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Total variation (TV) minimization-based nonlinear models have been proven to be very useful and
successful in image processing. A lot of effort has been devoted to overcome the nonlinearity of the
model and at the same time to obtain fast numerical schemes. In this paper, we propose a restarted iterative
homotopy analysis method (HAM) to improve the computational efficiency for the TV models and will
show by experiments that this method demonstrates great potential for recovering the noise and with great
speed in both image denoising and image segmentation models. The method modifies the existing HAM
and makes it suitable to potentially solve other nonlinear partial differential equations arising from image
processing models. In our examples, we will demonstrate the validity of a restarted HAM and that this
method is efficient and robust even for images with large ratios of noise and with much less CPU time than
other methods.
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1. Introduction

Digital images in various modalities are increasingly generated and used in practical applica-
tions, and presence of noise in them is inevitable. Denoising is a first pre-processing step in
analysing images and corrects the image by removing the noise. A number of image processing
techniques are proposed for removing image noise and preserving important image information
such as edges [45]. The additive Gaussian noise is the first and most common problem in image
processing. In other cases, uniformly distributed noise (or other types such as Poisson noise [11]
and multiplicative noise [16]) may also appear. Denoising via linear filters normally does not
perform satisfactorily, since both noise and edges contain high frequencies, while the nonlinear
denoising models have been applied and found to be successful. Rudin and Osher [37] and Rudin
et al. [38] first introduced the total variation (TV) norm as an edge preserving model. This model
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is a successful tool for image restoration (including both denoising and deblurring) and at the
same time for edge enhancement (segmentation) too. High-order effective models [6,54] improv-
ing TV have been proposed, but their nonlinear partial differential equations (PDEs) bring some
implementation and speed difficulties [51].

The Euler–Lagrange equation associated with the TV functional for those models is a nonlinear
PDE. Due to the difficulties (or even impossibility) in obtaining analytic solutions of nonlinear
PDEs, with strong nonlinearity in particular, it is easier to get a numerical approximation of
a given nonlinear problem. In the last few years, there has been much progress in developing
new implicit or explicit algorithms for nonlinear models with their own positive and negative
feedback. In cases when an implicit method has been applied as the solver, we may face the
following problems: (i) convergence is dependent on some properties of the matrix of the system
after digitization; (ii) implementation is complicated for general nonlinear equations; and (iii) large
storage is required. On the other hand, an explicit method (such as the easily implemented time-
marching (TM) model) requires the time step to be chosen sufficiently small to get convergence
and speeding up would be a challenge.

A relatively new method, namely homotopy analysis method (HAM), first introduced
in 1992 [22], attracts with a simple way of controlling and adjusting the convergence
region and rate of solution series of nonlinear problems. This method has been improved
[23–25,27–29] and widely used to solve linear or nonlinear ordinary differential equation (ODE)
and simple PDE problems showing great performance. Different fields in science, engineering,
technological fields and finance have employed the method to solve or improve many types of
problem [1,2,17,18,20,39,52] or even to find some new solutions of a few nonlinear equations
which have never been solved by previous analytic methods or even numerical methods [26]. In
comparison with well-known methods such as the perturbation techniques method [34,35] or the
so-called non-perturbation techniques, such as the δ-expansion method [4], Adomian’s decom-
position method [3] and so on, HAM does not depend on small/large physical parameters and is
valid not only for weakly nonlinear problems, but also for strongly nonlinear problems, and at
the same time, the convergence of the solution has been proved [27]. Unfortunately, applying it
to realistic nonlinear PDE models does not suit due to the analytical difficulties in working out
the high-order approximations demanded by HAM. Sorting this out and at the same time using
HAM’s quality was the motivation of our work.

In this paper, we develop a restarted HAM (RHAM) and show that it has the same efficiency, or
even better, compared with HAM, while being simple and easy to apply. The method avoids the
requirement of working with high-order terms as in HAM, by proposing to use the sequence of
three linear equations and then restart the HAM process. We will demonstrate through examples
that RHAM is compatible with HAM for solving hard inverse problems (such as image processing)
and nonlinear PDEs. The paper aims to answer these questions: (i) does RHAM perform well for
general nonlinear equations; (ii) does it mathematically bring a stable scheme; (iii) is the quality of
the model as good, or even better, compared with other methods; (iv) can it be a general form and
(v) can it deal with large images, where speed is crucial? In this paper, we present the application
of RHAM for the evolution approaches of TV-based models, which suggest that it may be used
for other unexplored hard nonlinear applications.

In what follows, in Section 2, we first review the general idea of the HAM. Then, the classical TV
restoration model and its discrete form are presented in Section 3. In this section, we will develop
and present the restarted iterative HAM for the model. Part of this section will be answering
simple questions such as ‘How RHAM deals with simple cases?’. In Section 4, we describe
the segmentation model before we apply the developed discrete HAM to it. In Section 5, we
present various numerical results obtained from the implementation of RHAM for both denoising
restoration and segmentation models, and then comparisons are made between obtained results
and those of TM and the additive operator splitting (AOS) method.
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2. Review of an HAM

In this section, we briefly introduce the standard HAM for a general nonlinear problem. This will
be the first step to apply the RHAM (as a discrete form of HAM). This method has been known
as an analytic method for solving nonlinear problems [27].

Consider a nonlinear equation of the following form:

N [u(x, t)] = 0 (1)

subject to the initial condition

u(x, 0) = u0(x), (2)

where N is a nonlinear operator which represents the whole equation, x ∈ Rn, t denotes inde-
pendent variable and u(x) is an unknown function. Based on [24], the following zero-order
deformation equation is constructed from the original equation (1) as follows:

(1 − q)L[ϕ(x, t; q) − u0(x, t)] = q�H(x, t)N [ϕ(x, t; q)], (3)

where u0(x, t) is an initial guess, � is an auxiliary parameter, q ∈ [0, 1] is an embedding parameter,
ϕ(x, t; q) is a function of t and q, H is a non-zero auxiliary function and L is an auxiliary linear
operator with the following property:

L[ϕ(x, t)] = 0 when ϕ(x, t) = 0. (4)

It should be emphasized that we have the freedom to choose the initial approximation, the auxiliary
linear operator L, the auxiliary parameter � and the auxiliary function H. Obviously, since � �= 0,
H �= 0, when q = 0 and q = 1, it holds that ϕ(x; 0) = u0(x) and ϕ(x; 1) = u(x), respectively.
Thus, as q increases from 0 to 1, the solution ϕ(x; q) deforms from the initial guess u0(x) to the
solution u(x). Expanding ϕ(x; q) in the Taylor series with respect to q, one has

ϕ(x, t; q) = u0(x, t) +
∞∑

m=1

um(x, t)qm, (5)

where

um(x, t) = 1

m!
∂ϕm(x, t; q)

∂qm

∣∣∣∣
q=0

. (6)

If the auxiliary linear operator, the initial guess, the auxiliary parameter � and the auxiliary
function H �= 0 are chosen such that the series (5) converges at q = 1, one has

u(x, t) = u0(x, t) +
∞∑

m=1

um(x, t), (7)

which must be one of the solutions of the original nonlinear equation, as proved by Liao [22].
Let us define �uk(x) = {u0(x), . . . , uk(x)} as the vector of the composed solutions. According

to the definition for um(x, t) (Equation (6)), the governing equation and the corresponding initial
condition of um(x, t) can be deduced from the zero-order deformation equation (3) and Equation (4)
as follows. Differentiating the zero-order deformation equation (3) m-times with respect to q,
dividing by m! and finally setting q = 0, we obtain the following mth-order deformation problem:

L[um(x, t) − χmum−1(x, t)] = �HRm[�um−1(x, t)], (8)
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where

Rm[�um−1(x, t)] = 1

(m − 1)!
∂m−1N [ϕ(x, t; q)]

∂qm−1

∣∣∣∣
q=0

(9)

and

χm =
{

1, m > 1,

0, m � 1.

Applying the inverse operator L−1 on both sides of Equation (8), we can obtain

um(x, t) = χmum−1(x, t) + L−1{�HRm[�um−1(x, t)]} (10)

and at the Mth order we have uM(x, t) =∑M
m=0 um(x, t).Apparently as M increases we may obtain

a more accurate approximate solution of the original equation (1). Note that when solving the
mth-order deformation equations (8), Rm[�um−1(x, t)] depends only on u0, u1, u2, . . . , um−1 which
are already known.

In our applications, we will use two different linear operators as follows1:

L1(ϕ(x, t; q)) = ∂ϕ(x, t; q)

∂t
+ θϕ(x, t; q) (11)

and

L2(ϕ(x, t; q)) = (1 + t)
∂ϕ(x, t; q)

∂t
+ ϕ(x, t; q) (12)

with the property L1[C1e−t] = 0 and L2[C2/(1 + t)] = 0, and θ is a positive constant. More
analysis can be done to optimize the parameter θ , introduced in the term L1, and to give answer
to the experimental result for different θ but this is not the main concern of this manuscript.

Below we shall write uHAM1 and uHAM2, notation used to make the distinction between the
linear operators L1 and L2, respectively, to find the solution u(x) = u(x, y) of Equation (1).

By applying the inverse operators L−1
1 and L−1

2 to both sides of the high-order deformation
equation (8), subject to the initial condition

um(x, y, 0) = 0,

the mth terms of the solution are, respectively, obtained in the following forms:

uHAM1
m (x, y, t) = χmuHAM1

m−1 (x, y, t) + � exp(−θ t)
∫ t

0
H1(τ )Rm[�uHAM1

m−1 (x, y, t, τ)] dτ (13)

and

uHAM2
m (x, y, t) = χmuHAM2

m−1 (x, y, t) + �

1 + t

∫ t

0
H2(τ )Rm[�uHAM2

m−1 (x, y, t, τ)] dτ , (14)

where Rm[�um−1] is as defined by Equation (9). Indeed, the solution u(x, y) of the original nonlinear
equation (1), while using the linear operators L1(u) and L2(u), respectively, is expressed in the
following form:

uHAM1(x, y, t) =
+∞∑
m=0

am exp(−mθ t) (15)

and

uHAM2(x, y, t) =
+∞∑
m=0

bm

(1 + t)m
, (16)

where the am, bm’s are coefficients depending on x and y.
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According to the rule of solution expression denoted by Equation (15) and from Equation (13),
the auxiliary function H(τ ) should be in the form H(τ ) = e−kτ , where k is an integer. It is found
that, when k � 1, the solution of the high-order deformation equation (13) contains the term
te−t , which incidentally disobeys the rule of solution expression (15). When k > 2, the base e−2t

always disappears in the solution expression of the high-order deformation equation (13), so that
the coefficient of the term e−2t cannot be modified even if the order of approximation tends to
infinity. Therefore, according to the so-called rule of coefficient ergodicity by Liao [24], we have to
set k = 2, which uniquely determines the corresponding auxiliary function H1(τ ) = exp (−2τ).

Following the same discussion above for the rule of solution expression denoted by
Equation (16) and from Equation (14), we get H2(τ ) = 1/(1 + τ)2.

Thus, starting from the initial approximation u0(x, y, t) = u0(x, y), we can use the recurrence
formulas (13) and (14) to successively obtain um(t) for m � 1.

The HAM has been applied all these years to continuous functions because of the freedom to use
different base functions to approximate a nonlinear problem, its validity for nonlinear problems,
and its convenient way to adjust the convergence region and the rate of the approximation series.
The first attempt at a discrete version of the HAM was made recently by Zhu et al. [55] for a
diffusion equation.

We find the method attractive and at the same time challenging to apply in image processing
techniques, such as denoising and image segmentation, which brings us to nonlinear PDEs which
have some difficulties. The question we had to deal with at this point was: ‘Is it easy to carry on
with m = 3, m = 4, . . . , m = M?′, for nonlinear PDEs arising from this kind of technique. The
derivation of the Rm term with respect to q does not bring a higher order than the given PDE, but
might require not only calculation but even some difficulties in programming. To avoid all this:
‘What if we stop at a certain m(m = 2 in our case) and restart with a better approximation?’ In this
way for M = m = 2 a restarting scheme with R = 5 has the form ˆuM = u(1)

0 +∑R
r=1

∑M
m=1 u(r)

m .
This is the simple idea of the so-called RHAM which will be given in detail in the following
sections for both image denoising and image segmentation.

3. A restarted iterative HAM for total variational denoising

The presence of noise in images is unavoidable and for this reason, a good denoising technique
is required. In practice, the classical algorithms based on least squares, Fourier series or the L2

norm approximation do not approximate images containing edges well. To preserve image edges
and features, a TV denoising model was introduced by Rudin et al. [38], which is based on a
variational problem using the TV norm as a nonlinear non-differentiable functional and a TM
scheme to solve the Euler–Lagrange equation arising from it. This model preserves the edges
very well but the problem is nonlinear and there are computational difficulties which make the
method slow. Because of edge preserving qualities the method immediately became successful
and in this way attracted attention. The algorithms for solving this nonlinear problem can be split
in two main kinds: Parabolic type, which is easy to be programmed and as a fastest algorithm, the
AOS method can be used in this group, and Elliptic type, which includes a fixed-point iteration
technique proposed by Vogel and Oman [48], a primal–dual method by Chan et al. [14] or a
nonlinear multigrid method introduced by Savage and Chen [40,41] andVogel [47] (and references
therein). Other models improved the TV model [38], by different regularizers [10,32], or extended
to higher orders [7,30,31,44]. One issue in these models is to allow a small β in Equation (20)
when solving the nonlinear equation. There is some progress in this direction [51]. The main
result of this work concerns an iterative procedure designed to reduce the complexity of the TV
model [38] for the parabolic algorithm and to achieve a faster speed of convergence than AOS. We
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will show that this method has the potential to be used for different nonlinear differential equations
and for different orders. Our interest is in the fast iterative procedure of the inverse problem arising
from the TV model [38], by using an RHAM which brings the solution of nonlinear PDEs to the
solution of a linear system and the result of the algorithm shows great performance. Our idea is to
replace the variational problem by a sequence of approximations decomposing it into the solution
of a linear equation. We will test our model using two criteria: the quality of the restoration results
and the speed of the iterative solution.

3.1 The TV model

Let 	 be a bounded domain with intensity function z(x, y) (known), denoting the pixel values of
an image, contaminated with an additive noise η(x, y) (unknown).2 We would like to construct
u(x, y) (unknown), the desired clean image for the observed image z(x, y), such that

z(x, y) = u(x, y) + η(x, y). (17)

The objective of denoising algorithms is to reconstruct u(x, y) from z(x, y). Image denoising is
an ill-conditioned inverse problem and the denoising methods use regularization techniques to
approximate u(x, y). In the constrained minimization problem, it is well known that the L1 norm
of the gradient is the appropriate space. This is basically the space of functions of bounded total
variation. In the given problem, we need to minimize the noise.

Rudin et al. [38] proposed the use of the following minimization problem:

min
u

∫
	

|∇u(x, y)| dx dy + λ

2

∫
	

(u(x, y) − z(x, y))2 dx dy, (18)

where λ > 0 is a tuning parameter. The first term is the TV of u(x, y), a regularizer, while the second
term is a fidelity term ensuring that the denoised image u(x, y) will be close to the given image
z(x, y). The fitting parameter λ is important for balancing denoising and smoothing; therefore, it
depends on the noise level. As a straightforward observation, we can say that, in the presence of
high noise, the parameter λ has to be decreased. Large λ corresponds to very little noise removal
and small λ yields a blurry, over-smoothed restoration u(x, y). Equation (18) leads to the Euler–
Lagrange equation, a nonlinear elliptic PDE with homogeneous Neumann boundary conditions
as follows:

g(u(x, y)) = ∇ ·
( ∇u(x, y)

|∇u(x, y)|
)

− λ(u(x, y) − z(x, y)) = 0, (x, y) ∈ 	,

∇u(x, y)· →
n= 0, (x, y) ∈ ∂	, (19)

where
→
n is the unit normal vector exterior to the boundary ∂	.

To avoid division by zero in numerical implementation, we replace the non-differentiable term
|∇u(x, y)| by a smooth approximation |∇u(x, y)|β = √|∇u(x, y)|2 + β2 for some small β > 0.
Therefore, we get

g(u(x, y)) = ∇ ·
( ∇u(x, y)

|∇u(x, y)|β
)

− λ(u(x, y) − z(x, y)) = 0, (x, y) ∈ 	,

∇u(x, y)· →
n = 0, (x, y) ∈ ∂	. (20)
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3.2 A TM (gradient descent) method

For solving the Euler–Lagrange equation (20), Rudin et al. [38] used a parabolic equation as a
solution procedure, which means we solve

∂u(x, y; t)

∂t
= ∇ ·

( ∇u(x, y; t)

|∇u(x, y; t)|β
)

− λ(u(x, y; t) − z(x, y)), t > 0, (x, y) ∈ ∂	,

∇u· →
n = 0, (x, y) ∈ ∂	, where u(x, y, 0) is given. (21)

For numerical implementation, let us assume that the domain 	 has been split into N × M cells
where the grid points are located at (xi = ihx, yj = jhy), i = 1 . . . N , j = 1 . . . M, tk = k�t, where
�t and k = 1, 2, . . . denote the time step and iteration time, respectively. We denote the values of
u(x, y, t) at the grid points (xi, yj, tk) by uk

ij, and u0
ij = z(xi, yj).

For simplicity and without loss of generality, we assume that M = N , hx = hy = 1. In this way,
the curvature term can be approximated by

κ(uk
i,j) = ∇ ·

( ∇u

|∇u|β
)∣∣∣∣

i,j

=
(

∂

∂x

[
ux

|∇uβ |
]

+ ∂

∂y

[
ux

|∇uβ |
])∣∣∣∣

i,j

=
⎡
⎢⎣�x

−

⎛
⎜⎝ �x+uk

ij√
(�x+uk

ij)
2 + (�

y
+uk

ij)
2 + β

⎞
⎟⎠+ �

y
−

⎛
⎜⎝ �

y
+uk

ij√
(�

y
+uk

ij)
2 + (�

y
+uk

ij)
2 + β

⎞
⎟⎠
⎤
⎥⎦ (22)

with

�x
∓uij = ∓(ui∓1j − uij),

�
y
∓uij = ∓(uij∓1 − uij)

and g(uk
i,j) calculated in the following form:

g(uk
i,j) = κ(uk

i,j) − λ(uk
ij − zij). (23)

If the time derivative ut at (i, j, k�t) is approximated by the forward difference as

(ut)
k
ij = uk+1

ij − uk
ij

�t
,

then by considering Equation (23), we obtain

uk+1
ij − uk

ij

�t
= g(uk

i,j) (24)

or

uk+1
ij = uk

ij + �tg(uk
i,j) (25)

with boundary condition uk
0j = uk

1j, uk
Nj = uk

N−1j, uk
i0 = uk

i1 and uk
iN = uk

iN−1 for i, j = 1, 2, . . . , N .
The TM method for solving Equation (21) is described in Algorithm 1:
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Algorithm 1 The TM method: uk ← TM(uk , z, λ, maxit, tol)

for iter = 1 : maxit do
Compute g(uk

i,j) by using Equation (23)
Perform TM steps on linear system by Equation (25)

uk+1
i,j ← uk

i,j + �tg(uk
i,j)

If ‖uk − uk+1‖ < tol or PSNR(uk) > PSNR(uk+1), set uk
i,j ← uk+1

i,j , Break;

uk
i,j ← uk+1

i,j .

end for

The problem with the TM approach is that, due to stability restrictions, the time step must be
taken to be very small, resulting in very slow convergence. For this reason, we will compare our
method with a fast solver too, such as the AOS method [49] which is an alternating direction
implicit method [36].

3.3 Difficulties with HAM

The difficulty in applying the HAM for the ROF model comes from the nonlinear term

∇ ·
( ∇u(x, y)

|∇u(x, y)|β
)

.

In real-life application dealing with this kind of term is quite normal. High-order PDEs can be
even more complicated. For example, let us consider the curvature model

α∇ ·
(∇�′(κ)

|∇u|β − ∇u · ∇�′(κ)

(|∇u|β)3
∇u

)
+ u − z = 0 in 	 (26)

with κ the curvature of the image and � defined as �(κ) = |κ|, �(κ) = κ2 or as in [6,53]
as a combination of both. When applying the Mth-order HAM method, we have to differentiate
M times the original nonlinear equation N (u) with respect to q. These derivatives, as we mentioned
before, do not bring a higher order than the given PDE, but might require calculation as well as
some more difficulties in programming by adding terms.

Stopping at a certain M (depending on hardness of the given nonlinear problem) and restarting
with a better approximation will avoid this problem. In this way, we have a scheme of the form

ˆuM = u(1)
0 +

R∑
r=1

M∑
m=1

u(r)
m

with restarting iteration number R.
Note: Before going to complicated image processing cases, an immediate question is ‘Does

RHAM work for simple cases such as ODEs?’. For this reason, we tested the idea for simpler
problems, already taken in consideration with HAM and shown to be successful. In Appendix,
RHAM shows great performance for these examples in comparison with HAM. The results show
that a second-order RHAM performs as 8th- or 10th-order HAM.
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3.4 A RHAM for denoising

Considering the above nonlinear equation (21) we define the nonlinear PDE as

N [u(x, y, t)] = ∂u(x, y; t)

∂t
− ∇ ·

( ∇u(x, y; t)

|∇u(x, y; t)|β
)

+ λ(u(x, y; t) − z(x, y)) = 0. (27)

The RHAM can be used to solve the equation by choosing the nonlinear operator N [ϕ(x, y, t; q)]
in a straightforward manner

N [ϕ(x, y, t; q)] = ∂ϕ(x, y, t; q)

∂t
− ∇ ·

( ∇ϕ(x, y, t; q)

|∇ϕ(x, y, t; q)|β
)

+ λ(ϕ(x, y, t; q) − z(x, y)), (28)

where 0 ≤ q ≤ 1.
In what follows, we will consider applying the two linear operators L1 and L2 introduced in

Section 2 for solving the nonlinear PDE (21), and as initial approximation we choose

ϕ(x, y, t = 0) = u0(x, y) = z(x, y).

Since for large enough values of t, the solution of Equation (21) converges to the solution of
Equation (19), we expect that the solution of Equation (21) has a finite value as t tends to infinity.
In what follows, we give the solutions of Equations (13) and (14) for m = 1 and 2.

Keeping the notation u0 for uRHAM1
0 and uRHAM2

0 , and u1 for uRHAM1
1 and uRHAM2

1 , respectively,
while applying Equation (9) in the following calculation of R1[�u] and R2[�u] and considering
Equation (6) we have, respectively, for m = 1 and 2

R1[�u0] = N (u0) = −g(u0), (29)

R2[u1, u0] = ∂N [ϕ(x, t; q)]
∂q

∣∣∣∣
q=0

= ∂

∂q

(
∂ϕ

∂t
− ∇ ·

( ∇ϕ

|∇ϕ|β
)

+ λ(ϕ − z)

)∣∣∣∣
q=0

=
(

∂

∂t

∂ϕ

∂q
− ∂

∂x

(
∂

∂q

ϕx

|∇ϕ|β
)

− ∂

∂y

(
∂

∂q

ϕy

|∇ϕ|β
)

+ ∂(λ(ϕ − z))

∂q

)∣∣∣∣
q=0

= u1t − ∂

∂x

(
u1x

|∇u0|β − u0xu1x + u0yu1y

|∇u0|3β
u0x

)

− ∂

∂y

(
u1y

|∇u0|β − u0xu1x + u0yu1y

|∇u0|3β
u0y

)
+ λu1.

Similar to Equations (13) and (14), we get
for RHAM1

uRHAM1
1 = � exp(−θ t)

∫ t

0
exp((θ − 2)τ )R1[�u0] dτ = −�

e−2t − e−θ t

θ − 2
g(u0), (30)

uRHAM1
2 = uRHAM1

1 + � exp(−θ t)
∫ t

0
exp((θ − 2)τ )R2[uRHAM1

1 , u0] dτ , (31)

for RHAM2

uRHAM2
1 = �

(1 + t)

∫ t

0

1

(1 + τ)2
R1[�u0] dτ = −�

t

(1 + t)2
g(u0), (32)

uRHAM2
2 = uRHAM2

1 + �

1 + t

∫ t

0

1

(1 + τ)2 R2[uRHAM2
1 , u0] dτ . (33)
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Both terms uRHAM1
2 and uRHAM2

2 can be easily found in the explicit form. In what follows, we
give some more details about RHAM2 and in the same way RHAM1 can be calculated. The
first term obtained, uRHAM2

1 , is a composition of two functions, one depending on the variable t
and the other one on (x, y), so we can write uRHAM2

1 = −�(t/(1 + t)2)g(u0) = f (t)w(x, y), with
f (t) = −�(t/(1 + t)2) and w(x, y) = g(u0). In this way, the R2[u1, u0] term can be rewritten as

R2[u1, u0] = f ′(t)w − f (t)
∂

∂x

(
wx

|∇u0|β − u0xwx + u0ywy

|∇u0|3β
u0x

)

− f (t)
∂

∂y

(
wy

|∇u0|β − u0xwx + u0ywy

|∇u0|3β
u0y

)
+ λf (t)w,

R2[u1, u0] = f ′(t)w − f (t){S(w, wx, wy, u0)},
where

S(w, wx, wy, u0) = ∂

∂x

(
wx

|∇u0|β − u0xwx + u0ywy

|∇u0|3β
u0x

)

+ ∂

∂y

(
wy

|∇u0|β − u0xwx + u0ywy

|∇u0|3β
u0y

)
+ λw

and from Equation (33), we have

uRHAM2
2 = −�

t

(1 + t)2 w + �

1 + t

[
w�

1 − 2t

6(1 + t)4
− S(w, wx, wy, u0)�

1 + 3t

6(1 + t)3

]
.

An immediate observation is that the computational cost of the first-order approximation of
the RHAM is as expensive as the TM. The second-order term of RHAM, u2, brings the extra
computation of the term S(w, wx, wy, u0) which is obtained explicitly3 without having too much
extra computation since the curvature term w(x, y) has been already evaluated in the same step.

Easily we can note that the first-order approximation of the RHAM, that is, m = 1, coincide
with the TM method. In this way, for m = 1, HAM and consequently RHAM have the same

Algorithm 2 RHAM solution expressed by exponential functions
RHAM1: uk ← RHAM1(uk , z, λ, β, θ , �t, maxit, tol)

Initialization: Given u0
i,j = ui,j,0 = zi,j,

for k = 1 : maxit do
Set uk

i,j,0 := uk−1
i,j

Compute g(uk
i,j,0) by using Equation (23)

Compute uk
i,j,1 by using Equation (30)

Compute uk
i,j,2 by using Equation (31)

uk
i,j ← uk

i,j,0 + uk
i,j,1 + uk

i,j,2

If ‖uk − uk−1‖ < tol or PSNR(uk−1) > PSNR(uk), set uk
i,j ← uk−1

i,j , Break;

uk
i,j ← uk−1

i,j ,

end for



International Journal of Computer Mathematics 671

stability condition. For m > 1, the stability analysis has been considered and detailed in the HAM
framework and which can be used as a prediction in advance for the RHAM. More detailed
analysis for RHAM will be considered in future.

The numerical implementation for RHAM1 from Equations (30) and (31) can be given in the
form of an algorithm as described in Algorithm 2. In the same way, considering Equations (32)
and (33) we get Algorithm 3 which describes RHAM2.

Algorithm 3 RHAM solution expressed by fractional functions
RHAM2: uk ← RHAM2(uk , z, λ, β, �t, maxit, tol)

Initialization: Given u0
i,j = ui,j,0 = zi,j,

for k = 1 : maxit do
Set uk

i,j,0 := uk−1
i,j

Compute g(uk
i,j,0) by using Equation (23)

Compute uk
i,j,1 by using Equation (32)

Compute uk
i,j2 by using Equation (33)

uk
i,j ← uk

i,j,0 + uk
i,j,1 + uk

i,j,2

If ‖uk − uk−1‖ < tol or PSNR(uk−1) > PSNR(uk), set uk
i,j ← uk−1

i,j , Break;

uk
i,j ← uk−1

i,j ,

end for

As we see from the results in Section 5, RHAMs are effective for solving nonlinear equations
such as Equation (28). There are many models using the TV operators as in Equation (28) which
might be solved by RHAM. Below we give one such application of RHAM to a TV variational
model in image segmentation.

4. Application of our RHAM to a variational image segmentation model

There has been a great attraction in recent years to the level set method for image segmentation.
Object segmentation in images using variational methods was first introduced by Kass et al.
[21], and its algorithm is known as the snake algorithm. This model was further developed
as the geodesic active contours model and the level set method [8,9,42], while in contrast a
nonlinear functional was introduced by Mumford–Shah [33] which was later implemented by
Chan–Vese [12] and continuously improved by Chan and Vese [13], Chan et al. [15], Hintermuller
and Ring [19], Tsai et al. [43] and Vese and Chan [46]. These latter methods consider the image
as piecewise continuous functions that are surrounded by discontinuities represented as contours
� and are known for better performance in the presence of noise than former methods.

The variational image segmentation model for the segmentation of the objects in an image
implemented by Chan–Vese [12] considers the image as a piecewise constant

u(x, y) =
{

c1 = mean(inside(�))

c2 = mean(outside(�))
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and the Mumford–Shah [33] model reduces to

inf
c1,c2,�

F(�, c1, c2) = μ length(�) + λ1

∫
inside(�)

|z(x, y) − c1|2 dx dy

+ λ2

∫
outside(�)

|z(x, y) − c2|2 dx dy, (34)

where z(x, y) is the original image, c1 and c2 are the average values of z inside and outside of the
contour �, and μ, λ1 and λ2 are non-negative fixed parameters.

In the following, we will deal with the Chan–Vese region-based model and show how to
implement the RHAM.

Denoting the regularized Heaviside function and Delta function, respectively, as

Hε(x) = 1

2

(
1 + 2

π
arctan

(x

ε

))
, H ′

ε(x) = δε(x) = 1

π

ε

ε2 + x2
(35)

and representing � by the zero level set of the Lipschitz function φ(x, y) : 	 → R as in [12], we
get the Euler–Lagrange equation for φ(x, y) by the minimization of the energy F(�, c1, c2) with
respect to φ(x, y), c1, c2. The Euler–Lagrange equation is written as follows:

δε(φ(x, y))

[
μ∇ ·

( ∇φ(x, y)

|∇φ(x, y)|
)

− f0(φ(x, y))

]
= 0 in 	,

δε(φ(x, y))

|∇φ(x, y)|
∂φ(x, y)

∂�n = 0 on ∂	, (36)

where �n is the unit normal exterior to the boundary ∂	, ∂φ/∂�n is the normal derivative of φ at
the boundary and

f0(φ(x, y)) = λ1(z(x, y) − c1(φ(x, y)))2 − λ2(z(x, y) − c2(φ(x, y)))2 (37)

with

c1(φ(x, y)) =
∫
	

z(x, y)Hε(φ(x, y)) dx dy∫
	

Hε(φ(x, y)) dx dy
(38)

c2(φ(x, y)) =
∫
	

z(x, y)(1 − Hε(φ(x, y))) dx dy∫
	
(1 − Hε(φ(x, y))) dx dy

(39)

(i.e the curve has a non-empty interior and exterior in 	).
Note that the main equation (36) has the nonlinear TV operator present. In a similar way to

Equation (28), we can consider to choose the nonlinear operator

N [ϕ(x, y, t; q)] = ∂ϕ

∂t
− δε(ϕ)

[
μ∇ ·

( ∇ϕ

|∇ϕ|
)

− f0(ϕ)

]
(40)

with the initial approximation for the level set φ(x, y)

ϕ(x, y, t = 0) = φ0(x, y) =
√

(x − x0)2 + (y − y0)2 − r0.
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The main difference is the change of notation from u0, u1, u2 to φ0, φ1 φ2. In the similar way
to denoising, we apply the two linear operators (11) and (12) regarding the level set function φ.
From Equation (9), we derive R1[ �φ0] and R2[ �φ0]

R1[φ0] = N (φ0) = −δε(φ0)

[
μ∇ ·

( ∇φ0

|∇φ0|
)

− f0(φ0)

]
. (41)

R2[φ0, φ1] = ∂N [ϕ(x, y, t; q)]
∂q

∣∣∣∣
q=0

= ∂

∂q

(
∂ϕ

∂t
− δε(ϕ)

[
μ∇ ·

( ∇ϕ

|∇ϕ|
)

− f0(ϕ)

])∣∣∣∣
q=0

=
(

∂

∂q

∂ϕ

∂t
− ∂

∂q
(δε(ϕ))

[
μ∇ ·

( ∇ϕ

|∇ϕ|
)

− f0(ϕ)

]

−δε(ϕ)
∂

∂q

[
μ∇ ·

( ∇ϕ

|∇ϕ|
)

− f0(ϕ)

])∣∣∣∣
q=0

=
(

∂

∂t

∂ϕ

∂q
− ∂ϕ

∂q
δ′
ε(ϕ)

[
μ∇ ·

( ∇ϕ

|∇ϕ|
)

− f0(ϕ)

]

−δε(ϕ)

[
μ

∂

∂q
∇ ·
( ∇ϕ

|∇ϕ|
)

− ∂f0(ϕ)

∂q

])∣∣∣∣
q=0

= φ1t − φ1δ
′
ε(φ0)

[
μ∇ ·

( ∇φ0

|∇φ0|
)

− f0(φ0)

]

− δε(φ0)

[
μ

∂

∂x

(
φ1x

|∇φ0|β − φ0xφ1x + φ0yφ1y

|∇φ0|3β
φ0x

)

+μ
∂

∂y

(
φ1y

|∇φ0|β − φ0xφ1x + φ0yφ1y

|∇φ0|3β
φ0y

)
− f ′

0(φ0)

]
,

where

δ′
ε(φ0) = ε

π

−2φ0

(ε2 + φ2
0)

2
(42)

and4

f ′
0(φ0) = −2c′

1(φ0)λ1(z − c1(φ0)) + 2c′
2(φ0)λ2(z − c2(φ0)). (43)

To obtain f ′
0(φ0), we also need to calculate

c′
1(φ0) = (

∫
	

zδε(φ0)φ1 dx dy)(
∫
	

Hε(φ0) dx dy) − (
∫
	

δε(φ0)φ1 dx dy)(
∫
	

zHε(φ0) dx dy)

(
∫
	

Hε(φ0) dx dy)2
,

(44)

c′
2(φ0) =

−(
∫
	

zδε(φ0)φ1 dx dy)(
∫
	
(1 − Hε(φ0)) dx dy) + (

∫
	

δε(φ0)φ1 dx dy)
(
∫
	

z(1 − Hε(φ0)) dx dy)

(
∫
	
(1 − Hε(φ0)) dx dy)2

, (45)

where δε(φ0) is as defined in Equation (35).
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By setting m = 1 in Equations (13) and (14), we, respectively, get
for RHAM1

φRHAM1
1 = � exp(−θ t)

∫ t

0
exp((θ − 2)τ )R1[�u0] dτ

= −�
e−2t − e−θ t

θ − 2
δε(φ0)

[
μ∇ ·

( ∇φ0

|∇φ0|
)

− f0(φ0)

]
, (46)

φRHAM1
2 = φRHAM1

1 + � exp(−θ t)
∫ t

0
exp((θ − 2)τ )R2[φ0, φRHAM1

1 ] dτ , (47)

Figure 1. Test Set-1 Example 1. From the top row to the bottom, 10%, 15% and 20% random noise has been added to
the image. For each row, the first image shows the result obtained with the TM method for the same number of iterations as
the maximum iterations used for RHAM1 and RHAM2, the second image shows the result obtained with the TM method,
and the third and the fourth images show the results obtained for RHAM1 and RHAM2.
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for RHAM2

φRHAM2
1 = �

(1 + t)

∫ t

0

1

(1 + τ)2
R1[�u0] dτ

= −�
t

(1 + t)2
δε(φ0)

[
μ∇ ·

( ∇φ0

|∇φ0|
)

− f0(φ0)

]
, (48)

φRHAM2
2 = φRHAM2

1 + �

1 + t

∫ t

0

1

(1 + τ)2 R2[φ0, φRHAM2
1 ] dτ , (49)

which can be easily found in the explicit form.
The algorithms should thus be similar to Algorithms 2 and 3.

Figure 2. Test Set-1 Example 2. From the top row to the bottom, 10%, 15% and 20% random noise has been added to
the image. For each row, the first image shows the result obtained with the TM method for the same number of iterations as
the maximum iterations used for RHAM1 and RHAM2, the second image shows the result obtained with the TM method,
and the third and the fourth images show the results obtained for RHAM1 and RHAM2.



676 B. Ghanbari et al.

5. Experimental results for the denoising and image segmentation problems using the
RHAM method

In order to illustrate the speed and accuracy of the proposed denoising and segmentation algo-
rithms, we provide experimental results with different images such as artificial, synthetic and
real image. The comparison will be with TM [38] and AOS method [50]. To measure the image
quality, the parameters SNR (the signal-to-noise ratio) and PSNR (the peak signal-to-noise ratio)
can be used.

SNR of a noisy image is a measure of how much noise is presented in the image, and the PSNR
measures how close the images are to each other. These quantities are given by the following

Figure 3. Test Set-1 Example 3. From the top row to the bottom, 10%, 15% and 20% random noise has been added to
the image. For each row, the first image shows the result obtained with the TM method for the same number of iterations as
the maximum iterations used for RHAM1 and RHAM2, the second image shows the result obtained with the TM method,
and the third and fourth images show the results obtained for RHAM1 and RHAM2.
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Figure 4. Test Set-1 Example 4. From the top row to the bottom, 10%, 15% and 20% random noise has been added to
the image. For each row, the first image shows the result obtained with the TM method for the same number of iterations as
the maximum iterations used for RHAM1 and RHAM2, the second image shows the result obtained with the TM method,
and the third and fourth images show the results obtained for RHAM1 and RHAM2.

formulas:

SNR = 10 log10

( ∑
(i,j)(ui,j)

2∑
(i,j)(ui,j − vi,j)2

)
and PSNR = 10 log10

2552

RMSE

with RMSE =
√√√√ 1

n1n2

∑
(i,j)

(ui,j − vi,j)2, (50)

where ui,j is the value of the true image at the grid point (i, j), vi,j is the value of the restored image
at the grid point (i, j), n1n2 is the total number of pixels (the smaller the SNR, the greater the
noise). Since in real applications required to measure the difference between the restored images,
using PSNR is more convenient. This is a relative measurement and can be used to compare two
different denoising processes.
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In the case of image segmentation, the relative residual has been used as an indicator of reaching
the boundaries.

5.1 Test set1: results for the denoising problem using the RHAM method

In this subsection, we test our algorithms on denoising in several images with an intensity range
[0,255] which includes real-life and artificial images. The image size shown is 256 × 256 and
parameter values β = 10−6, �t = 0.01, � = −1 and maxit = 1000 have been fixed. We repeated
the same experiments for images of size 512 × 512 and obtained the same results as concluded for
the smaller size. Different images and two types of noise, random normal and random uniform,
have been applied. In the case of random normal noise, we will show the results for 10%, 15% and
20% noise, while for the uniform noise 10%, 30% and 50% noise has been used and in both cases
the variable λ varies at 0.1, 0.05 and 0.01, respectively. Figures 1–4 show the results obtained
with the two new methods described in Algorithms 2 and 3 above in comparison with the TM

Table 1. Test Set-1 required iterations for different methods with Gaussian noise applied to the image.

Image Noise TM TM PSNR RHAM1 RHAM2 RHAMs PSNR

Lena 10 872 33.60 48 50 33.60
15 1524 31.40 63 65 31.48
20 1653 30.01 67 69 30.13

Peppers 10 1112 33.95 52 53 33.95
15 1581 31.61 65 67 31.72
20 1721 30.19 68 71 30.20

Objects 10 1415 41.52 82 88 41.52
15 1941 38.87 98 99 38.88
20 1895 36.71 85 87 36.71

Rocket 10 1308 40.72 71 75 40.80
15 1781 38.15 83 85 37.93
20 1729 36.01 78 81 36.01

Note: Required iterations for different methods (with �t = 0.01) to achieve the PSNR values obtained from RHAM1 and RHAM2 by use
of stopping criteria PSNR(un) < PSNR(un−1). The fourth column gives the PSNR reached with the TM method, while the last column
gives the maximum PSNR reached with the RHAMs.

Table 2. Test Set-1 CPU time for different methods with Gaussian noise applied to the image.

Image Noise TM TM PSNR RHAM1 RHAM2 RHAMs PSNR

Lena 10 80.42 33.60 18.01 17.16 33.60
15 120.80 31.40 21.73 22.43 31.48
20 151.04 30.01 23.46 23.68 30.13

Peppers 10 797 33.95 19.68 18.42 33.95
15 120.43 31.61 22.74 23.25 31.72
20 150.82 30.19 20.84 24.32 30.20

Objects 10 115.83 41.52 28.16 30.15 41.52
15 152.49 38.87 34.27 33.08 38.88
20 154.65 36.71 24.89 30.13 36.71

Rocket 10 111.79 40.72 24.18 26.37 40.80
15 130.68 38.15 27.86 29.35 37.93
20 114.59 36.01 27.58 27.84 36.01

Note: CPU time for different methods (with �t = 0.01) to achieve the PSNR values obtained from RHAM1 and RHAM2 by use of
stopping criteria PSNR(un) < PSNR(un−1). The fourth column gives the PSNR reached with the TM method, while the last column gives
the maximum PSNR reached with the RHAMs.
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method for Gauss white noise. Tables 1 and 2 show the comparison in terms of CPU time and
number of iterations required for those methods in the case of random noise and Tables 3 and 4
show the results in case of uniform random noise, while Table 5 shows the results obtained from
applying the AOS method for the same figures in the case of random normal noise with different
�t. From Tables 1–4 we can note a great speed increase with RHAMs in comparison with TM,
while Table 5 shows that the AOS method is slow for small �t and loses some accuracy if we
increase �t to 1. The bold numbers in the PSNR columns in Table 5 show that the PSNR of
both AOS and RHAMs has been the same, the non-bold PSNRs show the maximum that the AOS
method could achieve. In the experiments, it has been noted that when the level of noise increases,
increasing the parameter θ for RHAM1 gives better results. For this reason in cases of high noise,
we set θ = 1 instead of θ = 0.01 considered for low noise in RHAM1.

Other fast methods such as multigrid [5,40,41] can be considered for comparison. We applied
multigrid for all the images considered in Figures 1–4 and for brevity we show only one of
them (Figure 5). As shown in this figure the multigrid method gives equally good accuracy
in comparison with AOS (PSNR = 33.32) as well as a fast converge of the method in a few
v-cycles (CPU time = 20.61). On the other hand, we have to mention that the parameter β must

Table 3. Test Set-1 required iterations for different methods with uniform random distributed noise.

Image Noise TM RHAM1 RHAM2 PSNR

Lena 10 1000 41 44 36.08
30 717 719 43 24.1585
50 2441 2450 86 19.8548

Peppers 10 127 127 19 33.4051
30 784 778 45 24.2216
50 2705 2713 93 19.8986

Objects 10 216 217 26 34.0754
30 1016 1017 65 24.5201
50 2881 2881 127 20.142

Rocket 10 207 207 25 34.0573
30 950 951 59 24.5216
50 2729 2730 116 20.0786

Note: Required iterations for different methods (with �t = 0.01) to achieve the PSNR values obtained from RHAM1 and RHAM2 by use
of stopping criterion PSNR(un) < PSNR(un−1).

Table 4. Test Set-1 CPU time for different methods with uniform random distributed noise.

Image Noise TM RHAM1 RHAM2 PSNR

Lena 10 0.8268 0.9672 0.1716 33.3785
30 5.382 5.1948 0.4212 24.1585
50 19.4065 20.1553 0.8892 19.8548

Peppers 10 0.9984 1.092 0.1716 33.4051
30 5.850 5.616 0.4212 24.2216
50 20.2489 20.8105 0.7332 19.8986

Objects 10 1.6380 1.6380 0.234 34.0754
30 7.8156 8.4864 0.5460 24.5201
50 21.7309 23.1817 0.9828 20.142

Rocket 10 1.2948 1.6692 0.2496 34.0573
30 6.9888 7.8624 0.4836 24.5216
50 20.8885 22.1677 0.8736 20.0786

Note: CPU time for different methods (with �t = 0.01) to achieve the PSNR values obtained from RHAM1 and RHAM2 by use of stopping
criterion PSNR(un) < PSNR(un−1).
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Table 5. Test Set-1: AOS with Gaussian noise applied to the image to be compared with Tables 1 and 2.

�t = 0.01 �t = 0.1 �t = 1

Image Noise CPU No PSNR CPU No PSNR CPU No PSNR

Lena 10 86.04 867 33.44 9.18 91 33.36 1.32 13 33.26
15 130.26 1321 31.31 12.41 127 31.30 1.66 17 31.17
20 147.48 1484 29.93 15.21 152 29.90 1.90 18 29.84

Peppers 10 77.47 782 33.95 9.06 93 33.95 1.54 15 33.83
15 109.04 1108 31.72 12.32 125 31.72 1.87 18 31.72
20 126.31 1275 30.20 13.11 133 30.20 1.81 16 30.20

Objects 10 124.84 1264 41.46 15.24 153 41.46 41.04 109 41.04
15 205.85 2083 38.85 24.64 249 38.85 4.55 45 3824
20 226.31 2286 36.23 19.68 199 36.22 2.9 128 35.80

Rocket 10 113.17 1141 40.74 12.52 126 40.74 4.45 44 40.59
15 163.55 1646 37.87 17.05 172 37.87 3.1 31 37.68
20 163.87 1644 35.49 16.16 164 35.49 2.60 25 35.42

Notes: Required iterations for the AOS method (with �t = 0.01, 0.1 and 1) to achieve the PSNR values obtained from RHAM1 and
RHAM2. The bold numbers in the PSNR columns shows that the PSNRs of both AOS and RHAMs have been the same, the rest of
non-bold PSNRs is the maximum that the AOS method could achieve.

Figure 5. Test Set-1 Example 5. Denoising of the Lenna image with 10% random noise with multigrid. The first image
shows the relative residual, the second image shows the noisy image, the third image is the obtained denoised image with
multigrid method and the fourth image show the PSNR value for each v-cycle (colour online only).
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Table 6. Test Set-2 comparison of RHAM with TM.

CPU time No. of iterations used

�t = 0.01 TM RHAM1 RHAM2 TM RHAM1 RHAM2

Figure 6 143.07 4.74 4.75 1287 29 32
Figure 7 22.45 4.24 4.82 205 25 33
Figure 8 20.03 2.19 2.21 186 9 9
Figure 9 97.83 6.70 7.50 929 46 53
Figure 10 49.48 7.22 6.45 467 49 47

Note: Comparison for CPU time recorded and the maximum iterations needed to have a given
residual as shown in the respective picture between TM, RHAM1 and RHAM2 methods.

Figure 6. Test Set-2 Example 1. Successfully reached relative residual equal to 10−2 after 32 iterations for RHAMs and
1287 iterations for TM. (a) TM method result after 32 iterations, (b) HAM1 method result after 32 iterations, (c) HAM2
method result after 32 iterations and (d) TM method result after 1287 iterations (colour online only).
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Figure 7. Test Set-1 Example 2. Successfully reached relative residual equal to 10−3 after 33 iterations for RHAMs and
205 iterations for TM. (a) TM method result after 33 iterations, (b) HAM1 method result after 33 iterations and (c) HAM2
method result after 33 iterations (colour online only).

Figure 8. Test Set-1 Example 3. Successfully reached relative residual equal to 10−2 after 9 iterations for RHAMs and
186 iterations for TM. (a) TM method result after 9 iterations, (b) HAM1 method result after 9 iterations and (c) HAM2
method result after 9 iterations (colour online only).

Figure 9. Test Set-1 Example 4. Successfully reached relative residual equal to 10−3 after 53 iterations for RHAMs and
929 iterations for TM. (a) TM method result after 53 iterations, (b) HAM1 method result after 53 iterations and (c) HAM2
method result after 53 iterations (colour online only).

be larger than 10−2 while applying the multigrid method due to convergence. Moreover, we can
note from Table 2 that RHAM is compatible with the multigrid method by giving a better accuracy
(PSNR = 33.60) without restriction for the parameter β (for RHAM β = 10−6).

5.2 Test set2: experimental results for segmentation using the RHAM method

In the following experiments, the parameters θ , �t, μ, λ1, λ2, h (step size) and � have been
fixed as follows: θ = 1, �t = 0.01, μ = 1, λ1 = λ2 = 50, h = 1 and � = −1. The size of the
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Figure 10. Test Set-1 Example 5. Successfully reached relative residual equal to 10−3 after 47 iterations for RHAMs
and 467 iterations for TM. (a) TM method result after 47 iterations, (b) HAM1 method result after 47 iterations and
(c) HAM2 method result after 47 iterations (colour online only).

Figure 11. Test Set-1 Example 6. Successfully segmented after 59 iteration for RHAM2 and 1558 for the AOS method
to reach relative residual equal to 10−3 (colour online only).

Figure 12. Test Set-1 Example 7. Successfully segmented after 31 iteration for RHAM2 and 496 for the AOS method
to reach relative residual equal to 10−3 (colour online only).
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Table 7. Test Set-2 comparison of RHAM with AOS.

�t = 0.01 �t = 0.1 �t = 1

CPU time AOS RHAM1 AOS RHAM1 AOS RHAM1

Figure 11 593.73 22.67 47.53 10.17 13.87 2.98
Figure 12 175.00 12.05 53.03 3.03 6.32 2.50

Note: CPU time recorded for the iteration needed to have a given residual as shown in the
respective picture.

Table 8. Test Set-2 comparison of RHAM with AOS.

�t = 0.01 �t = 0.1 �t = 1

No. of iterations used AOS RHAM1 AOS RHAM1 AOS RHAM1

Figure 11 1558 59 139 39 40 4
Figure 12 496 31 152 4 17 2

Note: Maximum iterations needed to have a given residual as shown in the respective picture.

image considered in the following is n = 256 and the initial level set is placed in the centre of the
image and the radius is 50. To stop the program, the relative residual 10−2 or 10−3 has been used.
Table 6 shows the comparison between the TM method and RHAM1 and RHAM2 in CPU time
and maximum iterations needed to have the given residual as shown in each of the pictures. It can
be easily noted that both RHAM1 and RHAM2 are at least 10 times faster than the TM method.

It is well known that for the AOS method �t can be chosen sufficiently large that we get fast
convergence. In the following experiments, we show the results obtained comparing the RHAM1
with the AOS method. Figures 11 and 12 show the results obtained for �t = 0.01, while Tables 7
and 8 show the comparison between the methods for different values of �t. It can be noted that
the RHAM method is at least two times faster than the AOS method.

6. Conclusions

In this paper, we proposed a discrete RHAM to obtain numerical solutions for image denoising and
segmentation which are important in practical problems in image processing. The experimental
results show that the method is effective in giving fast solutions for denoising and segmentation,
and at the same time reliable and delivers higher PSNR values compared with other methods.
Numerical tests demonstrate that RHAM shows great speed compared with TM and is faster than
the AOS method. Our results in denoising and segmentation suggest that RHAM may be used to
potentially solve other nonlinear PDEs arising from image processing models, which will be our
future work.

Notes

1. The operator L1(u) in Equation (11) is a general case of the linear operator applied by Liao [24]
2. In this paper, we consider the most common additive noise such as random Gaussian noise with mean 0 and standard

deviation σ and uniform distributed noise
3. Without no need of solving a system.
4. f ′

0(φ0) has been calculated by the chain rule differentiation formula and c′
1 and c′

2 in Equations (44) and (45) has
been differentiated with respect to q.
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Appendix

To answer a simple question such as how does the RHAM method perform in comparison with HAM we consider two
simple examples.

Considering the following nonlinear second-order boundary value problem:

y′′3 − 6y(x) − 2x3 = 0,

y(1) = 2, y(2) = 5
2 ;

it can be found that the exact solution has the form y(x) = x + 1/x. Starting with the initial condition y0(x) = x2 − 5
2 x + 7

2 ,
it can be shown, Figure A1, that the RHAM obtained in four restarted iterations reaches a good approximation to the exact
solution.

As a second example, we consider the first-order boundary value problem:

y′ − y2(x) − 1 = 0, y(0) = 0,

with exact solution in the form y(x) = tanh(x).
Figure A2 shows the result of RHAM obtained in five restarted iterations in comparison with high-order HAM up to

10th order, for the considered initial guess y0(x) = 1 − 1/(1 + x).
Other examples have been tested and concluded that the RHAM needs only a few reinitialization iterations to reach

the same performance with high-order HAM.

http://www.math.nyu.edu/$sim $wzhu/
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Figure A1. From the top left to the right, evolution of RHAM reaches great accuracy in comparison with the exact
solution. The blue line shows the result of RHAM and the green line the exact solution. These results are the same with
HAM including more expended terms (HAM needs to be at least eighth-order expended) (colour online only).

Figure A2. From the top left to the bottom right HAM is increasing in order from 2, to 4, 8 and finally 10th, which
reaches the same accuracy as second order RHAM with 5 re-initializations for 10th order HAM. The blue line shows
the exact solution, the red line shows RHAM for m = 2 with 5 re-initializations and the black line shows HAM. (colour
online only).
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