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Abstract In this paper, we consider the problem of restor-
ing blurred noisy vectorial images where the blurring model
involves contributions from the different image channels
(cross-channel blur). The proposed method restores the
images by solving a sequence of quadratic constrained min-
imization problems where the constraint is automatically
adapted to improve the quality of the restored images. In the
present case, the constraint is the Total Variation extended to
vectorial images, and the objective function is the �2 norm of
the residual. After proving the convergence of the iterative
method, we report the results obtained on a wide set of test
images, showing that this approach is efficient for recovering
nearly optimal results.

Keywords Vectorial images · Deblurring · Vectorial
total variation · Regularization algorithm · Constrained
minimization

1 Introduction

Vectorial images can be obtained in various situations, such
as from multiple time frames, multiple frequency bands,
digital sensors, etc. They occur inmanymodern digital appli-
cations, involving videos, sensors, medical instruments for
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diagnosis, etc [4,13]. The most widespread vectorial images
are certainly multichannel true color images in which the
color information of each pixel is represented by the weights
of the three primary colors: red, green, and blue (RGB
images).

In the continuous setting, the multichannel restoration is
modeled by

y = Hu + ζ δ (1)

where H is a Fredholm integral operator of a matrix form,
u and y are vectorial image functions defined in a domain
� ⊂ R

2 s.t. u, y : � → R
p (p is the number of channels)

and ζ δ is the function modeling the noise of level δ. In this
paper, we consider the realistic case of cross-channel blur,
meaning that each pixel is blurred with the contribution of
the pixels in all the image channels, as opposed to within
channel blur, where the blur is independent in each channel.

Since (1) is an ill-posed problem, its solution is defined
by means of regularization methods which consist in substi-
tuting (1) by an optimization problem.

It is quite common to define regularization methods by
means of an unconstrained minimization problem of the
form:

min
u

1

2

∥
∥Hu − y

∥
∥2
2 + λR(u) (2)

where 1
2‖Hu − y‖22 is the l2-norm function measuring the

fit to the observed data, R(u) is a regularization function
controlling the smoothness of the solution, and λ is the reg-
ularization parameter.

In this paper, R(u) is the Total variation (TV) function
[14,24] extended to vectorial images [6].

The result of the restoration process strongly depends on
the parameterλ; a good value ofλ is related to some feature of
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the processed image, such as its scale [23]. Hence, its choice
is critical.

There is an extensive literature that treats the choice of the
parameter λ in the case of grayscale or multichannel images
blurred by within channel blur.

Some methods are completely heuristic and are based on
trial-and-error algorithms. Among them, the L-curve [15]
and the GCV [18], or GCV based [17] methods are widely
used. Their main disadvantages are the high computational
complexity, that is prohibitive for multichannel images, and
the fact that sometimes they totally fail. A different approach
uses the noise norm or its approximation. Examples are the
discrepancy principle [19], and some algorithms based on
the Lagrange multipliers method applied to the following
constrained problem:

min
u

R(u) s.t.
∥
∥Hu − y

∥
∥2
2 ≤ σ (3)

where σ is the noise norm [2,4,28]. The main drawback of
thesemethods is that they need an estimate of the noise norm.
If an accurate estimate of the noise variance is available, the
SURE-based methods [21] are very efficient algorithms for
the choice of regularization parameters [20]. Another sta-
tistical approach for grayscale images is analyzed in [3]. An
exhaustive survey of the existing methods for the selection of
the regularization parameter in image deblurring applications
can also be found in [1,28,30]. Nevertheless, the research in
this field is still active, because the existing methods are not
completely satisfactory or their use is limited to particular
applications.

In the case of multichannel images, blurred by cross-
channel blur, some algorithms have been presented for the
efficient solution of problem (2) with a predetermined value
of λ (see [25,26] and references therein). However, in the
case of cross-channel blur, there are far fewer papers that
deal with the problem of computing the parameter λ. For
what concerns the application of interest in our study, only
[10,13] and [1] address this problem. While the former uses
Tikhonov regularization function, the latter uses the TV func-
tion proposing a multiscale approach where λ is a function of
u ([9,10]). They achieve good quality results at the expense
of a high computational cost. The method recently proposed
in [1] defines a criterion for selecting the regularization para-
meter based on an estimate of the residual whiteness.

1.1 Contribution

Themain contribution of this paper is to propose a regulariza-
tion algorithm, for deblurring multichannel images affected
by cross-channel blur, using only the observed image as data
input. The idea is of solving (1) by a finite sequence of con-
strained optimization problems

min
u

1

2

∥
∥Hu − y

∥
∥2
2 s.t. R(u) ≤ γ j , j = 0, 1, . . . t (4)

where the regularization constraints γ j are adaptively
updated. The constrained formulation (4) is equivalent to
the unconstrained formulation (2) when 1

λ
is the Lagrange

multiplier of (4).
Each problem (4) is solved in Lagrangian dual form

extending the idea proposed in [8] for gray-level images. The
Lagrange multipliers are computed by the same root-finding
procedure, but the starting value of the sequence has been
modified, adapting the filtering procedure to the case of mul-
tichannel images with cross-channel blur. Finally, compared
to [8], the procedure to compute the regularization weights
γi has changed significantly, and a new one, better suited to
multichannel images, is presented.

The proposed algorithm is described in a modular and
general form so that it can be easily applied to different fit-
to-data and regularization functions satisfying the required
hypotheses for the convergence.

In the numerical experiments, we extensively test the
method on color images perturbed by cross-channel blur of
different types, and we compare our method with the method
proposed in [1].

1.2 Outline of the Paper

In Sect. 2, some theory about the vectorial TVmodel is given;
in Sect. 3, the proposed algorithm is presented; in Sect. 4, we
show some numerical experiments; and finally in Sect. 5, the
conclusions are reported.

2 Theory of the Vectorial TV Model

Consider processing of 2D vectorial images with p channels;
where p = 3 in case of true color images. Let the given image
y = (y1, . . . , yp) and the restored image u = (u1, . . . , u p)

be defined in a bounded open domain � ⊂ R
2, where y ∈

L2(�;Rp). To define the space for u, we have to define a
dual variable q = (q1, . . . , qp) in some set P ⊂ C1

c (�) of
compactly supported functions.

Definition 1 ([6]) A suitable space for u in (7) is the vec-
tor space BV(�;Rp) of bounded variations which is as a
subspace of L1(�;Rp) equipped with the norm

‖u‖BV = ‖u‖L1 + |u|BV ,

where the semi-norm is defined by

|u|BV =
∫

�

|Du|d� = sup
q∈P

{ ∫

�

〈u,∇ · q〉d�
}

with P = {q ∈ C1
c (�) | |q|2 ≤ 1}.
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For u ∈ C1(�), the semi-norm |u|BV is simplified to the
following vectorial total variation (VTV):

VTV(u) = |u|BV =
∫

�

√
∑p

i=1
|∇ui |2d�. (5)

This is not the only possible extension of the TV function to
multichannel images (see [6,7] and references therein); our
preference is due to the computational advantages.

In this section, we consider the constrained problem:

min
u

1

2
‖Hu − y‖22 s.t. VTV(u) ≤ γ, (6)

that can be stated in the equivalent form:

max
λ

min
u

{

E
(

λ, u(λ)
)= 1

2

∥
∥Hu−y

∥
∥
2
2+λ (VTV(u)−γ )

}

(7)

Now we discuss theoretical properties of this model used
to explore an optimal choice of λ.

Theorem 1 ([6]) For a fixed λ, the vectorial TV model (7)
has a solution in BV(�;Rp).

We remark that the presence of a blurring operator does not
pose any complications in modifying the proof in [6, Theo-
rem 2.2] to prove Theorem 1.

Theorem 2 The vectorial TV model (7) has a unique solu-
tion in BV(�;Rp) if the blur operator H is injective.

The proof can follow that of [8, Lemma 2]. However, for a
continuous formulation, H is compact so not injective; prac-
tically and fortunately when discretized, H may be regarded
as invertible and injective as far as the uniqueness is con-
cerned.

Theorem 3 For λ ≥ 0, the function F(λ) = VTV(u(λ))−γ

in (7) is monotonically decreasing in a feasible region, and
there exist two distinct parameters λ1, λ2 such that F(λ1) >

0 and F(λ2) < 0. Hence, F(λ) has a unique root λ̂ such that
F(λ̂) = 0, i.e., VTV(u(λ̂)) − γ = 0, where λ̂ is the optimal
parameter for the problem (6).

Proof For two given parameters λ,μ such that λ > μ ≥ 0,
we first prove that F(u(λ)) < F(u(μ)).

Using Theorem 2, denote the respective minimizers for
minu E(λ, u) andminu E(μ, u) by u(λ), u(μ). Thenwehave

E
(

λ, u(λ)
)

< E
(

μ, u(λ)
)

, E
(

μ, u(μ)
)

< E
(

λ, u(μ)
)

.

Here the strict inequality comes from Theorem 2 as Theo-
rem 1 would only give ≤. The above inequalities read

1

2

∥
∥Hu(λ) − y

∥
∥2
2 + λF(u(λ)) <

1

2

∥
∥Hu(λ) − y

∥
∥2
2

+μF
(

u(λ)
)

,

1

2

∥
∥Hu(μ) − y

∥
∥2
2 + μF

(

u(μ)
)

<
1

2

∥
∥Hu(μ) − y

∥
∥2
2

+ λF(u(μ)).

Subtracting the two inequalities gives the desired result (λ−
μ)(F(u(λ)) − F(u(μ))) < 0, i.e., F(u(λ)) < F(u(μ)),
since (λ − μ) > 0.

Take λ1 = 0 as a lower bound (as λ = 0 is not the
optimal parameter) and the solution u(λ1) = H†y (where
H† is the pseudoinverse of H ) will still be close to the
given image f : VTV( f ) ≈ VTV(u(λ1)) > γ as γ is
chosen to model the restored and the noise-free image. So
F(u(λ1)) = VTV(u(λ1)) − γ > 0. For the upper bound,
from

u
(

λ2
) = lim

λ→∞ argmin E
(

λ, u
) = argmin

u
VTV

(

u(λ)
) − γ

= argmin
u

VTV
(

u(λ)
)

we see that VTV(u(λ2)) = 0 so F(u(λ2)) = VTV(u(λ2))−
γ < 0. Clearly, there exists a positive number λ̂, lying
between λ1 and λ2, so that F(u(λ̂)) = 0. �

3 The Multichannel Constrained Least Squares
TV algorithm (MCLSTV)

In this section,we describe our MCLSTV algorithm for restor-
ingmultichannel images.Wefirst define the discretemodel of
(1) in the particular case considered in this paper, and thenwe
deal with the discretized version of the regularizationmethod
(6) for solving the deblurring problem.

In order to estimate a suitable value for the constraint para-
meter γ , we propose to solve a finite sequence of constrained
optimization problems of the form (6), with the parameters
γ = γi , i = 1, . . . t , adaptively computed. For the solution of
each constrained problem, we extend tomultichannel images
the algorithm proposed in [8].

3.1 Discretized Problem

The continuous equation (1) is very general.
In this paper, we consider deblurring problems of the form

yn(x, y) =
p

∑

k=1

wn,k

∫∫

hn,k(x − ξ, y − η)uk(ξ, η)dξdη,

n = 1, . . . , p (8)

where 0 ≤ wn,k < ∞ are the weights with the property

p
∑

k=1

wn,k = 1, ∀n.
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By taking N × M samples for the variables (ξ, η) as well as
(x, y) and sampling the integrals by means of the rectangle
rule with samples spacing equal to 1, we can rewrite (8) as

yn
(

x�, ym
)

=
p

∑

k=1

wn,k

( M
∑

j=1

N
∑

i=1

hn,k

(

x� − ξi , ym − η j

)

uk
(

ξi , η j
)
)

,

n = 1, . . . , p

where � = 1, . . . , N , m = 1, . . . , M .
Reorganizing the data as follows:

Y = (

Y1,Y2, . . . ,Yp
)T

,
s.t. Yn ∈ R

N×M , n = 1, . . . , p
and Yn(�,m) ≡ yn(x�, ym)

U = (

U1,U2, . . . ,Up
)T

,
s.t. Uk ∈ R

N×M , k = 1, . . . , p
and Uk(i, j) ≡ uk(ξi , η j )

we can represent the blurring process as amatrix vector prod-
uct Y = HU . The blurring matrix H has p × p blocks
Hn,k ∈ R

N×M , (n, k = 1, . . . , p)

H =

⎛

⎜
⎜
⎜
⎝

H1,1 H1,2 · · · H1,p

H2,1 H2,2 · · · H2,p
...

...
. . .

...

Hp,1 Hp,2 · · · Hp,p

⎞

⎟
⎟
⎟
⎠

,

Hn,k ≡ wn,khn,k
(

x� − ξi , ym − η j
)

. (9)

Within-channel blur is represented by the diagonal blocks
Hk,k , k = 1 . . . , p. The blocks Hn,k , n �= k, represent how
the blur on the n-th channel influences the k-channel, i.e., the
cross-channel blur. By supposing periodic boundary condi-
tions for U , the matrices Hi, j are all block circulant with
circulant blocks (BCCB) [26].

For each channel n, n = 1, . . . p, we can compute the n-th
channel of the blurred image as a sum of convolutions:

Yn =
p

∑

k=1

Hn,k ∗Uk . (10)

Assuming that the observed data Y δ are affected by additive
noise of level δ, we have:

Y δ = Y + δη, (11)

where ‖η‖2 = 1.
It is well known that recovering U from (10) and (11)

is an ill posed problem and some regularization scheme
is necessary. We define the regularization function, mul-
tichannel total variation (MTV), by discretizing the VTV
function (5):

MTV(U ) =
M

∑

j=1

N
∑

i=1

(∣
∣∇U1

∣
∣2
i, j + ∣

∣∇U2
∣
∣2
i, j + · · · + ∣

∣∇Up
∣
∣2
i, j

)1/2

where |∇V |2 = V 2
x + V 2

y is obtained approximating the
derivatives by means of forward difference formulas.

We solve the discretized version of (6):

argmin
U

∥
∥HU − Y δ

∥
∥2
2 s.t. MTV(U ) ≤ γ. (12)

With these definitions in mind, we solve the ill posed
problem Y δ = HU by a sequence of discrete constrained
regularization problems of the form:

min
U

1

2

∥
∥HU − Y δ

∥
∥
2
2 s.t. MTV(U ) ≤ γ j , j = 1, 2 . . . t.

(13)

3.2 Computation of the Sequence γ j

In the following, we call V the solution of the noise free
problem HV = Y , U (γ j ) the solution of the constrained
problem (13) and γ̃ the solution of the problem:

γ̃ = argmin
γ

∥
∥U (γ ) − V

∥
∥2
2

(hence, Ũ = U (γ̃ )). Let’s define the residual vector R(γ ) =
Y δ − HU (γ ), where Y δ is given in (11), and the residual
norm r(γ ) = ‖R(γ )‖ as a function of γ .

We propose to compute a sequence {γ j }, j = 0, 1, . . . t
with the aim that γt approaches γ̃ .

Proposition 1 Given the sequence γ j s.t. 0 < γ0 ≤ γ1 ≤
· · · ≤ γ̃ then

γ j ≤ γ j+1 ≤ γ̃ ⇒ r(γ j ) ≥ r(γ j+1) (14)

Proof Let U (γ j ) and U (γ j+1) be the solutions of (13) with
γ = γ j and γ = γ j+1 and let λ j and λ j+1 be the related
Lagrangemultipliers. In theorem3, it is proved thatMTV(U )

is monotonically decreasing in a feasible region; hence, in
that region if γ j < γ j+1 then λ j > λ j+1. On the other hand
it is also well known that the residual norm is increasing with
λ, i.e., if λ j > λ j+1 then r(γ j ) > r(γ j+1) [14]. Hence, (14)
holds. �

It is experimentally observed that the residual function
r(γ ) is steeply decreasing when γ � γ̃ and becomes flat
around γ̃ . Therefore we assume that in a suitable inter-
val [γ0, γ�], γ� < γ̃ , the rate at which the residual curve
decreases has the following behavior:

∣
∣r ′(γ j )

∣
∣ >

∣
∣r ′(γ j+1)

∣
∣ if γ j ≤ γ j+1
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Hence, we can define a tolerance parameter α > 0 and
stop the sequence γ j , j = 0, 1, . . . as soon as |r ′(γ j )| < α.

Let’s assume that we are given a starting value γ0 s.t.
0 < γ0 � γ̂ and that the derivative of the residual norm
r ′(γ ) is continuous. Then assigning the parameters α > 0,
P > 0 and s ∈ (0, 1), we define the sequence {γ j }tj=1 s.t.
|r ′(γt )| ≤ α as follows:

Algorithm 1 (Input γ0; Output γt )

j=0;
while r ′(γ j ) < −α

j = j + 1;
γ j = γ j−1(1 + P)

end
k = j
if r ′(γk) < α

γt = γk
else

a = γk−1, b = γk
compute γt=BCKTRK(a, b).

end

The steps of the backtracking procedure are reported in
Algorithm 2.

Algorithm 2 BCKTRK (input(a,b); output(γ ,U (γ ))

s = 0.5
repeat

γ = a + (b − a)s
Compute U (γ ) solving minU J (U ), s.t. MTV(U ) ≤ γ

if r ′(γ ) < −α

a = γ

else
b = γ

end
until |r ′(γ )| ≤ α

Since γ0 ≤ γ̃ then r(γ0) > r(γ̃ ) (Proposition 1). Assume
that r ′(γ j ) < −α, j = 1, 2, . . . , k and r ′(γk+1) ≥ −α.
Hence, in the first k − 1 points γ j = γ j−1(1 + P) we have
r(γ j ) < r(γ j−1), i.e., the residual curve r(γ ) is decreasing
with a slope steeper than α.

At the k-th step we may have the following situations:

• r ′(γk) ≤ α In this case, we have γt ≡ γk+1 and |r ′(γt )| ≤
α.

• r ′(γk) > α In this case, r(γk) > r(γk−1), and hence, we
compute a new value γk+1 in the interval (γk−1, γk) by
means of the backtracking procedure (Algorithm 2).

Nowwe describe how to compute a suitable starting value
γ0. The idea is to choose

γ0 = MTV
(

U (F)
)

where U (F) is obtained by solving :

min
U

1

2

∥
∥HU − Y δ

∥
∥
2
2 + λFMTV(U ). (15)

In order to choose a good value for λF , we deal with the
spectral components of the blurring operator.

We first consider the case of within channel blur, i.e., the
matrix H in (9) is block diagonal with Hi, j �= 0 iff i = j .
Since each blurring submatrix Hi,i is a BCCB matrix, it can
be diagonalized by a unitary Fourier matrix F

Hi,i = F∗�(i)F, i = 1, . . . , p

where �(i) ≡ diag(ψ(i)
k , k = 1, . . . M · N ), and ψ

(i)
k are

the eigenvalues of Hi,i . We define suitable parameters βi ,
i = 1, . . . , p, that filter out the contribution of the small
components of �(i),

by undersampling the power spectrum and compute the
filter parameters as

βi = min
1≤k≤N

∣
∣
∣
∣
∣

(

FY δ
i

)

k·M
ψ

(i)
k·M

∣
∣
∣
∣
∣
, i = 1, . . . , p. (16)

Finally, λF is defined as

λF = min
1≤i≤p

βi .

In the case of cross-channel blur,where Hi, j =F∗�(i, j)F,

i, j = 1, . . . p, we choose to approximate H by a block
diagonal matrix H̄ where each diagonal block is

H̄i,i = F∗�̄(i)F, �̄(i) = 1

p

p
∑

j=1

�(i, j), i = 1, . . . , p,

and �̄(i) ≡ diag(ψ̄(i)
k , k = 1, . . . M · N ). We use ψ̄

(i)
k in

place of ψ
(i)
k in (16) and we proceed as before for the com-

putation of U (F).
Finally, the initial value of the parameter γ is computed

as follows:

γ0 = MTV
(

U (F)
)

. (17)

3.3 Solution of the Constrained Minimization Problem

For each value γ j of the sequence described in the previous
section, we solve the constrained minimization problem (13)
by solving its Lagrangian dual form:

max
λ

min
U

L(U, λ),

L(U, λ) ≡ 1

2

∥
∥HU − Y δ

∥
∥2
2 + λ

(

MTV(U ) − γ j
)

. (18)

In the rest of this section, we analyze the algorithm for the
solution of a single problem of the form (18) with a fixed
value γ ≡ γ j .
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Imposing the first order conditions ∇λL(U, λ) = 0, we
compute the solution (λ̂, Û ) of (18) as

find λ̂ s.t. MTV(Û (λ)) − γ = 0

where Û ≡ U (λ̂) is the solution of

min
U

L(

U, λ̂
)

. (19)

The properties of the nonlinear equation MTV(U (λ))−γ =
0, proved in theorem 3, allow us to compute a sequence {λk}
converging to the root λ̂. By solving (19) with λ = λk , we
obtain a sequence U (k) = U (λk) converging the solution Û .
Hence, the solution (λ̂, Û ) of (18) is the limit of the sequence
(λk,U (k)).

3.3.1 Computation of the Sequence λk

The nonlinear equationMTV(U (λ))−γ = 0 is solved by an
iterative method that, starting from a suitable initial value λ0
s.t. MTV(U (0)) − γ < 0, computes an approximation of the
root λ̂ by few iterations of a hybrid bisection+secantmethod.
Therefore the update of λk is obtained by the bisection rule
in the first ks steps, i.e., when k ≤ ks :

λk = Fb
(

λk−1
)

, Fb
(

λk−1
) = λk−1

+ sign
(

MTV(U (k−1)) − γ
)λ0

2k
, k = 1, 2 . . . , ks

(20)

When k > ks the secant rule is used, giving:

λk = Fs
(

λk−1
)

, Fs
(

λk−1
) = λk−1

− MTV
(

U (k−1)
) − γ

MTV
(

U (k−1)
) − MTV

(

U (k−2)
) (λk−1 − λk−2) ,

k = ks + 1, . . . (21)

Usually few bisection iterations are necessary (ks � 3)
to guarantee the convergence of the secant iterations, and
globally less than 10 iterations are performed by the hybrid
method when stopped by the following criterion:

∣
∣MTV(U (k)) − γ

∣
∣ < τt

∣
∣MTV(U (0)) − γ

∣
∣ + τa

or
∣
∣λk − λk−1

∣
∣ < τa or k > maxit. (22)

with τt = τa = 10−3 and maxit = 15 in our experiments.

3.3.2 Computation of the Sequence U (k)

For what concerns the solution of the unconstrained opti-
mization problem (19), the choice of the multichannel TV
definition has great influence on its efficiency. Using MTV,
an efficient and fast solution is obtained by the fast alter-
nating minimization algorithm proposed in [26]. However,

different solvers could be applied to (19), related to different
extensions of the TV to multichannel images.

Below we report the algorithm used for solving the con-
strained minimization problem (13).

Algorithm 3 (Computation ofU (γ j ): Input: (γ j , H, Y δ), λ0; output:
U)

compute U (0) solving (19) with λ = λ0 using FTVD4 function
k = 0 % Solution Computation
repeat

k = k + 1
if k < ks

λk = Fb(λk−1) as in (20)
else

λk = Fs(λk−1) as in (21)
end

compute U (k) solving (19) with λ = λk using FTVD4
function

until exit condition (22)
U = U (k).

3.4 Algorithm MCLSTV

Finally, we combine Algorithms 1–3 to derive our overall
Algorithm MCLSTV. We remind that r ′(γk) is approximated
by a first order forward finite difference formula:

r ′(γk
) ≈ r

(

γk
) − r

(

γk−1
)

γk − γk−1
.

Algorithm 4 (MCLSTV: (Input (Y δ , H); Output: U)

j = 0;
Compute γ0 as in (17)
Compute U (0) solving (13) with γ = γ = 0 with Algorithm 3
r (0) = ‖Y δ − HU (0)‖,
repeat % as done in Algorithm 1

j = j + 1;
γ j = γ j−1(1 + P);
Compute U ( j) solving (13) with γ =γ j with Algorithm 3
r ( j) = ‖Y δ − HU ( j)‖,
D( j) = (r ( j) − r ( j−1))/(γ j − γ j−1)

until D( j) ≥ −α

if |D( j)| < α;
γt = γ j ; U = U ( j)

else
a = γ j−1, b = γ j

Compute γt= BCKTRK(a,b) using Algorithm 2
U = U (γt )

end

3.4.1 Comments on the Parameters

The parameter α represents the slope of the residual function
at the desired solution γt . Recalling the behavior of the resid-
ual curve, we know that the residual curve decreases quite
steeply when γk ≤ γ̃ and tends to become flat as γk � γ̂ . If
α is too small, we have γt � γ̂ , and hence a noisy solution.
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On the other hand if α is too large we may find γt � γ̂

giving an oversmoothed solution. Suitable values for α are
10−p with 3 ≤ p ≤ 5. In our tests, we set α = 10−4. It may
appear that we changed the parameter γ with the parameter α
with no gain for the algorithm. This is true only in part, since
we observe that the new parameter α is an error tolerance,
and hence is easier to set, compared to γ which can change
greatly, depending on the different images (see column 3 in
Tables 4 and 5).

The parameter P is the relative increase of the initial value
γ0; hence, the only requirement is that P > 0. However, if P
is too large then many backtracking steps may be required.
On the other hand, if P is too small, a large number of itera-
tions may be necessary. In our experiments, we found a good
compromise by taking P = 1/4.

The parameter s is used to define a newvalue in the interval
(a, b) in the backtracking procedure, hence s ∈ (0, 1). In our
experiments, we set s = 0.5.

3.4.2 Computational Cost

Each step of MCLSTV requires to solve the constrained prob-
lem (13) for a given value γ j , j = 1, . . . t ; hence, the
computation workload is mainly given by the cost of Algo-

rithm3multiplied by (t+nb), where t is given inAlgorithm
4 andnb is the total number of backtracking steps inBCKTRK.

4 Numerical Experiments

In this section, we report the results obtained by several tests
aiming to show the efficiency and robustness of the MCLSTV
algorithm.

The tests are carried out in Matlab R2010a.
We consider some deblurring problems of color images

(p = 3) on the following test images:

I1 409 × 409 true color ray tracing image (Fig. 1a),
I2 768 × 512 true color photographic image (Fig. 1b) ,
I3 1597 × 1125 true color fractal image (Fig. 1c),
I4 314 × 513 Matlab true color test image (Fig. 1d) .

In the reported tests, all the images are blurred using two
different types of cross-channel blurring kernels:

• H1: One single channel blurring kernel with different
weights on each channel (Paragraph 4.1);

• H2: A combination of three different single channel
blurring kernels with different weights on each channel
Paragraph 4.2).

Fig. 1 True color test images. a
I1: 409 × 409 ray tracing image,
b I2: 768 × 512 photographic
image, c I3: 1597 × 1125 fractal
image, d I4: 314 × 513 test
image

(a) (b)

(c) (d)
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Finally we test the robustness of the method on a large set
of color images formed by three image databases available
on the web. The aim is to show that the MCLSTV algorithm
produces good restoration of color images of different type.

The blurred images Y are obtained by applying the blur-
ring kernel H to the test image V : Y = HV where H ∈
R

N×M×3; the blurrednoisy imagesY δ are obtainedby adding
Gaussian white noise to Y as in (11).

In our experiments, we use the following values of the
noise level δ: δ1 = 5 · 10−3, δ2 = 10−2, δ3 = 5 · 10−2.

In all the reported experiments, unless otherwise specified,
we applyMCLSTVwith the following parameters:α = 10−4,
P = 0.25, s = 0.5. The inner unconstrained minimization
problem (19) is solved by the alternating direction method,
implemented in the Matlab function ADM2MTVL2, available
from http://www.caam.rice.edu/~optimization/L2/ftvd/.

This choice is due to the proven efficiency of the alternat-
ing direction method in the case of cross-channel blur [26].
Of course it is always possible to replace it with other favorite
black-box solvers.

The quality of the computed image U is evaluated by the
Signal to Noise Ratio (SNR) and by the Structural SIMilar-
ity Index (SSIM). The Signal to Noise Ratio is defined as
follows:

SNR(U ) = 10 log10

(‖U − Ū‖
‖U − V ‖

)

where V is the original image and Ū is a constant image with
value equal to the mean intensity value of V .

The Structural SIMilarity Index (SSIM) is defined in [27]
to compare two grayscale images. Its value, computed by the
function ssim (available online at http://www.cns.nyu.edu/
~lcv/ssim/), is in the interval [0, 1] where a value equal to
one means that the two images are identical. In this paper, we
extend its definition to a p-channel imageU = (U1, . . . ,Up)

by computing

SSIM = 1

p

p
∑

k=1

ssim(Uk)

Moreover, the effectiveness of MCLSTV algorithm is eval-
uated by computing the percentage improvement of the
parameters SNR and SSIM, i.e., SNRp and SSIMp:

SNRp = SNR(U )

SNR(Ũ )
× 100, SSIMp = SSIM(U )

SSIM(Ũ )
× 100

(23)

where Ũ = U (γ̃ ) has been defined in Sect. 3 and represents
the best possible restoration frommodel (12) (the experimen-
tal value γ̃ has been computed through repeated simulations).

We note that SNRp and SSIMp are always in the interval
[0, 100].

In the following, we define Ut as the image restored with
MCLSTV method and γt as the final value of γ computed by
the algorithm.

4.1 Tests with Kernel H1

We present here the results obtained by the following cross-
channel blurring matrixH = H1:

H1 =
⎛

⎝

0.7G(21, 11) 0.15G(21, 11) 0.15G(21, 11)
0.1G(21, 11) 0.8G(21, 11) 0.1G(21, 11)
0.2G(21, 11) 0.2G(21, 11) 0.6G(21, 11)

⎞

⎠.

(24)

G(21, 11) is a Gaussian function G(h, σ ) of size h = 21
pixels and variance σ = 11, computed using the Matlab
Image ProcessingToolboxfspecial function. The blurred
noisy images are obtained by adding Gaussian white noise
with δ3 = 0.05 and δ1 = 0.005. Figure 2b and d show the
images I1 and I3 restored by MCLSTV algorithm in the case
δ = δ3.

In Table 1, we report the error measures obtained in the
four test images considered. In bold fonts, we report the
median values of the SNR and SSIM parameters of the com-
puted restorations. We can observe that the proposed method
produces very good restorations, in terms of error parameters.

The plots reported in Figs. 3a (for I1) and 4a (for I3) show
the behavior of the residual norm of the iterates U ( j) as a
function of γ j (in Algorithm 4). The values of γ j computed
by the MCLSTV algorithm are plotted with red circles, the
final value γt with a red star, and the value γ̃ with a black
square. In all the cases, the last value γt of the sequence
is very close to the best possible value γ̃ , showing that the
approximation computed by our algorithm is very good.

Figures 3b (for I1) and 4b (for I3) show, respectively, the
SNR and the SSIM (in log scale) of the iterates U ( j) as a
function of γ j . Even in these cases, the SNR of the image
restored by the MCLSTV method (red star) is very close to
the SNR of the image restored by using the value γ̃ (black
square), that is the best possible SNR achievable by the con-
strained regularization model (13).

4.2 Tests with Kernel H2

In the tests reported in this section, the cross-channel blur
is introduced as a weighted combination of motion (M),
gaussian (G), and average (A) kernels with different parame-
ters [26] (they all are computed by the fspecial Matlab
function).
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Fig. 2 Images blurred by
kernel H1 and restored images.
a I1 blurred image with H1 and
= 0.05, b I1 restored image with
SNRp = 98.9 %, c I3 blurred
image with H1 and = 0.05, d I3
restored image with SSIMp =
99.5 %

(a) (b)

(c) (d)

Table 1 Results for H1 blur
Test SNR (Y δ) SSIM (Y δ) SNR (Ũ ) SSIM (Ũ ) SNR (Ut ) SSIM (Ut )

I1 5.690 4.883 × 10−1 16.339 8.542 × 10−1 16.168 8.120 × 10−1

I1 6.080 6.217 × 10−1 23.196 9.716 × 10−1 23.047 9.716 × 10−1

I2 6.150 6.421 × 10−1 10.577 7.114 × 10−1 10.414 6.840 × 10−1

I2 7.765 6.486 × 10−1 13.993 8.718 × 10−1 13.454 8.546 × 10−1

I3 6.871 7.406 × 10−1 12.890 8.748 × 10−1 12.775 8.656 × 10−1

I3 8.149 7.772 × 10−1 15.618 9.662 × 10−1 15.529 9.656 × 10−1

I4 6.551 5.948 × 10−1 16.697 8.771 × 10−1 15.475 7.915 × 10−1

I4 7.503 7.744 × 10−1 20.905 9.505 × 10−1 20.396 9.364 × 10−1

For each test problem the first line is with higher noise δ3, the second line with lower noise δ1. In bold fonts
are reported the results closer to the median values

In this case, the blurred matrixH2 is:

H2 =
⎛

⎝

0.7G(9, 5) 0.15G(11, 5) 0.15A(17)
0.1A(13) 0.8G(7, 5) 0.1M(21, 45)
0.2A(15) 0.2M(41, 90) 0.6M(61, 135)

⎞

⎠

(25)

The blurred and restored images I2 and I4 are shown in
Fig. 5. Table 2 reports the errors obtained for the test images
blurred by (25) with noise levels δ3 = 0.05 and δ1 = 0.005.

From the table, we see that in this case, the results are gener-
ally less accurate compared to those inTable 1 (computing the
median SNRp and SSIMp, we have 98.7 and 96.9%, respec-
tively). The deblurring problem with this kind of kernel is
more difficult. Comparing the second columns of Tables 1
and 2, we observe that the images blurred by H2 have a
lower SNR compared to those blurred byH1. However, good
quality results are still obtained.

Figures 6 and 7 plot the residual norms, the SNR and the
SSIM values as a function of γ , as before. They confirm

123



J Math Imaging Vis

10
3

10
4

10

20

30

40

50

60

70

γ

r(
γ )

MCLSTV iter
MCLSTV last
opt

10
3

10
4

2

4

6

8

10

12

14

16

18

20

γ

S
N

R

MCLSTV iter

MCLSTV last

opt

(a) (b)

Fig. 3 Test image I1 (blurring kernel H1, SNR(Y δ) = 5.69). Plots of the residual norm r(γ ) and SNR as functions of γ
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Fig. 4 Test image I3 (blurring kernel H1, SNR(Y δ) = 6.871). Plots of the residual norm r(γ ) and SSIM as functions of γ

that the value γt computed by the algorithm sequence is very
close to γ̃ , and the error parameters for the restored images
are very good compared to the best we can obtain with the
considered model.

4.3 MCLSTV Algorithm Robustness

We tested the behavior of our MCLSTV algorithm assum-
ing that the kernel is not exactly known. Uniform random
noise has been added to the weights of the kernel (24)
in the reconstruction process, and several reconstructions
have been performed with noise level (δker) in the interval
[10−2, 2.5 10−1].

We report in Table 3, as an example, the tests relative to
the I4 test image, with noise δ3 = 0.05 on the blureed image.
The parameters of the blurred image are reported in Table 1,
first line of I4. The relative error between the original and the
corrupted kernel is reported in column ErrKer, while SNR,
SSIM, and PSNR of the reconstructions are reported in the
third, fourth, and fifth columns, respectively. Using the exact
kernel (24), we obtain SNR = 15.475, SSIM = 0.7915
and PSNR = 27.9197, showing a good robustness of the
algorithm.

4.4 MCLSTV Algorithm Efficiency

In Tables 4 and 5, we report some of the parameters for the
evaluation of the computational efficiency of the MCLSTV
algorithm on test images blurred byH1 andH2, respectively.

In each table, the value γt is the approximation of γ̃

computed by MCLSTV, t is the number of elements of the
sequence γ j (outer iterations) and NAD the total number
of alternating directions iterations for solving problem (19)
(inner iterations).We observe that a small number of adaptive
steps is required, 5 < t < 15. As an example of execution
time, about 4 seconds are required to perform 718 inner iter-
ations with the image I2 on an Intel i7 3.4 GHz, equipped
with 16 Gb of RAM and Windows 7.

4.5 Tests on a Large Set of Images

In order to show the global effectiveness of the method, we
run tests on a set of color images from the following images
repositories:

S1 Color image set PCD0992 available from the web site
http://r0k.us/graphics/kodak.
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Fig. 5 Images blurred by
kernel H2 and restored images.
a I4 blurred image with H2 and
= 0.05, b I4 restored image with
SNRp = 81.9 %, c I2 blurred
image with H2 and = 0.05, d I2
restored image with SSIMp =
96.9 %

(a) (b)

(c) (d)

Table 2 Results for H2 blur
Test SNR (Y δ) SSIM (Y δ) SNR (Ũ ) SSIM (Ũ ) SNR (Ut ) SSIM (Ut )

I1 4.786 4.893 × 10−1 16.360 8.550 × 10−1 16.152 7.883 × 10−1

I1 5.100 6.170 × 10−1 23.590 9.530 × 10−1 23.447 9.454 × 10−1

I2 5.908 5.061 × 10−1 10.283 7.064 × 10−1 10.196 6.906 × 10−1

I2 7.417 6.568 × 10−1 13.881 8.705 × 10−1 12.332 8.183 × 10−1

I3 6.399 6.979 × 10−1 12.401 8.453 × 10−1 12.391 8.455 × 10−1

I3 7.526 7.332 × 10−1 15.848 9.603 × 10−1 14.182 9.231 × 10−1

I4 6.170 5.786 × 10−1 15.657 8.470 × 10−1 15.531 8.277 × 10−1

I4 7.033 7.557 × 10−1 20.864 9.449 × 10−1 17.085 8.930 × 10−1

For each test problem the first line is with higher noise δ3, the second line with lower noise δ1. In bold fonts
are reported the results closer to the median values

10
4

6

8

10

12

14

16

18

20

γ

r(
γ)

MCLSTV iter
MCLSTV last
opt

10
4

11

12

13

14

15

16

γ

S
N

R

MCLSTV iter

MCLSTV last

opt

(a) (b)

Fig. 6 Test image I4 (blurring kernel H2, SNR(Y δ) = 5.952). Plots of the residual norm r(γ ) and SNR as functions of γ
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Fig. 7 Test image I2 (blurring kernel H2, SNR(Y δ) = 5.908). Plots of the residual norm r(γ ) and SSIM as functions of γ

Table 3 Error values for the restoration of I4 image with uniform
random noise on the kernel weights

δker ErrKer SNR SSIM PSNR

0.25 1.3687 3.5674 0.6344 16.0121

0.10 0.5475 11.3564 0.7630 23.8010

0.05 0.2737 14.1408 0.7813 26.5855

0.01 0.0547 15.4121 0.7915 27.8567

Table 4 Performance for H1 blur. For each test problem, the first line
is with higher noise δ3, and the second line with lower noise δ1

Test SNR (Y δ) γ̃ γt t NAD

I1 5.690 6.697 × 103 7.157 × 103 6 1050

I1 6.080 6.715 × 103 7.162 × 103 15 3172

I2 6.150 8.837 × 103 1.157 × 104 6 718

I2 7.765 1.560 × 104 1.138 × 104 6 723

I3 6.871 4.147 × 104 4.994 × 104 5 552

I3 8.149 6.629 × 104 5.872 × 104 6 659

I4 6.551 4.790 × 103 7.013 × 103 5 722

I4 7.503 5.806 × 103 6.963 × 103 5 705

S2 Color images from raytracing algorithms available at

http://tog.acm.org/resources/SPD/overview.html and
http://www.f-lohmueller.de/pov/g_3c.htm.

S3 Set of fractal color images downloaded from http://
www.f-lohmueller.de/fractal/gfr_00.htm fractals_1
and fractals_5.

The experiments are performed using the blurring func-
tions H1 and H2; for each blur, noise is added with levels:
δ1, δ2 and δ3.

In Table 6, we report the results for each database. As
global indicator of success, we count the number of tests
where SNRp and SSIMp are greater than 90% (columns 3, 5)

Table 5 Performance for H2 blur. For each test problem, the first line
is with higher noise δ3, and the second line with lower noise δ1

Test SNR (Y δ) γ̃ γt t NAD

I1 4.786 6.918 × 103 7.599 × 103 4 679

I1 5.100 7.637 × 103 7.575 × 103 4 695

I2 5.908 8.945 × 103 1.129 × 104 5 522

I2 7.417 1.771 × 104 9.610 × 103 6 718

I3 6.399 4.686 × 104 4.334 × 104 7 835

I3 7.526 7.396 × 104 4.368 × 104 5 540

I4 6.170 5.090 × 103 5.785 × 103 5 695

I4 7.033 6.139 × 103 4.383 × 103 5 647

Table 6 Results for image databases

Set NT S1 meS1 S2 meS2

S1 144 113 97.04 129 97.89

S2 90 72 98.05 83 98.33

S3 84 69 96.86 82 99.62

NT Number of tests, S1 number of images with SNRp > 90, meS1
median value of SNRp, S2 number of images with SSIMp >90, meS2
median value of SSIMp

and report themedian values of SNRp and SSIMp in columns
4 and 6, respectively. Statistical information about the whole
test can be observed in Fig. 8.

In Fig. 8a, we plot the boxplot of the data, each con-
taining the median value (the line inside the box), the 0.25,
and 0.75 quantiles (the basis of the box); the minimum and
maximum of the data (the whiskers); and the outliers (the
crosses). In a compact form, they show that the ssim values
are very good, near the 100%. In the histogram reported in
Fig. 8b,we can see that the largest number of samples achieve
the best performance with SNRp and SSIMp close to 100%.

123

http://tog.acm.org/resources/SPD/overview.html
http://www.f-lohmueller.de/pov/g_3c.htm
http://www.f-lohmueller.de/fractal/gfr_00.htm
http://www.f-lohmueller.de/fractal/gfr_00.htm


J Math Imaging Vis

80

85

90

95

100

21 75 80 85 90 95 100
0

10

20

30

40

50

60

(a) (b)

Fig. 8 Statistical information of S1
⋃

S2
⋃

S3 image sets. a Boxplot of SNRp(1) and SSIMp(2), b histogram of SNRp (blue) and SSIMp (brown)
(Color figure online)

Table 7 Test problems blurred by kernel H1 and with added noise
of level δ = δ1(0.05), δ3(0.005). Best SNRs obtained by RWM and
MCLSTV methods

Test δ RWM MCLSTV

I1 0.05 16.337 16.168

0.005 23.111 23.047

I2 0.05 8.138 10.414

0.005 13.007 13.454

I3 0.05 11.879 12.775

0.005 15.603 15.529

I4 0.05 20.867 20.396

0.005 15.622 15.475

4.6 Comparison with a Different Method

In this paragraph, we apply a method recently presented in
the literature to estimate the regularization parameter by esti-
mating the Residual Whiteness Measure (RWM) by Almeida

and Figuereido [1]. This method can be extended to color
images by converting to grayscale the residual obtained by
solving (2) with different values of λ. Using the function
whiteness from the authors’ website, we compute the six
measures of whiteness in [1], and we take the maximum.

In Table 7, we report the SNRs obtained on the test prob-
lems I1-I4 with H1 blurring matrix and two levels of noise:
δ1 = 0.005 and δ3 = 0.05, using the methods RWM and
MCLSTV.

In Fig. 9, we plot the SNR as a function of λ. The best
values obtained by RWM (black star) and MCLSTV (red circle)
methods are reported for the best (Fig. 9a) by RWM method
and the best (Fig. 9b) obtained by MCLSTV.

The restored images giving the best, median, and worse
SNRs are reported in Figs. 10, 11, and 12 together with the
reconstructions obtained by MCLSTV in the same cases. We
observe that RWM achieves slightly better SNRs in the best
andmedian cases, but seems to obtainworse results in critical
cases where MCLSTV still shows better quality reconstruc-
tion.
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Fig. 9 SNR plots as a function of λ for the best and worse RWM reconstructions. a I4 = 0.005, b I2 = 0.05
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Fig. 10 Best RWM
reconstruction: Test I4
δ = 0.005. a RWM
SNR = 20.867, b CLSMTV
SNR = 20.396

(a) (b)

Fig. 11 Median RWM
reconstruction: Test I1
δ = 0.005. a RWM
SNR = 23.111, b CLSMTV
SNR = 23.047

(a) (b)

Fig. 12 Worse RWM
reconstruction: Test I2 δ = 0.05.
a RWM SNR = 8.138, b
CLSMTV SNR = 10.414

(a) (b)

5 Conclusions

In this paper, we proposed an iterative method for automatic
restoration of blurred noisy vectorial digital images. The
method only requires the blurred noisy image and the blur-
ring kernel as input. The algorithm solves a finite sequence of
constrained minimization problems with the objective func-
tion being the l2-norm of the residual and the constraint
function being a vectorial extension of Total Variation. The

experiments on large datasets of color images proved that
the method efficiently recovers nearly optimal results in the
great majority of the cases.

The present approach is general and can be extended to
different types of objective functions and constraints on the
basis of the specific application considered. The extension
to blind image-restoration problems will be considered in
future works.
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