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Abstract

Selective image segmentation is the task of extracting one object of interest from an image,
based on minimal user input. Recent level set based variational models have shown to
be e�ective and reliable, although they can be sensitive to initialization due to the mini-
mization problems being nonconvex. This sometimes means that successful segmentation
relies too heavily on user input or a solution found is only a local minimizer, i.e. not the
correct solution. The same principle applies to variational models that extract all objects
in an image (global segmentation); however, in recent years, some have been successfully
reformulated as convex optimization problems, allowing global minimizers to be found.

There are, however, problems associated with extending the convex formulation to the
current selective models, which provides the motivation for the proposal of a new selective
model. In this paper we propose a new selective segmentation model, combining ideas
from global segmentation, that can be reformulated in a convex way such that a global
minimizer can be found independently of initialization. Numerical results are given that
demonstrate its reliability in terms of removing the sensitivity to initialization present in
previous models, and its robustness to user input.

Keywords. Image processing, Variational segmentation, Level set function, Edge
detection, Convex functional, Euler-Lagrange equation, AOS.
AMS subject classi�cations. 62H35, 65N22, 68U10, 35A15, 65C20, 74G65, 74G75.

1 Introduction

An important part of Image Processing is segmentation; the task of partitioning an image
into multiple regions (each sharing certain characteristics - such as texture, intensity, shape,
colour etc.). Given an image z(x, y) in a bounded domain Ω ⊂ R2, we look for an edge Γ that
partitions Ω into regions {Ωi, i = 1, 2, ..., l} in Ω \ Γ. Within Segmentation, there is the global
approach and the local approach. Global segmentation is the task of selecting all objects in
an image based on a certain characteristic, e.g. intensity, and has been widely studied over
the last twenty years [9, 21]. Selective segmentation is when only one object, from within all
objects, is selected [1, 27].
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We consider the variational approach to these problems. Within variational segmentation
techniques two main ideas have developed: edge-based methods and region-based methods.
An important region-based method, where the idea is to achieve segmentation through an
approximation of the original image, is the Mumford-Shah functional minimization [22]; there
exists a large literature extending this work. Edge-based methods drive an evolving contour
towards edges within an image using an edge detector function. This method was originally
proposed by Kass et al. [17]; further work by Caselles et al. led to the Geodesic Active
Contours model [5]. Recently, in order to incorporate the advantages of each idea, there has
been a tendency to combine edge-based and region-based approaches [19, 5].

The requirements for a selective segmentation model are that solutions are computed quickly
and they are reliable with minimal user input. Much research has been done in recent years
on developing this idea. In 2005, Gout, Le Guyader and Vese [14] introduced geometrical
constraints to Geodesic Active Contours similar to [5] in the form of a set of points on the
contour of interest. This idea was enhanced further by Badshah and Chen [1] in 2009, by
combining this work with the region-based idea of Mumford-Shah [22] and Chan-Vese [10]. In
2011, to increase model reliability, Rada et al. [27] introduced a novel Dual Level Set Model,
where a local level set incorporates geometrical constraints similar to [14] and [1], locating an
object within a global level set. The selective model discussed in detail here is the Rada-Chen
model [28], introduced in 2012 to improve on [27] by using a single level set function, where
there is a constraint introduced on the area inside the contour. This has proven to be the most
e�ective model. Another idea of improving [1], that is not of the same type as [22], was proposed
by Badshah and Chen [2] in 2012, incorporating �tting based on coe�cient of variation.

These models, either global or selective, are nonconvex, which can lead to problems in the
form of local minima. This means that �nding the correct solution is dependent on initializa-
tion, which reduces their reliability. In recent years work has been done to reformulate global
segmentation models as convex minimization problems such that any local minimizer is a global
minimizer. The focus of this paper is to apply the convex reformulation of nonconvex global
models to selective segmentation. We remark that one of the current challenges in global seg-
mentation is reformulation into convex or relaxed models for multiphase cases [18, 15, 6, 3].
Other challenges include the idea of selective segmentation based on user input of 3-D images.
Chan-Vese has been generalized to 3-D by Zhang and Chen [31], and user input of a similar
type to [1, 28, 14] has been applied with active contours in 3-D by Le Guyader and Gout [13].
This involves the selection of points on slices of the 3-D data. Visualising objects in this way,
allowing for e�cient user input, is a di�cult problem. In relation to Rada-Chen [28], this input
would generate a polyhedron, with its volume providing a selection constraint.

The paper is organized as follows. In Section 2 the idea of global segmentation is discussed,
including brief reviews of the work of Mumford-Shah [22], Chan-Vese [10] and Chan-Esedoglu-
Nikilova [8]. This will detail how nonconvex segmentation models are reformulated as convex
minimization problems. In Section 3 selective segmentation is discussed with a review of the
most e�ective model by Rada-Chen [28]. Why this model does not �t in with the convex
reformulation idea is explained, motivating the proposal of a new model in Section 4. The
details of this model are discussed in the nonconvex setting and then reformulated as a convex
minimization problem. Details of an adjusted additive operator splitting (AOS) scheme, based
on Weickert et al. [29] and Tai. et al. [20], are also introduced. Section 5 presents results for
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both the nonconvex and convex models. Conclusions of the paper are given in Section 6.

2 Global Segmentation

In order to discuss the selective segmentation methods of interest, it is important to introduce
global variational image segmentation models. This is important for two reasons; �rstly, it will
provide the foundation for the selective models introduced and secondly, it provides the method
for minimizing the associated functionals with the introduction of Active Contours Without
Edges [10] by Chan and Vese in 2001.

2.1 The Mumford-Shah Approach

One of the most important variational image segmentation models is by Mumford and Shah
[22], introduced in 1989, and forms the basis for this work as well as many others. Let Ω be
a bounded domain in Rn and z be a bounded measurable function de�ned on Ω. Here we
consider the case where n = 2. In the piecewise constant case, the image, z, is reconstructed
as a cartoon of the original where each region, Ωi, consists of homogeneous intensity (with
i = 1, . . . , l), separated by an edge set Γ, a closed subset of Ω.

In 2001, Chan and Vese [10] introduced a particular case of the piecewise constant Mumford-
Shah functional. This was the two-phase example (l = 2), with Ω1 = in(Γ) and Ω2 = out(Γ),
which looks for the best approximation of an image z by a function u taking only 2 values,

u =

{
c1 = average of z inside Γ,
c2 = average of z outside Γ.

The length of the set Γ is given by

|Γ| =
∫

Γ
ds.

The piecewise constant two-phase Mumford-Shah (PC) functional is given as follows:

PC(Γ, c1, c2) = µ|Γ|+ λ

∫
in(Γ)

(z − c1)2 dΩ + λ

∫
out(Γ)

(z − c2)2 dΩ. (2.1)

It consists of the regularization term, |Γ|, forcing the boundary between homogeneous regions
to be as short and as smooth as possible, and the �tting terms which force the boundary to
�nd regions of homogeneous intensity. Theoretical existence and regularity of minimizers of
the PC case (2.1), with respect to Γ, are discussed in [22]. However, minimizing PC (2.1)
is problematic due to the di�culty of tracking the movement of Γ and the model was not
implemented directly until the work of [10].

2.2 The Chan-Vese Method

Active Contours Without Edges [10], by Chan and Vese, is an important milestone in variational
image segmentation. They applied the level set method to minimize the piecewise constant two-
phase Mumford-Shah functional, eqn. (2.1), and overcame the problematic tracking of Γ. Chan
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and Vese proposed to replace the unknown 1-D variable with a higher dimensional variable,
counterintuitively simplifying the problem. They applied the level set method [26], introduced
by Osher and Sethian in 1988, to (2.1). By tracking a variable of a higher dimension, where
the boundary is represented by a level set of this variable, topological changes in the boundary,
such as splitting into two or merging into one, are dealt with automatically. Formally, the
boundary Γ is represented by the zero level set of the Lipschitz function φ such that

Γ = {(x, y) ∈ Ω
∣∣ φ(x, y) = 0},

in(Γ) = {(x, y) ∈ Ω
∣∣ φ(x, y) > 0},

out(Γ) = {(x, y) ∈ Ω
∣∣ φ(x, y) < 0}.

The PC functional (2.1) is reformulated using the Heaviside function H and the Dirac delta δ
de�ned by

H(φ(x, y)) =

{
1, if φ(x, y) ≥ 0
0, if φ(x, y) < 0,

δ(φ(x, y)) = H ′(φ(x, y)).

In order to compute the associated Euler-Lagrange (EL) equation for φ we consider regularized
versions of H and δ, given as

Hε(φ) =
1

2

(
1 +

2

π
arctan

φ

ε

)
, δε(φ) =

1

επ(1 + φ2/ε2)
.

The PC functional (2.1) is then reformulated as follows:

CV (φ, c1, c2) = µ

∫
Ω
δ(φ)|∇Hε(φ)| dΩ + λ

∫
Ω

(z − c1)2Hε(φ) dΩ

+ λ

∫
Ω

(z − c2)2(1−Hε(φ)) dΩ, (2.2)

where φ(x, y) has been replaced with φ for simplicity; this notation will be continued from here.
Minimizing (2.2) with respect to the intensity constants c1 and c2 is given by:

c1(φ) =

∫
ΩHε(φ)z dΩ∫
ΩHε(φ) dΩ

, c2(φ) =

∫
Ω(1−Hε(φ))z dΩ∫
Ω(1−Hε(φ)) dΩ

. (2.3)

Then, given these constants, (2.2) is minimized with respect to φ:

min
φ
CV (φ, c1, c2) (2.4)

This leads to the EL equation{
µδε(φ)∇ ·

(
∇φ
|∇φ|

)
− λδε(φ)

(
(z − c1)2 − (z − c2)2

)
= 0 inΩ,

∂φ
∂~n = 0 on ∂Ω.

The work of Chan and Vese is important to the consideration of selective segmentation as
it provides the method to tackle segmentation problems of this type in an e�cient way. It
does however have a drawback in that it involves minimizing a nonconvex functional (2.2) over
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characteristic functions. This means that there are local minima and a computed solution may
not be correct unless the initial guess is su�ciently close to the true solution. Fortunately, by
reformulating as the minimization of a convex functional, global minimizers of the nonconvex
problem (2.4) can be found. This idea has not yet been applied to selective segmentation
models, which also have local minima.

2.3 A Global Convex Reformulation

Important to the idea of reformulating a model to be convex is why this improves the reliability
of a solution. With that in mind, the fundamental idea behind convex minimization is now
discussed brie�y in a general sense. Consider the problem of minimizing f(x) subject to x ∈ S,
given a non-empty set S. A point x ∈ S is called a feasible solution to the problem. If x̄ ∈ S
and f(x) ≥ f(x̄) for each x ∈ S, then x̄ is a global minimum. If x̄ ∈ S and there exists an
ε-neighbourhood Nε(x̄) around x̄ such that f(x) ≥ f(x̄) for each x ∈ S ∩Nε(x̄), then x̄ is called
a local minimum.

The advantage of convex minimization is that supposing x̄ is a local minimum, if f is convex
and S is a convex set, then x̄ is a global minimum. It has been shown that minimizing the
piecewise constant two-phase Mumford-Shah functional with respect to Γ can be reformulated
as a convex problem, by relaxation of the label set. We now introduce the theory behind
reformulating the functional (2.1), which we shall later apply to selective segmentation.

We consider the minimization of the piecewise constant two-phase Mumford-Shah functional
from (2.1) with respect to Γ; reformulated to the minimization problem (2.4) by Chan and Vese
[10]. Observe that

CV (φ, c1, c2) = µ

∫
Ω
δ(φ)|∇H(φ)| dΩ + λ

∫
Ω

(z − c1)2H(φ) dΩ + λ

∫
Ω

(z − c2)2(1−H(φ)) dΩ

is nonconvex due to the presence of H(φ). In 2006, Chan, Esedoglu and Nikilova [8] proposed
replacing H(φ) with u ∈ [0, 1] in (2.2), and obtained the following equivalent, convex, and
constrained minimization problem:

min
0≤u≤1

{
µ

∫
Ω
|∇u| dΩ + λ

∫
Ω

(
(z − c1)2 − (z − c2)2

)
u dΩ

}
. (2.5)

Here the constraint 0 ≤ u ≤ 1 ensures that u is a valid Heaviside function and the equivalence
to Chan-Vese is in the sense of having the same EL equation. For any �xed c1, c2 ∈ R+, a
global minimizer for CV (·, c1, c2) can be found by carrying out the convex minimization (2.5)
[8]. Once the solution u is obtained, set Σ = {(x, y) : u(x, y) ≥ γ} for γ ∈ (0, 1) and then
in terms of piecewise-constant two-phase Mumford-Shah, Γ = ∂Σ. As remarked, the convex
problem (2.5) will �nd a global minimizer independently of the initial guess for u.

3 The Selective Segmentation Problem and Recent Models

The task of extracting only one object from an image is a challenging problem within segmen-
tation with applications in a number of areas, such as automated object detection in security
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monitoring and feature selection in medical imaging. Within medical applications, advances in
this subject can improve quantitative diagnosis, help monitor treatment over time and improve
pre-operative planning.

Here, on image z, we assume the availability of n1(≥ 3) points inside the target object
that form a set A = {wi = (x∗i , y

∗
i ) ∈ Ω, 1 ≤ i ≤ n1} that de�nes a polygon. A common

misconception is that if A is available any global, nonconvex model (such as [10]) can solve the
selective segmentation problem if one places the initial contour of φ near A. Indeed, this is true
for some simple and designed images where features in an image are distinct, but in general
this idea does not lead to a useful method for selective segmentation. We also remark that
our problem setting is not the same as that of using seeds for fuzzy membership approaches
[24, 32]. One model recently proposed by Nguyen et al. [25] attempts another kind of selective
segmentation in a similar way and works with a marker set A and another `anti-marker' set B
which contains points not within the object to be extracted. It uses an edge detector and a
probability map, based on user input, but its results tend to be too dependent on user input.

In order for a selective method to be suitable in this context, it is imperative that a model
requires minimal user input and is reliable. Recent developments in the subject include Gout
et al. [14], Badshah-Chen [1] and Rada et al. [27], which include region, edge and geometrical
constraints. The geometrical constraints are used to modify the regularization term by a
distance function, for instance the following used in [1],

d(x, y) = distance((x, y),A) =

n1∏
i=1

(
1− e

−
(x− x∗i )2

2κ2 e
−

(y − y∗i )2

2κ2

)
, ∀(x, y) ∈ Ω, (3.1)

where κ is a positive constant. Alternative distance functions are also possible. It is also
possible to alter the regularization term with the addition of an edge detector (as in [5]), where
the strength of detection is adjusted by a parameter, β:

g(|∇z|) =
1

1 + β|∇z|2
. (3.2)

These additions modify the regularization term [27, 1] to be:∫
Γ
d · g ds.

Of the selective models studied, two e�ective models capable of segmenting a wide range
of examples in a robust way are by Rada-Chen [28] (based on area constraints) and Badshah-
Chen [2] (based on non-L2 �tting). Here "robust" means that correct segmentations have been
obtained as long as the initial contour is strictly inside the object to be extracted.

As with Chan-Vese, these selective models are nonconvex. This means that the models
can �nd local minima, depending on the initialization of the contour (which are associated
with initial contours not strictly within the object to be extracted). This lack of convexity is
problematic for a selective segmentation model as reliability and consistency are key in possible
applications.

Our intention is to introduce a new nonconvex selective model and reformulate it as a
convex minimization problem, in order to compute the original model's global minimizer. Our
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candidates are Rada-Chen [28] and Badshah-Chen [2]. The �tting terms of [2] are based on the
coe�cient of variation rather than the mean intensity, used in [22, 10]. The convex reformulation
idea from Chan et al. [8] was applied to mean intensity �tting terms, so we intend to focus on
Rada-Chen [28] (which also uses mean intensity). Also, the geometrical constraints (3.1) used
in [2] can sometimes be too weak based on simple user input, whereas Rada-Chen [28] is less
sensitive to the choice of A. The area constraint of Rada-Chen [28] is an addition to Chan-Vese
[10], but is also unsuitable for the convex reformulation. We intend to discuss the reasons for
the lack of suitability in further detail. We provide important details of Rada-Chen [28] below,
to demonstrate why the convex reformulation fails here.

From the polygon formed by the marker set A, denote by A1 and A2 respectively the area
inside and outside the polygon. The Rada-Chen model [28] makes use of A1 and A2 to achieve
selective segmentation. The initial contour starts from a polygon inside the object and the
additional terms restrict the area inside Γ from growing larger than the target object (and
therefore outside the object boundary). It also incorporates the edge detector (3.2) into the
regularization term. We denote the weighted regularization term as

|Γ|g =

∫
Γ
g(|∇z|) ds.

These additions to the piecewise-constant two-phase Mumford-Shah functional (2.1) give us
the following energy for selective segmentation:

RC(Γ, c1, c2) =µ|Γ|g + λ

∫
in(Γ)

(z − c1)2 dx dy + λ

∫
out(Γ)

(z − c2)2 dx dy

+
θ

2

[(∫
in(Γ)

dξ dη −A1

)2

+

(∫
out(Γ)

dξ dη −A2

)2]
. (3.3)

Using the level set formulation, this energy (3.3) becomes [28]:

RC(φ, c1, c2) =µ

∫
Ω
g(|∇z|)δ(φ)|∇H(φ)| dx dy

+ λ

∫
Ω

(z − c1)2H(φ) dx dy + λ

∫
Ω

(z − c2)2
(
1−H(φ)

)
dx dy

+
θ

2

[(∫
Ω
H(φ) dξ dη −A1

)2

+

(∫
Ω

(
1−H(φ)

)
dξ dη −A2

)2]
. (3.4)

The energy is minimized successively with respect to the intensity constants, c1 and c2 given
by (2.3), and φ. The nonconvex problem of minimizing (3.4) with respect to φ,

min
φ
RC(φ, c1, c2) (3.5)

leads to the EL equation, where g = g(|∇z|),{
µδε(φ)∇ ·

(
g ∇φ|∇φ|

)
+ f = 0 inΩ,

∂φ
∂~n = 0 on ∂Ω,

(3.6)
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and f = −λδε(φ)

{
(z − c1)2 − (z − c2)2

}

− θδε(φ
{(∫

Ω
Hε(φ) dΩ −A1

)
−
(∫

Ω
(1−Hε(φ) dΩ−A2

)}
.

Solving (3.6) can be done with the introduction of an arti�cial time step and using the gradient
descent method:

∂φ

∂t
= µδε(φ)∇ ·

(
g
∇φ
|∇φ|

)
+ f.

We now discuss the possibility of reformulating (3.5) into a convex minimization problem.
There are two reasons which mean this is not possible, which have to be considered for the
proposal of an appropriate model. Firstly, the additional terms, based on A1 and A2, only
incorporate the area of the object into the functional (3.4). This means that information
about the location of the object is provided by the initialization. Clearly, convex reformulation
where a global minimizer is found independently of initialization is not feasible in this case.
Secondly, the method of convex reformulation of Chan et al. [8] introduced above requires
linearity in H(φ), in the �tting term of (3.4). The area constraint of Rada-Chen [28] violates
this condition. This provides the two main considerations in proposing a new selective model,
suitable for convex reformulation, which we detail next.

4 The Proposed Model

In the following is the introduction of our new model that �ts in with the idea of being refor-
mulated as a convex minimization problem and is broadly speaking analogous to Rada-Chen
[28]. It uses the same user input as [28], whilst instead of penalizing the area inside the contour
from growing too much, it penalizes the contour from moving further away from the polygon,
a set of points denoted by P, formed by the user input set, A. The new constraint is linear in
the indicator function and includes locational information of the target object, consistent with
the idea of convex reformulation.

4.1 A New Nonconvex Selective Model

The proposed nonconvex model, to be called Distance Selective Segmentation (DSS), has a
di�erent area �tting term than Rada-Chen [28]. The function Pd(x, y) is the normalized Eu-
clidean distance of each point (x, y) ∈ Ω from its nearest point in the polygon, made up of
(xp, yp) ∈ P, constructed from the user input set, A:

P0(x, y) =
√

(x− xp)2 + (y − yp)2,

Pd(x, y) =
P0(x, y)

||P0||L∞
. (4.1)
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The DSS functional is then de�ned as:

DSS(Γ, c1, c2) =µ|Γ|g + θ

∫
in(Γ)

Pd(x, y) dΩ

+ λ

∫
in(Γ)

(z − c1)2 dΩ + λ

∫
out(Γ)

(z − c2)2 dΩ. (4.2)

Here, we have the regularization and �tting terms from the piecewise constant two-phase
Mumford-Shah functional (2.1) with the addition of a new distance �tting term, normalized
so that Pd(x, y) ∈ [0, 1]. For (x, y) ∈ P, Pd(x, y) = 0 and (4.2) reduces to (2.1), except the
regularization term is weighted by an edge detector function (3.2) as in [4, 28]. Introducing the
level set formulation, (4.2) reduces to the following model:

min
φ,c1,c2

{
DSSLS(φ, c1, c2) =µ

∫
Ω
δε(φ)g|∇φ| + θ

∫
Ω
Hε(φ)Pd dΩ

+ λ

∫
Ω
Hε(φ)(z − c1)2 dΩ + λ

∫
Ω

(1−Hε(φ))(z − c2)2 dΩ

}
, (4.3)

Here, if the area parameter, θ, is too strong the �nal result will just be the polygon P which
of course is undesirable. The idea behind the Pd term is that it encourages H(φ) ∈ Ω \ P to
be 0, enforced more strictly the further from the object of interest a point is. The motivation
behind this new model is that it �ts in with the idea of convex reformulation.

But it is important to clarify whether the idea behind this segmentation model, i.e. the
distance constraint, works as it is. The answer is yes. Comparisons of (4.3) with Rada-Chen
[28] are made for three examples and shown in Figures 1-2 of Section 5.1. There, one clearly
observes that the two sets of segmentation results are successful. That is, (4.3) is a valid
selective segmentation in its own right. In the third example, where the initial guess is altered,
both results are unsuccessful as local minima have been found. We look to correct this fault in
DSS (4.3) by convexi�cation of the model.

4.2 A Selective Convex Reformulation

We now present details for the convex reformulation of (4.3). As in [8] the DSSLS energy can
be made convex by making the adjustment Hε(φ) → u ∈ [0, 1] to give the Convex Distance
Selective Segmentation (CDSS) functional:

CDSS(u, c1, c2) = µ

∫
Ω
|∇u|g dΩ + λ

∫
Ω
ru dΩ + θ

∫
Ω
Pdu dΩ (4.4)

where r = (z − c1)2 − (z − c2)2 and |∇u|g = g(|∇z|)|∇u|. Given initial values for c1 and c2,
based on the set A, our model consists of the following constrained minimization problem:

min
0≤u≤1

CDSS(u, c1, c2). (4.5)

De�ne Σ = {(x, y) : u(x, y) ≥ γ} for γ ∈ (0, 1). Following the work of Chan et al. [8], we can
demonstrate that a minimizer for DSS (4.3) is given by (4.5). Using the Coarea formula [11],
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for the �rst term, the weighted total variation (TV) norm, in (4.2), we get∫
Ω
|∇u|g dΩ =

∫ 1

0
g(|∇z|)Per

(
{(x, y) : u(x, y) ≥ γ}; Ω

)
dγ

=

∫ 1

0
g(|∇z|)Per

(
Σ(γ); Ω

)
dγ =

∫ 1

0
|Γ|g dγ. (4.6)

For the remaining terms in (4.2) we �rst need to introduce a de�nition. Let u be a non-negative,
real-valued, measurable function on Ω. Then with χ a characteristic function,

u(x) =

∫ ∞
0

χu(x)>t dt.

For the �rst �tting term, as u ∈ [0, 1], we have∫
Ω

(z − c1)2u dΩ =

∫
Ω

(z − c1)2

∫ 1

0
χΣ(γ) dγ dΩ =

∫ 1

0

∫
Ω

(z − c1)2χΣ(γ) dΩ dγ

=

∫ 1

0

∫
Σ(γ)

(z − c1)2 dΩ dγ, (4.7)

and for the other two terms, similarly, we have∫
Ω

(z − c2)2u dΩ =

∫ 1

0

∫
Σ(γ)

(z − c2)2 dΩ dγ = C −
∫ 1

0

∫
Ω\Σ(γ)

(z − c2)2 dΩ dγ, (4.8)∫
Ω
Pdu dΩ =

∫ 1

0

∫
Σ(γ)

Pd dΩ dγ, (4.9)

where C =
∫

Ω(z − c2)2 dΩ and is independent of u. Combining equations (4.6)-(4.9):

CDSS(u, c1, c2) =

∫ 1

0

{
|Γ|g + λ

∫
Σ(γ)

(z − c1)2 dΩ

+ λ

∫
Ω\Σ(γ)

(z − c2)2 dΩ + θ

∫
Σ(γ)

Pd dΩ

}
dγ − C

=

∫ 1

0
DSS(Γ, c1, c2) dγ − C.

Since C is independent of u, it follows that if u is a minimizer of CDSS(·, c1, c2) then for
γ ∈ (0, 1) the set Γ = Σ(γ) is a minimizer of DSS(·, c1, c2). However, the convex minimization
problem (4.5) will provide us with the ability to �nd a global minimizer, independently of
initialization.

4.3 Unconstrained Minimization

The constrained minimization problem (4.5) can be replaced by an unconstrained one:

min
u

{
CDSS(u, c1, c2) = µ

∫
Ω
|∇u|g dΩ +

∫
Ω
ru dΩ + θ

∫
Ω
Pdu dΩ + α

∫
Ω
ν(u) dΩ

}
10



where ν(u) = max{0, 2|u− 1/2| − 1} is an exact penalty term [16], provided that
α > 1

2 ||λr+θPd||L∞ (see a proof in [8] for a related problem). In order to compute the associated
EL equation for u we introduce a regularized version of the penalty function, ν(u):

νε1(u) = Hε1

(√
(2u− 1)2 + ε1 − 1

)[√
(2u− 1)2 + ε1 − 1

]
,

where Hε1(x) = 1
2

(
1 + 2

π arctan x
ε1

)
. Then we get the following EL equation for u:{

µ∇ ·
(
g ∇u|∇u|

)
− λr − θPd − αν ′ε1 = 0 inΩ,

∂u
∂~n = 0 on ∂Ω.

(4.10)

To minimize for the intensity values, we use the following equations:

c1(u) =

∫
Ω uz dΩ∫
Ω u dΩ

, c2(u) =

∫
Ω(1− u)z dΩ∫
Ω(1− u) dΩ

. (4.11)

4.4 Numerical Aspects

Equation (4.10) can be solved by the gradient descent method by solving the following:

∂u

∂t
= µ∇ ·

(
g∇u
|∇u|

)
−λr − θPd − αν ′ε1︸ ︷︷ ︸

f

. (4.12)

One option to solve (4.12) is an explicit scheme, which is computationally cheap but stability
conditions often lead to a very restricted time step, τ . The resulting system of equations from
a semi-implicit scheme is laborious to solve. This means that neither method is suitable for
a model where computational speed is required. Instead we apply the semi-implicit additive
operator splitting (AOS) proposed by [20, 29]. To avoid singularities we replace |∇u| with
|∇u|ε2 =

√
u2
x + u2

y + ε2 for small ε2, and denote W = g
|∇u|ε2

. Freezing W linearizes the

equation and (4.12) can be rewritten in the form:

∂u

∂t
= µ

(
∂x(W∂xu) + ∂y(W∂yu)

)
+ f

After discretization rewrite in the matrix-vector form (ûn = un + τf):

un+1 =
1

2

2∑
`=1

(
I − 2τµA`(u

n)
)−1

ûn. (4.13)

Here, A` is the di�usion quantity in the ` direction (` = 1, 2 for x and y directions respectively)
and was derived using the �nite di�erence method, τ is the time step size and n denotes the
nth iteration. The matrices A` are given as follows, where Wn

ij = W (unij), and hx and hy are

11



the grid sizes in the x and y directions respectively:(
A1(un)un+1

)
i,j

=
(
∂x
(
Wn∂xu

n+1
))

i,j

=
1

hx

(
Wn
i+1/2,j

(
∂xu

n+1
)
i+1/2,j

−Wn
i−1/2,j

(
∂xu

n+1
)
i−1/2,j

)
=

1

hx

(
Wn
i+1,j +Wn

i,j

2

(
un+1
i+1,j − u

n+1
i,j

hx

)
−
Wn
i,j +Wn

i−1,j

2

(
un+1
i,j − u

n+1
i−1,j

hx

))
=un+1

i+1,j

(
Wn
i+1,j +Wn

i,j

2h2
x

)
+ un+1

i−1,j

(
Wn
i−1,j +Wn

i,j

2h2
x

)
− un+1

i,j

(
Wn
i+1,j +Wn

i−1,j + 2Wn
i,j

2h2
x

)
and similarly,(
A2(un)un+1

)
i,j

=
(
∂y
(
Wn∂yu

n+1
))

i,j
=un+1

i,j+1

(
Wn
i,j+1 +Wn

i,j

2h2
y

)
+ un+1

i,j−1

(
Wn
i,j−1 +Wn

i,j

2h2
y

)
− un+1

i,j

(
Wn
i,j+1 +Wn

i,j−1 + 2Wn
i,j

2h2
y

)
.

The bene�ts of this method are that at each iteration the solution to two tridiagonal linear
systems is required, which can be computed e�ciently with the Thomas Algorithm [29, pp.5-6].
However, the original AOS method described above generally assumes f is not dependent on
u. Actually, in our case, the term ν ′ε(u) in f does depend on u, which can lead to stability
restrictions in practice. This prompts us to consider an extension of the original AOS, to
improve performance and ensure stability of the scheme.

4.4.1 An Improved AOS Method

The changes in f in (4.12) between iterations result in stability restrictions on τ . The shape of
ν ′ε(u) means that changes are problematic near u = 0 and u = 1, as small changes in u produce
large changes in f . In order to overcome this, we de�ne an interval Iς , where we adjust the
equation based on the linear part of ν ′ε(u) and the di�erence in u between iterations. This
minimizes the changes in f from n to n + 1. We will demonstrate the adjustments made by
�rst looking at the equation in the x-direction, ` = 1 (similar for the y-direction, ` = 2), for
the original AOS scheme [29], that we will call AOS0 from here. Denoting
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f̄n = −ταν ′ε(un)− τ(θPd + λr):

∂u1

∂t
= µ∇ ·

(
∇un+1

1

|∇un1 |ε2

)
+
f

2

un+1
1 − un1

2τ
= µ∇ ·

(
∇un+1

1

|∇un1 |ε2

)
+
f

2

un+1
1 = un1 + 2τµ∇ ·

(
∇un+1

1

|∇un1 |ε2

)
+ f̄n

(I − 2τµA(un1 ))un+1
1 = un1 + f̄n

un+1
1 = (I − 2τµA(un1 ))−1︸ ︷︷ ︸

Q0

(un1 + f̄n︸︷︷︸
f0

). (4.14)

We make an adjustment to the equation based on the Taylor expansion of ν ′ε(u) at u = 0;
ν ′ε(u) = a0 + b0u + O(u2), and at u = 1; ν ′ε(u) = a1 + b1u + O(u2). Note that b0 = b1, so we
call the �rst order coe�cient b from here. This allows us to approximate ν ′ε(u) in an interval,
Iς , with a linear function, bu. The interval is,

Iς := [0− ς, 0 + ς] ∪ [1− ς, 1 + ς].

Denote a binary function, b̃n given by:

b̃nij =

{
b, if unij ∈ Iς
0, elsewhere.

Then, with B̃n = diag(ταb̃n), we can adjust (4.14) as follows:

un+1
1 = un1 + 2τµ∇ ·

(
∇un+1

1

|∇un1 |ε2

)
− ταb̃nun+1

1 + ταb̃nun1 + f̄n(
I + B̃n − 2τµA1(un1 )

)
un+1

1 = un1 + ταb̃nun1 + f̄n

un+1
1 =

(
I + B̃n − 2τµA1(un1 )

)−1

︸ ︷︷ ︸
Q1

(un1 + ταb̃un1 + f̄n)︸ ︷︷ ︸
f1

. (4.15)

This scheme improves the performance of AOS0 because the changes in f1 (4.15) between
iterations is limited, compared to f0 (4.14). The addition of ταb̃nun1 − ταb̃nu

n+1
1 has the e�ect

of approximating the change in ν ′ε1 between n and n+1, in Iς . We call the above scheme AOS1

(4.15) from here. In Weickert et al. [29] conditions for a discrete scale space were provided,
required for convergence. The conditions for Q(un) = (qij(u

n)) are as follows, where N is
number of pixels and J := {1, ..., N}:

(D1) Continuity in its argument:
Q ∈ C(RN ,RN×N )

(D2) Symmetry:
qij = qji, ∀i, j ∈ J
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(D3) Unit row sum: ∑
j∈J

qij = 1, ∀i ∈ J

(D4) Nonnegativity:
qij ≥ 0, ∀i, j ∈ J

(D5) Positive diagonal:
qii > 0, ∀i ∈ J

(D6) Irreducibility:

For any i, j ∈ J there exist k0, ..., kr ∈ J with k0 = i and kr = j

such that qkpkp+1 6= 0 for p = 0, ..., r − 1.

The matrix Q1 (4.15) does not ful�l this criteria, speci�cally (D2) Symmetry and (D3) Unit
row sum. In order to satisfy these conditions, we must �rst make the following adjustment,
compared to (4.15). Again, we only consider the x-direction here:

un+1
1 = un1 + 2τµ∇ ·

(
∇un+1

1

|∇un1 |ε2

)
− ταb̃nun+1

1 + ταb̃nun1 − f̄n(
(I + B̃n)− 2τµA1(un1 )

)
un+1

1 = (I + B̃n)un1 + f̄n

un+1
1 =

(
I − 2τµ(I + B̃n)−1A1(un1 )

)−1

︸ ︷︷ ︸
Q2

(un1 + (I + B̃n)−1f̄n)︸ ︷︷ ︸
f2

.

(4.16)

Depending on the choice of ς, there is unit row sum and symmetry in Q2 (4.16). By increasing
ς, such that b̃ = b, (D2) and (D3) are ful�lled for AOS2. As u ∈ [0, 1], ς = 0.5 is enough to
ensure this. This adjustment consists of multiplying τ by a scalar, dependent on b and α. This
can be interpreted as automatically setting the time step to τ̃ :

τ̃ =
τ

1 + ταb
. (4.17)

This restricts the size of time step based on the prominence of the penalty function, dictated
by the size of α, and represented by b. We will present results for AOS0, AOS1 and AOS2 in
Section 5. For the schemes above (AOS0, AOS1, AOS2), as before, the corresponding equation
for un+1

2 is solved and then the complete update is given by:

un+1 =
un+1

1 + un+1
2

2
.

4.4.2 The New Algorithm

The algorithm computes a solution for a sequence of alternating minimization problems. For
each �xed c1 and c2 we have a new minimization problem, which is solved using AOS0, AOS1

or AOS2. The �nal solution, when c1 and c2 have converged, is denoted u∗.
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Algorithm AOS method for CDSS

1: Set µ, θ. Calculate g and Pd using (3.2) and (4.1) respectively.
2: Initialize u(0) such that Γ is the boundary of P.
3: for k ← 1 : maxit do
4: Calculate c

(k)
1 (u(k−1)) and c

(k)
2 (u(k−1)) using (4.11)

5: Calculate r
(k)
p = λ

(
(z − c(k)

1 )2 − (z − c(k)
2 )2

)
+ θPd.

6: Set α(k) = ||r(k)
p ||L∞ .

7: u(k) ← minuCDSS
(
c

(k)
1 , c

(k)
2 , α(k)

)
using AOS scheme.

8: end for

9: u∗ ← u(k).

5 Experimental Results

This section will show three sets of experiments to test the e�ectiveness of our new algorithms
and to compare them with the existing model. In the following we select the parameters as
follows. We have found that setting ε1 = 10−2 produces a tight approximation of ν(u). We
�x the penalty parameter at α = ||λr+ θPd||L∞ , which is enough to enforce the constraint [8].
We set the time step at τ = 10−2 and ς = 0.1, except in Test Set 3, where they are varied to
demonstrate the bene�ts of the improved AOS method. The only restriction on ε2 is that it is
small; we select it as ε2 = 10−6. We have to consider the balance between the regularization
and �tting term, which will change for each problem. Here we set λ = 1 and vary µ for each
problem, depending on the shape and smoothness of the boundary of the desired object. It
might be worth considering the work of Mylona et al. [23] who automatically optimize these
parameters based on image information. The following tests use only three points input by the
user, i.e. n1 = 3. The model is capable of achieving the desired result with a simple shape
within the target, even for awkwardly shaped targets as seen in Figs. 3 and 4. The resilience
to these selections is discussed further in 5.2. This leaves the main choice for a successful
segmentation as the distance selection parameter, θ. In these tests, it varies between 1 and
4.5. The basis for this choice is the size of the target object and its proximity to other image
features of similar intensity, and can be intuitively selected quite reliably.

In Test Set 1 results are presented for the proposed nonconvex Distance Selective Segmen-
tation (DSS) model and compared to the successful Rada-Chen model [28], demonstrating its
robustness in di�cult cases, whilst underlining the need for the convex reformulation. In Test
Set 2, results are presented for the Convex Distance Selective Segmentation (CDSS) model,
demonstrating its success in segmentation of a range of examples independently of initialization
and its robustness to user input. Test Set 3 demonstrates quantitative improvement of the new
AOS method, in relation to one example. All images tested are of size 128x128.

5.1 Test Set 1 � comparisons of two nonconvex models

In Fig. 1 results are presented for three examples for Rada-Chen [28] and in Fig. 2 the same
examples are presented for DSS. Results demonstrate that the new model can also produce
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Figure 1: Results for Rada-Chen [28], for three test problems (given by rows 1-3). From left to
right: initialization (with user input set A), �nal contour, object selected

the successful results of Rada-Chen [28], whilst both models are sensitive to initialization, as
evident in row 3 of each �gure. The nature of the failure in each case is due to �nding a local
minimum, as is possible for the nonconvex formulation. This is evident from the fact that the
user input set, A, is the same for rows 2 and 3 whilst the initializations are di�erent, and one
case fails where as the other succeeds. This provides the motivation for convexifying the energy
in the DSS case, as this cause of failure is removed.

5.2 Test Set 2 � demonstration of independence of initialization of CDSS

In Fig. 3 results for CDSS are presented for three examples. The function is initialized as the
given image, with successful segmentation in each case. In Figs. 4 and 5 the same object is
selected, with di�erent user input for each. The solution (ground truth) is given by an ideal
user input set, A∗, which is the shape of the target object and would require n1 to be large.
This is not feasible in practice, as it essentially consists of a manual segmentation. We intend
to demonstrate that an acceptable approximation of the solution can be achieved with only
three points (n1 = 3), even when segmenting a di�cult shape. We have two choices of user
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Figure 2: Results for DSS, for three test problems (given by rows 1-3). From left to right:
initialization (with user input set A), �nal contour, object selected

input, A4 from Fig. 4 and A5 from Figure 5. Whilst A5 is close to the boundary of the target
(and closer to the ideal user input, A∗), A4 is a more interior selection. These produce slightly
di�erent results, but both are acceptable. This demonstrates that even with a simple user
input far from the ideal, such as A4, we get an acceptable result. A more appropriate user
input (i.e. closer to the ideal), such as A5, produces a better result, but still only requires
three points. One observes that the initializations were deliberately chosen to be not within
the object intended (which would fail with all other nonconvex models) and yet CDSS "knows"
where the intended object is and �nds it correctly. These examples demonstrate the robustness
of the model; successful segmentation is possible for a wide range of user input.

5.3 Test Set 3 � demonstration of e�ectiveness of the new AOS algorithm

In Fig. 6 the residual is shown for AOS0 for two di�erent time steps; τ = 10−2 and τ = 10−3. It
demonstrates that for a stable convergence, the time step is limited to τ = 10−3. In Fig. 7 the
residual is shown for AOS1 for τ = 10−2 for two di�erent choices of the restriction parameter;
ς = 0.01 and ς = 0.1. It demonstrates that the improved AOS (AOS1) can achieve stable
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Figure 3: Results for CDSS, for three test problems (given by rows 1-3). From left to right:
initialization (with user input set A), �nal contour, object selected.

convergence for a higher time step than original AOS (AOS0), for an appropriate selection of ς.
In Fig. 8 the residual is shown for AOS1 for τ = 10−1 for two di�erent choices of the restriction
parameter; ς = 0.1 and ς = 0.5. It demonstrates that the improved AOS (AOS1) can achieve
stable convergence for higher time steps, depending on the selection of ς. We have found that
the fastest stable convergence is for τ = 10−2, ς = 0.1.

In Fig. 9 the residual is shown for AOS2 for τ = 1 for two di�erent choices of the restriction
parameter; ς = 0.1 and ς = 0.5. It demonstrates that AOS2 can achieve stable convergence
for a higher time step than AOS0 and AOS1, for an appropriate selection of ς, i.e. b̃ = b.
This scheme (AOS2) complies with the discrete scale space conditions [29] for ς = 0.5, and
has stable convergence for large time steps. It can be seen as a variable time step, given by τ̃
(4.17), dependent on the contribution of the penalty term.

Further improvements in the computational speed of minimizing CDSS can be explored
by applying recent optimization techniques, developed to e�ciently solve convex optimization
problems in imaging. These include the Split Bregman method, applied to convex segmentation
problems by Goldstein et al. [12]; Chambolle et al. [7] introduced a fast primal dual algorithm
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Figure 4: User input set 1 for CDSS. From left to right, top to bottom: initialization, Pd
function (with user input set A4), �nal contour, object selected.

applicable to convex segmentation; and Yuan et al. [30] introduced a max �ow based algorithm
for binary labelling problems. These methods would further improve the results for CDSS, in
terms of computational e�ciency.

6 Conclusions

In this paper we discussed the drawbacks of current selective segmentation models and proposed
a new model where a global minimizer can be found independently of initialization. The results
presented show that the proposed model is reliable and e�cient in a wide range of examples and
is not sensitive to user input. We have also introduced improvements to the AOS scheme used in
previous selection models [1, 2, 27, 28], based on the Taylor expansion of our proposed penalty
function. These demonstrate improved reliability, and an improvement in computational speed.
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Figure 5: User input set 2 for CDSS. From left to right, top to bottom: initialization, Pd
function (with user input set A5), �nal contour, object selected.
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