn�w�d2Þ2
h i

� ð1�HðϕÞÞ dx dy; ð10Þ
or its regularized form

Fϵðϕ; c1; c2; d1; d2Þ
Fig. 12. (a) Given image. (b) 1000 iterations (LCV). (c) Segmented result. (d) Given imag
(DMD). (i) Segmented result comparison 2 of three models in segmenting a noisy imag
performance of FGM model; (row third) The performance of DMD model. Parameters u
¼ μ
Z
Ω
δϵðϕÞj∇ϕj dx dy

þ
Z
Ω
λ1ðu0un

0�c1Þ2þλ2ðwn�w�d1Þ2
h i

HϵðϕÞ dx dy

þ
Z
Ω
λ1ðu0un

0�c2Þ2þλ2ðwn�w�d2Þ2
h i

ð1�HϵðϕÞÞ dx dy;

whereμ, λ1 and λ2 are positive constants used for assigning dif-
ferent weights, and Hϵ is a regularized Heaviside function [1–3].
Keeping ϕ fixed and minimizing Fϵðϕ; c1; c2; d1; d2Þ with respect to
c1, c2, d1 and d2 we have

c1ðϕÞ ¼
R
Ωu0un

0HϵðϕÞ dx dyR
ΩHϵðϕÞ dx dy

; c2ðϕÞ ¼
R
Ωu0un

0ð1�HϵðϕÞÞ dx dyR
Ωð1�HϵðϕÞÞ dx dy

;

e. (e) 104 iterations (FGM). (f) Segmented result. (g) Given image (h) 450 iterations
e of size 150� 150: (first row) The performance of LCV model; (second row) The
sed are: λ1 ¼ 0, λ2 ¼ 1, μ¼ 2� 103 � 1502, ss ¼ 30; sl ¼ 25.
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d1ðϕÞ ¼
R
Ωðwnðx; yÞ�wÞHϵðϕÞ dx dyR

ΩHϵðϕÞ dx dy
;

d2ðϕÞ ¼
R
Ωðwnðx; yÞ�wÞð1�HϵðϕÞÞ dx dyR

Ωð1�HϵðϕÞÞ dx dy
:

Now keeping c1, c2, d1 and d2 fixed and minimizing Fϵ with
respect to ϕ yields the following Euler–Lagrange partial differ-
ential equation PDE) for ϕ

δϵðϕÞ μdiv ∇ϕ
j∇ϕj

� �
þλ1ðu0un

0�c1Þ2�λ1ðu0un

0�c2Þ2
�

þλ2ðwn�w�d1Þ2�λ2ðwn�w�d2Þ2
�
¼ 0 in Ω;

ð11Þ

where ∂ϕ

∂ n!
����
∂Ω

¼ 0, n! is an exterior unit normal to the boundary

∂Ω. Since our model involves Double fitting terms of Multiplicative
and Difference images, we shall name it as DMD model. The above
PDE may be considered as a steady state solution of the following
evolution equation:

∂ϕ
∂t

¼ δϵðϕÞ μ∇:
∇ϕ
j∇ϕj

� �
þλ1ðu0un

0�c1Þ2�λ1ðu0un

0�c2Þ2
�

þλ2ðwn�w�d1Þ2�λ2ðwn�w�d2Þ2
�
;

Fig. 13. (a) LCV ðp¼ 0:1Þ. (b) Segmented result. (c) LCV ðp¼ 0:2Þ. (d) Segmented result
(i) DMD ðp¼ 0:1Þ. (j) Segmented result. (k) DMD ðp¼ 0:2Þ. (l) Segmented result. Compa
corrupted with mild salt & pepper noise with noise level p; reveals that the DMD perfo
ϕðx; y; tÞ ¼ϕ0ðx; y;0Þ in Ω: ð12Þ

An additive operator splitting method: We shall use an Additive
Operator Splitting (AOS) method to solve (12), as done in [21–24],
which is unconditionally stable. Defining W ¼ 1=j∇ϕj , we write
Eq. (12) in the form:

∂ϕ
∂t

¼ μδϵðϕÞ∇ðW∇ϕÞþ f ¼ μδϵðϕÞ ∂xðW∂xϕÞþ∂yðW∂yϕÞ
� 	þ f :

The AOS scheme [21,22] splits the 2-dimensional spatial
operator into a sum of two one-dimensional ones, solved sepa-
rately before merging. By a finite difference discretization, we
consider first the one-dimensional problem in the x-direction

ϕkþ1
i;j ¼ϕk

i;jþμΔt c1ϕ
nþ1
iþ1;j�c2ϕ

nþ1
i;j þc3ϕ

nþ1
i�1;j

� �
þ f i; ð13Þ

where c1 ¼ δϵðϕÞW
k
i;j þWk

iþ 1;j
2 , c2 ¼ δϵðϕÞW

k
i� 1;j þ2Wk

i;j þWk
iþ 1;j

2 ; c3 ¼
δϵðϕÞW

k
i;j þWk

i� 1;j
2 : After we solve the system of Eq. (13) in the

x-direction, we then solve a similar system in y-direction before
averaging the two solutions

ðI�2ΔtAlðΦkÞÞΦkþ1
l ¼Φkþ f k for l¼ 1;2; and Φkþ1 ¼ 1

2

X2
l ¼ 1

Φkþ1
l ;

where I is the identity matrix and Al for l¼1,2 a tridiagonal matrix.
. (e) FGM ðp¼ 0:1Þ. (f) Segmented result. (g) FGM ðp¼ 0:2Þ. (h) Segmented result.
rison 3 of three models in segmenting a given abdominal image of size 256�256,
rms better than the LCV and FGM model.
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4. The new model in fast global minimization framework

The proposed model is nonconvex and may stuck at local
minima. This behavior of the model can be seen in Fig. 8, where
two different initial guesses lead to two different segmentation
results. As a consequence, the initial guess becomes very impor-
tant for satisfactory results [25–27].

The non-convexity of the proposed functional can be handled
by using fast global minimization framework. The proposed model
Fig. 14. (a) LCV ðp¼ 0:3Þ. (b) Segmented result. (c) LCV ðp¼ 0:4Þ. (d) Segmented result
(i) DMD ðp¼ 0:3Þ. (j) Segmented result. (k) DMD ðp¼ 0:4Þ. (l) Segmented result. (m) LCV ð
4 of three models for segmenting another abdominal image corrupted with strong salt &
the FGM model. sizeðu0Þ ¼ 256� 256.
in global minimization framework reformulates the non-convex
functional (with non-convexity due to 1Ω1

)

Fð1Ω1
; c1; c2; λÞ ¼

Z
Γ
g dsþλ1

Z
Ω

ðu0un

0�c1Þ2�ðu0un

0�c2Þ2
� �

1Ω1
dx dy

þλ2
Z
Ω

ðwn�w�d1Þ2�ðwn�w�d2Þ2
� �

1Ω1
dx dy;
. (e) FGM ðp¼ 0:3Þ. (f) Segmented result. (g) FGM ðp¼ 0:4Þ. (h) Segmented result.
p¼ 0:5Þ. (n) Segmented result. (o) DMD ðp¼ 0:5Þ. (p) Segmented result. Comparison
pepper noise with noise level p. Again the DMD performs better than the LCV and
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as a convex functional

Fðu; c1; c2; λÞ ¼
Z
Γ
g dsþλ1

Z
Ω

ðu0un

0�c1Þ2�ðu0un

0�c2Þ2
� �

u dx dy

þλ2
Z
Ω

ðwn�w�d1Þ2�ðwn�w�d2Þ2
� �

u dx dy;

where Ω1 ¼ insideðΩÞ;1Ω1
ðx; yÞ ¼Hðϕðx; yÞÞ ¼ 1 if ðx; yÞAΩ1 and

¼ 0 if ðx; yÞ=2Ω1;uA ½0;1�. The above model is further solved by a
splitting method by introducing v to lead to the following varia-
tional problem:

min
u;v

Z
Ω
g j∇uj dx dyþ 1

2θ
Ju�vJ2þ

Z
Ω

f þανðvÞ� �
dx dy


 �
ð14Þ

where w¼ u0un

0, νðvÞ is as in (8) and

f ¼ λ1 ðu0un

0�c1Þ2�ðu0un

0�c1Þ2
h i

þλ2 ðwn�w�d1Þ2�ðwn�w�d2Þ2
h i

:

Fig. 15. (a) Original image. (b) FGM. (c) DMD. (d) Original image. (e) FGM. (f) DMD.

Fig. 16. Comparison 6 of our DMD method with the FGM method on segmenting a real c
(5000 iterations); (c) detection by the DMD method (5 iterations). For the DMD method,
better.
The above convex formulation of the energy functional empowers
convergence towards global minimum. The solution of the mini-
mization problem (14) can be similarly done to [3], as summarized
below:

Algorithm to solve (14)

Step 1: Set up an initial contour for u with 1 in a region (e.g.
square) and 0 elsewhere. Compute w¼ u0un

0.
Step 2: Solve (14) to update c1; c2; d1; d2.
Step 3: Solve (14) with respect to u (which is similar to a

denoising problem).
Step 4: Update νðvÞ analytically; see [3].
Step 5: Check the convergence of u: if converged, stop; else

return to Step 2.
Step 6: Obtain the segmented domain Ω1 from ur0:5.
Comparison 5 of the DMD and the FGM model on clutter background images.

ornea image: (a) Original image of size 256� 256; (b) detection by the FGM method
λ1 ¼ 0:1, λ2 ¼ 1, μ¼ sizeðu0Þ=106, ss ¼ 1; sl ¼ 30. Clearly, the DMD method performs
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5. Experimental results

In this section we give experimental justification of our pro-
posed model and its comparisons with the LCV [20] and the FGM
[3]. These experiments show that our new proposed model is
robust in segmentation of objects in a range of images that have
intensity inhomogeneity, multiphases, noise and low contrast or
do not have piecewise constant intensities, while the existing
models work well problems having homogeneous intensities.

(1) Segmentation results of the DMD model for noisy images: In
Fig. 9, the DMD model is tested on a set of noisy images. It clearly
reveals good segmentation results of the DMD model, both in
terms of detection quality and the number of AOS iterations.

(2) All models work well for an ideal image: In Figs. 10 and 11,
experimental tests Fig. 10(b)–(d), Fig. 11(a), (d), (g) demonstrate
the good performance of all three models and shows that all work
well on this simple image as exhibited. Onward experiments will
reveal a different story for more challenging examples.
Fig. 17. Comparison 7 of our DMD method with the FGM method on a given medical bra
256�256; (b) detection of the FGM method; (c) complete detection of the DMD metho

Table 1
Efficiency comparison of the LCV, FGM and the proposed DMD models’ algorithms.

Image size LCV

Iter CPU

400�400 16 3
800�800 18 13
1600�1600 20 56
2400�2400 23 157
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Fig. 18. Comparison 8 of three models in segmenting a real world image: (a) Original im
method (JS¼0.51); (d) result of the DMD method (JS¼0.97).
(3) Multiphase problems: Multi-phases refer to the distribution
of intensities in an image having a few clearly identifiable clusters
(either visibly or from its histogram); each cluster alone is tradi-
tionally called a phase but a phase may often represent only part
of an object. In Fig. Fig. 11 the three models are tested on a mul-
tiphase type synthetic image. It can be observed that the proposed
DMD model detects all the regions of multi-intensities and, in
contrast, the LCV in Fig. 11(f) and the FGM model in Fig. 11(b) and
(c) lead to unsuccessful results. Here each intensity represents an
object, a multiphase model for piecewise constant intensities such
as [26,27] should be able to segment this image. That is, it is not
surprising that the two phase FGM cannot segment all objects.

(4) Comparisons of three models for noisy images: In Figs. 12–14,
the three models (the LCV, the FGM and the DMD) are tested on
noisy medical images. Fig. 12 shows test results on a brain medical
image corrupted with salt and pepper noise. On one hand, the LCV
model fails by classifying noise as valuable details whereas the
FGM model produces undesirable rough edges as a result. On the
in image which has regions of inhomogeneous intensities. (a) Original image of size
d. Here λ1 ¼ 0:1, λ2 ¼ 1, μ¼ sizeðu0Þ=10, ss ¼ 7; sl ¼ 35.

FGM DMD

Iter CPU Iter CPU

5 2 4 1
8 4 6 2
21 16 15 10
40 58 33 46
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age of size 256� 256; (b) result of the FGM method (JS¼0.52); (c) result of the LCV
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other hand the proposed DMD model gives the best result. Simi-
larly Figs. 13 and 14 show the performance of the three models on
a real abdominal medical image with different levels of salt and
pepper noise. It can be easily observed that our model successfully
handles noise levels and produces the desired segmentation result.

Fig. 15 displays performance of the FGM and the proposed DMD
model on images with cluttered background. The experimental
tests validate that the new DMD model successfully tackles the
clutter background and captures the desired objects. Fig. 16 dis-
plays a real cornea image and compares the performance of the
DMD and FGM models. It can be easily observed that the proposed
DMD model performs better than the FGM model. Next, a medical
brain image is tested in Fig. 17, comparing the quality of seg-
mentation and robustness of the FGM with the proposed DMD
model: the test results can be interpreted that the quality of seg-
mentation of the FGM model for the medical brain image is not
good as the DMD; the reason is that the image with intensity
inhomogeneity is too challenging for the FGM.
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Fig. 19. Comparison 9 of three models in segmenting a synthetic multiphase type ima
(c) result of the LCV method (JS¼0.92); (d) result of the DMD method (JS¼1).
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Fig. 20. Comparison 10 of three models in segmenting a synthetic multiphase type ima
(c) result of the LCV method (JS¼0.95); (d) result of the DMD method (JS¼0.98).
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Fig. 21. Comparison 11 of three models in segmenting a synthetic multiphase type im
(c) result of the LCV method (JS¼0.7); (d) result of the DMD method (JS¼0.85).
(5) Solution efficiency: Finally, using the synthetic noisy image
from Fig. 10, we compare the three models’ algorithms for effi-
ciency and show the results in Table 1: the terms used in the
headings of Table 1 have the following meanings:

Size: the size of given image m� n.
Iter: the number of iterations used to get the required result.
CPU: the CPU time in seconds required to perform these

iterations. The computation is carried out using MATLAB 7.11.0, in
Windows 8 environment on a personal computer with 2.53 GHz
Intel Core i3 and 2GB RAM. From Table 1, it can be observed that
the proposed AOS method for our DMD model is efficient than the
LCV and FGM implementations in terms of CPU time.
6. Quantitative analysis of energies

To test quantitatively the accuracy of the models we implement
the Jaccard Similarity (JS) on simple two phase images and on
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ge: (a) Original image of size 256� 256; (b) result of the FGM method (JS¼0.8);
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age: (a) Original image of size 256� 256; (b) result of the FGM method (JS¼0.6);
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Fig. 22. Comparison 12 of three models in segmenting a synthetic multiphase type image: (a) Original image of size 256� 256; (b) result of the FGM method (JS¼0.7); (c)
result of the LCV method (JS¼0.6); (d) result of the DMD method (JS¼0.72).
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Fig. 23. Comparison 13 of three models in segmenting a real hardware image: (a) Original image of size 256�256; (b) result of the FGM method (JS¼0.974); (c) result of the
LCV method (JS¼0.856); (d) result of the DMD method (JS¼0.999).
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multi-phase type images. Denote the segmented result, the set of
pixels in object Ω1 ¼ insideðΩÞ, by R1 obtained by a model and the
ground truth by R2. The JS between the two regions R1 and R2 is
termed as the ratio of the areas of the intersection by the union of
the regions, i.e., JSðR1;R2Þ ¼ ∣R1 \R2 ∣

∣R1 [R2 ∣
. To quantitatively evaluate the

segmentation performance, we compute this JS quantity.
The closer the value of the JS to 1, the better the quality of the

segmentation is. The JS tests can be seen in Figs. 18–23 where all
the three models are tested on simple two and multi-phase ima-
ges. For instance, the horizontal line in Fig. 18(b) shows the
iterations and vertical line describes the JS values. These test
results validate quantitatively the outstanding performance of the
DMD model in comparison with the competing models.
7. Conclusions

We have proposed a new variational DMD model suitable for
segmenting a range of images that have intensity inhomogeneity
and multi-phases within objects. Previous works that can tackle
problems with certain degree of intensity inhomogeneity include
the LCV model [20] and the FGM model [3]. For ideal images with
piecewise constant intensities, all three models give equally suc-
cessful results. Beyond these images, comparisons have shown
that our new DMD model is the only one that can deliver the
expected segmentation quality and it behaves like the MS model
for segmenting noisy images with piecewise smooth intensities,
though it resembles the two-phase CV model. Equipped with
global formulation this model is independent of initial contours
and can tackle low contrast, noisy, inhomogeneous two-phase and
many multi-phase type images.
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