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Single Object By Active Surfaces

Jianping Zhang∗, Ke Chen†, and Derek A. Gould‡

Abstract

Segmentation is an important problem in various applications. There exist many effective
models designed to locate all features and their boundaries in an image. However such global
models are not suitable for automatically detecting a single object among many objects of an
image, because nearby objects are often selected as well. Several recent works can provide selective
segmentation capability but unfortunately when generalized to three dimensions, they are not yet
effective or efficient. This paper presents a selective segmentation model which is inherently suited
for efficient implementation. With the added solver by a fast nonlinear multigrid method for the
inside domain of a zero level set function, the over methodology leads to an effective and efficient
algorithm for 3D selective segmentation. Numerical experiments show that our model can produce
efficient results in terms of segmentation quality and reliability for a large class of 3D images.
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1 Introduction

Segmentation is an important task in image analysis and computer vision, aiming to partition a

given image into a finite number of semantically important regions such as homogenous regions

or structures. This paper is particularly concerned with modeling and fast algorithms for local

segmentation or extraction of a single region in an image.

Although local segmentation is less studied than and is quite different from the usual global

segmentation, they are intrinsically linked. Among other techniques, two problems can be solved by

variational methods using global optimization ideas as increasingly used to detect objects in the past

two decades (due to their robustness and reliability). As demonstrated shortly, global models must

be modified fundamentally in order to solve local segmentation problems.
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The early variational segmentation techniques for global segmentation can be subdivided into two

major categories: the edge detector based contour methods [6, 5, 12, 13, 14, 27, 32] and the region

based methods [7, 8, 9, 18, 37, 43, 48, 52]. The general edge-based active contour model based on

energy minimization, first proposed in 1998 by [32], detects an image contour and is later generalized

to 3D segmentation by [50]; for similar works refer to [21, 49]. A major disadvantage is the inflexibility

to handle changes in the topology of evolving contours during the deformation. Overcoming these

drawbacks, some improved edge-based geodesic models are proposed in [13, 39, 14, 23, 54, 22].

The Mumford and Shah [43] (M-S) model provides the most influential region based method for

global segmentation but it cannot be implemented directly and generally. Ambrosio and Tortorelli [4]

approximated the M-S method and provided a more solvable model. Shen [46] studied a special case of

[4]. Further studies [16, 38, 31] enhanced the M-S model to segment images with textures and strong

noise. The Chan and Vese [18] method (C-V) is a special and effective implementation of the M-S

model, making use of a level set function for the case of two phases with two approximating piecewise

constants. This paper will propose a model closely related to C-V. Refer also to [18, 51]. Vese and

Chan [17] extended the C-V two-phase model [18] to multiphases [52]. Zhu and Yuille [56] proposed a

statistical variational approach which combined the geometrical features of a snake/balloon model and

the statistical techniques of region growing. The segmentation of images with intensity inhomogeneity

can be found in works of [17, 51]. Another useful class of multiphase global segmentation models is

the piecewise constant level method of Tai et al. [48, 28] which only needs a single level set function

to represent multiple phases. While gradient descent methods have been most widely used, fast and

reliable algorithms for some of these models have been proposed in [7, 8, 30, 48]. General modeling

frameworks aimed to unify variational models can be found in Mory [42]. There has been a large

literature on texture segmentation; see e.g. [55, 42].

However, the division of edge based and region based models is not clearly defined. In fact,

various recent and interesting developments in segmentation, of mixed type, are more effective than

before: edge based models making use of level set functions to handle topology changes and region

based models enhanced with edge detector functions to allow more geometry control. See [34, 13].

The above models, though exciting, aim to segment all objects in an image and cannot in general

segment a specific object (which is the topic of this paper). To accurately extract a single object

from an image with multi-objects, this is a new segmentation task, different from the usual global

segmentation. Varying the initial contour is not always a good solution. There exist some selective

models for local segmentation. Lankton et al. [33] use a local ball at each point along the contour

to capture local intensity variation in regions of zero level sets, operating only on local image infor-

mation. Similar works are also found in [10, 24, 36, 41, 47]. Badshah and Chen [9] (BC) proposed a

segmentation model based on combining geodesic active contours and global image intensity fitting
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for solving the 2D selective problem, improving the work of Gout et al. [27] especially for noisy

images. This BC model is effective and can detect objects correctly for segmenting a class of 2D

images. Improving on the BC work, Rada and Chen [45] proposed a robust dual level set model to

overcome spurious solutions for some hard examples. Although these existing models may be further

refined to increase their capabilities, our preliminary tests show that a generalized 3D version of the

BC model is not effective or unfeasible since the generalized model can easily detect nearby objects

for some examples. The idea of this work differs from [45]. We remark that one recent trend in global

segmentation is reformulation of nonconvex models (of M-S type) as convex ones [15, 11]; however

the idea is not yet ready for local segmentation as it remains to address effective ways to feed local

information into a convex formulation which has the same solution from any initial guess.

In this paper, we present an adaptively active surface approach to extract a single 3D object

among many objects. The minimizing energy functional is based on local image features. Our model

constructs a polyhedral surface as an initial solution based on the user-supplied marker sets and the

surface is evolved to give the final surface of a desired object. The rest of this paper is organized

as follows. In Section 2, we review a single object extraction model of Badshah and Chen [9] for

2D case, before discussion of some existing 3D image segmentation models and their limitations. In

Section 3, we first present our 3D selective segmentation model to improve the directly generalized

BC model. Then, we present several important components of our method. In Section 4, we present

some numerical experiments to highlight the advantages and robustness of our new adaptive 3D

algorithm. We conclude the study in Section 5.

2 Review of some existing models

To proceed, define a 3D gray level image by f : Ω → R+, where Ω ⊂ R3 is an open and bounded

set. As usual we take Ω = [0, a]× [0, b]× [0, c] as the image domain and assume that only a discrete

sample of image f is given. Assume that f consists of piecewise smooth features and Γ is the desirable

interface to be found which segments f by the domain partition Ω = Ωin∪Γ∪Ωout, where Ωin and Ωout

denote inner and outer region of interface Γ respectively. The zero level set of a sign distance function

φ is used to represent the interface Γ, i.e, Γ = {x ∈ Ω : φ(x) = 0}, therefore Ωin = {x ∈ Ω : φ(x) > 0}

can be specified by the following approximation of the ε-smoothed Heaviside function:

Hε(φ) =
1

2
(1 +

2

π
arctan(πφ/ε))

and, similarly, Ωout = {x ∈ Ω : φ(x) < 0} is defined by 1 − Hε(φ(x)); the derivative of Hε(φ) is a

smoothed version of the Dirac delta as follows:

H ′ε(φ) = δε(φ) =
ε

φ2 + ε2
.
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2.1 The BC model [9] for 2D selective segmentation

We now introduce the BC model of [9] for 2D image selective segmentation as we shall use it as

a basis for building our 3D model later. The minimizing functional of the model has two kinds of

terms: the regularization term and the fitting terms, as with the Chan and Vese [18] method.

Firstly for the regularization term, following [27] and the idea of geodesic active contours, the

length of Γ is weighted by the product of an edge detector function g(x) and a distance function

d(x). A typical choice [27, 9] for g(x) is the

g(x) =
1

1 + a|∇f(x)|2
, a > 0,

but there also exist other variants: Chan et al. [16] choose g(x) = exp(−b|∇f(x)|s), b > 0, s > 0

as the edge detector and Kass et al. [32] take g(x) = −|∇f(x)|2. In order to deal with image noise,

∇f(x) shall be replaced by a smoothed version ∇fσ. With these functions, the curve will locate

on high values of the gradient, corresponding to the edge of a given image. Note that the gradient

modulus |∇f(x)| of image f(x) is large at an edge pixel where we desire g(x) ≈ 0 or is small. At

non-edge pixels, |∇f(x)| = 0 or is small so we desire g(x) to be large (up to 1); see [13, 9, 16, 27].

Next we define the distance function d(x). Let A = {xi : i = 1 . . . np} be a marker set which is given

on boundary or near the desirable object in the given image f(x). As in [27], Badshah and Chen [9]

choose the following distance function:

d(x) =

np∏
i=1

(
1− exp(−|x− xi|

2

2σ2
)
)

where σ = 4 or σ = 3; another distance function could be

d2(x) =

min
xi∈A

|x− xi|

max
xi∈A

max
x̄∈Ω
|x̄− xi|

=
1

M
min
xi∈A

|x− xi|.

Note that d(x) is small near A, and large away from it.

Secondly for the fitting terms, the BC model [9] adopts the Chan-Vese [18] idea for image inten-

sities fitting, minimizing variations of intensity from the average C1 in the inside domain Ωinof an

evolving curve and from the average C2 in the outside domain Ωout.

Finally the BC model takes the following form

min
Γ,C1,C2

{
E(Γ, C1, C2) = αEG(Γ, C1, C2) + EF1(C1, C2)

= α

∫
Γ
d(x)g(x)ds+

[
λ1

∫
Ωin

|f(x)− C1|2dx+ λ2

∫
Ωout

|f(x)− C2|2dx
]}
.

(1)

Using the level set formulation, its evolving equation can be written as

∂φ

∂t
= δε(φ)

(
α∇ ·

(
d(x)g(x)

∇φ
|∇φ|

)
+ λ1(f(x)− C1)2 − λ2(f(x)− C2)2

)
.
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Actually if d = 1, the model will reduce to [35] for global segmentation, while if dg ≈ 1, the model

will reduce to the C-V model [18]. In fact, it is these strong connections with the global models that

make the BC model detect spurious objects in some examples.

2.2 Some 3D global segmentation models

Although the above model will be based to propose our new 3D model shortly, there exist several

3D models for global segmentations that might be adapted for 3D selective segmentation. Below we

briefly review three of such models for completeness.

1). Deformable surface model: TWK88 [50]

The 3D extension of the basic 2D snakes, known as the deformable surface model, was introduced

by Terzopoulos et al.[50]. It was improved and applied by many others (e.g., [21, 49]). In the 3D

case, a parameterized surface v(r, s) = (x1(r, s), x2(r, s), x3(r, s)), (r, s) ∈ [0, 1]2, is considered, and

the energy functional is given by

E(v) =

∫ 1

0

∫ 1

0

[
ω10|

∂v

∂r
|2 + ω01|

∂v

∂s
|2 + ω11|

∂2v

∂r∂s
|2 + ω20|

∂2v

∂r2
|2 + ω02|

∂2v

∂s2
|2 + P

]
dsdr

where P = P (v) = |∇(Gσ ∗f(v))| is a generalized potential function defined by a Gaussian smoothing

filter. The model is simple to use but the linearity of the snake model causes different parameteriza-

tions of the same initial surface to converge to different minimizers. This undesired property is the

outcome of the fact that the snake model minimizes a non-geometric measure [29].

2). Minimal surface model: CK97 [14, 39]

The 3D intrinsic deformable models [14, 39] generalized from 2D segmentation [12] deform surfaces

smoothly towards the objects in the image. Their weighted surface area geodesic active surface model

is as follows

min
Γ
AR =

∫∫
Γ

g(x)dS

where dS is the Euclidean area element. In order to prevent the curve from shrinking to a point,

a ”balloon force” term (as first used by Cohen [22]) is added. Further work in a narrow band

implementation can be found in [26, 25, 20].

3). Piecewise constant M-S 3D model: C-V [19]

The generalized 3D formulation of the 2D active contour model without edges model by [18, 19] is

the following

min
Γ,C1,C2

Eε(Γ, C1, C2) =
{
γ

∫
Γ
dS + λ1

∫
Ωin

|f(x1, x2, x3)− C1|2dx1dx2dx3

+ λ2

∫
Ωout

|f(x1, x2, x3)− C2|2dx1dx2dx3

}
.
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where Γ is the surface separating datum f to interior and exterior of Γ, and dS measures the area of

the separating surface, and
∫

Γ dS is a regularizer that determines smoothing of the solution surface.

However, since the aim of the above global models is to segment all objects from a given datum,

adapting them for local segmentation will not work in general. Our concern here is the functionality

of selectivity, i.e. the detection of the single desired object which is discussed next.

3 A new algorithm with adaptive local fitting

To overcome the inability of the BC [9] model to stop reliably on the exact boundary of an interested

object, our new idea is to use local fitting energies, i.e. to replace the fitting energy defined in the

domain Ω to a small sub-domain near the intended object. Similar use of local intensities information

can be found in several recent works [41, 33]. However simply replacing the global fitting of the BC

model [9] by local fitting does not lead to a satisfactory method as the band parameter is sensitive.

Below we first show what form the new model takes and then discuss ways to turn it to a robust

model.

Assume that a 3D image f(x) = f(x1, x2, x3) is given in the cube Ω ∈ R3 and the set of markers,

as in the 2D case (1), are defined by A = {xi : i = 1 . . . np}. Within the cubic domain Ω, we

assume these marker points are specified on three planes perpendicular to the x3 axis, as illustrated

in Fig.13(a).

Our new local segmentation model is the following

min
Γ,C1,C2

{
E(Γ, C1, C2) = αEG(Γ) + EF (Γ, C1, C2)

}
(2)

where EG(Γ) =
∫

ΓG(x)ds is the same as (1) with G(x) = g(x)d(x), and the new local fitting energy

EF (Γ, C1, C2) is{
λ1

∫
Ωin(Γ)

b1(φ(x), γin)(f(x)− C1)2dx+ λ2

∫
Ωout(Γ)

b2(φ(x), γout)(f(x)− C2)2dx

}
,

where b1(φ(x), γin) = B(φ(x), γin, 0) and b2(φ(x), γout) = B(φ(x), 0, γout) with

B(φ(x), γin, γout) = H(φ(x) + γin)(1−H(φ(x)− γout)) (3)

characterizing the narrow band domain Ωγin,γout = {x ∈ Ω : −γin ≤ φ(x) ≤ γout} = Ωγin(Γ) ∪ Γ ∪

Ωγout(Γ) which is a narrow band region surrounding the local boundary Γ (as illustrated in Fig.1).

Here we assume that φ is negative inside Γ and positive outside it.

From the properties of function φ(x), the above optimization problem is rewritten as:

min
φ,C1,C2

α

∫
Ω
G(x)|∇H(φ)|dx+

∫
Ω

[
λ1(1−H(φ))b1(φ(x), γin)(f(x)− C1)2 (4)
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Figure 1: Illustration of two sub-domains making up the narrow band domain Ωγin, γout.

+ λ2H(φ)b2(φ(x), γout)(f(x)− C2)2

]
dx

where we note that (1−H(φ))b1(φ(x), γin) = B(φ(x), γin, 0) andH(φ)b2(φ(x), γout) = B(φ(x), 0, γout).

Further when the level set function φ is fixed, the local mean intensities values C1, C2 inside and

outside regions of previous zero level are given by:

C1 =

∫
Ω(1−H(φ))b1(φ(x), γin)f(x)dx∫

Ω(1−H(φ))b1(φ(x), γin)dx
, C2 =

∫
ΩH(φ)b2(φ(x), γout)f(x)dx∫

ΩH(φ)b2(φ(x), γout)dx
(5)

and if C1, C2 are fixed, we deduce the following Euler-Lagrange equation with G(x) δε(φ)
|∇φ|

∂φ
∂n

∣∣∣
∂Ω

= 0

N (φ) = −αδε∇ ·
(
G(x)

∇φ
|∇φ|

)
− λ1

[
δε(φ)b1(φ, γin)− (1−H(φ))

∂b1(φ, γin)

∂φ

]
(f − C1)2

+λ2

[
δε(φ)b2(φ, γout) +

∂b2(φ, γout)

∂φ
H(φ)

]
(f − C2)2 = 0.

(6)

The above PDE, which may be discretized by the finite difference method on a uniform mesh once

a discrete image f is given, may be considered as the steady state form of the following evolution

equation:

∂φ

∂t
=N (φ) (7)

which is solvable by a gradient descent method in a small sub-domain (much smaller than Ω). Our

strategy is to solve (6) directly by a multigrid method, using (7) as a smoother. We remark that the

fast sweeping method [40, 1, 2] may also be used for solving (6). Though the efficiency is comparable,

our method can provide better smoothing around the zero level set and hence is preferred.

Next we shall discuss some issues of implementation before we present the final algorithm. The

local model will be initialized to evolve near the given marker set A. We can use the set A to generate

a cylinder (or cuboid) like shape (as in Fig.13(c)), following Appendix 1.
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3.1 Re-initialization

In a level set method, the interface Γ(t) = {x ∈ Ω : φ(x, t) = 0} represented implicitly by the zero

level set of a function φ(x, t) is properly evolved but outside Γ the level set function may become

distorted. One commonly used method to scale φ is to re-initialize it as a signed distance function

which satisfies |∇φ| = 1, with different signs at the two sides of the interface, often through adding

(|∇φ| − 1)2 to the energy functional [35].

As our main model uses local information, updating φ(x, t) will be only carried out in a banded

region for efficiency. Therefore, reinitializing it as a signed distance function is also done locally.

Also, |φ(x)| gives the (shortest) distance from x to the boundary Γ = {x ∈ Ω : φ(x) = 0. We

therefore try to keep φ close to a signed distance function, by frequent re-initializations. Osher et al.

[44] suggested solving the reinitialization equation φt + sign(φ)F (φ) = 0 where

F (φ) = |∇φ| − 1 (8)

for a short period of time (i.e. practically a few time steps only).

Here we propose to solve directly F (φ) = 0. Specifically reinitialize φ in a local and closed domain

enclosing the object to be detected by the following via a fast multigrid algorithm

F̂ (φ) ≡
( 3∑
s=1

[
(max(D−xsφ, 0))2 + min(D+

xsφ, 0))2
]) 1

2 − 1 = 0

where

D−x1φijk =
φijk − φi−1,jk

h1
, D+

x1φijk =
φi+1,jk − φijk

h1
;

D−x2φijk =
φijk − φij−1,k

h2
, D+

x2φijk =
φij+1,k − φijk

h2
;

D−x3φijk =
φijk − φijk−1

h3
, D+

x3φijk =
φijk+1 − φijk

h3
.

In 3D, developing a multigrid algorithm in a banded region (non-cuboid) is not convenient so we

shall embed the interested banded region into a cuboid region. At each time tn, this local cuboid is

up to γmax away from Γ(tn) and embeds the inner part of the evolving curve Γ(tn) in time step tn,

Ω−tn = {x = (xi)
3
i=1 ∈ Ω : φ(x, tn) < 0}. First, the smallest cuboid that contains Ω−tn is bounded by

these lower and upper bounds: x̌tn,i = min
x∈Ω−tn

xi, x̂tn,i = max
x∈Ω−tn

xi for all i = 1, 2, 3. Second, to enlarge

this cuboid to a larger one that is up to γmax away while remained in the image domain Ω, we use

the new and refined bounds:

X̌tn,i =

{
x̌tn,i − γmax, if x̌tn,i − γmax > 1;
1, otherwise,

X̂tn,i =

{
x̂tn,i + γmax, if x̌tn,i + γmax < Ni;
Ni, otherwise.
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Here for i = 1, 2, 3, let Itn,i = [X̌tn,i, X̂tn,i] denote the sub-interval along xi-direction at tn step.

Then a multigrid algorithm will be applied to solve the static Hamilton-Jacobi equation F (φ) = 0

(see (8)) in the cuboid: ΩL
tn = Itn,1 × Itn,2 × Itn,3 ⊂ Ω such that ΩL

tn = (ΩL
tn)−

⋃
Γ(tn)

⋃
(ΩL

tn)+

with Γtn = {x ∈ Ω : φ(x, tn) = 0}, (ΩL
tn)− = {x ∈ ΩL

tn : φ(x, tn) < 0} = Ω−tn inside of Γ(tn), and

(ΩL
tn)+ = {x ∈ ΩL

tn : φ(x, tn) > 0} ⊂ Ω+
tn outside of Γ(tn).

Reinitialization based on a multigrid method. The finest grid, denoted by G(1), will have

NL
tn,1 × NL

tn,2 × NL
tn,3 uniformly distributed voxel grid points where NL

tn,i
= X̂tn,i − X̌tn,i + 1 =

ptn,i · 2qtn,i + 1, with ptn,i (n = 1, 2, . . . and i = 1, 2, 3) integers greater than 1 and qtn,i (n = 1, 2, . . .

and i = 1, 2, 3) nonnegative integers. In this work, standard grid coarsening is implemented [3], with

the local cuboid ΩL
tn covered by `tn = max

1≤s≤3
qtn,s+1 grids: G(1), G(2), . . . , G(`tn) with G(1) the finest

and G(`tn) the coarsest with (ptn,1 + 1)× (ptn,2 + 1)× (ptn,3 + 1) grid points.

In addition to restriction and interpolation operators, a multigrid method solving the discrete

system (8) requires a suitable smoother based on some iterative relaxation method which is often

the decisive factor in determining whether or not a multigrid algorithm converges. Here we use a

time-marching scheme as the smoother:

φn+1 = φn + ∆t
{[

max(sign(φ0), 0)∇(+) + min(sign(φ0), 0)∇(−)
]
φn
}

where

∇(−)φn =

{
3∑
s=1

(
[max(D(+)

xs φ
n, 0)]2 + [min(D(−)

xs φ
n, 0)]2

)} 1
2

;

∇(+)φn =

{
3∑
s=1

(
[max(D(−)

xs φ
n, 0)]2 + [min(D(+)

xs φ
n, 0)]2

)} 1
2

.

3.2 Adaptive update of localizing parameters γin and γout

As mentioned above, the local functional bi(φ, γ), i = 1, 2, in our main energy functional E(φ,C1, C2)

has a localizing parameter γ (on either side of the evolving surface) which is crucial to the success

of the model. A fixed parameter γ does not lead to a robust method. If γ is too small, the model

captures less image features and the surface might even stop evolving before reaching the object

boundary, or conversely if γ is too large, the active surface is likely to detect other objects (i.e. fail

the model).

We propose to vary γ and optimize it for the given image f . The central question is how to select

γ automatically, at each iteration, because it is in general unknown a priori. The clue lies in the fact

that intensity variations within inner and outer narrow regions are approximately zero when the zero

level curve stops on the object boundary. This observation can be explored by varying the band widths

in an interval in order to find the optimized width that helps reducing such intensity variations. This
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Figure 2: Illustration of computing variations for band width selection.

locally optimal band width leads to our variable-γ method. Therefore our basic idea for finding the

optimal γ automatically is to select from the extremal points of a mean intensity variation function

and a local mean intensity variation function with respect to the localizing parameter γ surrounding

the zero level curve.

We first consider the selection of γ = γin, in a three-stage procedure. Note, from (3), [1 −

H(φ)]H(φ+γin) = [1−H(φ)]b1(φ, γin) = B(φ(x), γin, 0) characterizes the inner band domain Ωin(Γ).

Stage 1 — Movement towards the object, where image intensities change the most or the least.

Define a mean intensities variations function MIVin(γ) by

MIVin(γ) =

{∫
Ω[1−H(φ)]H(φ+ γ)[f(x)−MIin(γ)]2dx∫

Ω[1−H(φ)]H(φ+ γ)dx

} 1
2

where MIin(γ) is the mean intensity (MI) given by

MIin(γ) =
Iin(γ)∫

Ω[1−H(φ)]b1(φ, γ)dx
, Iin(γ) =

∫
Ω

[1−H(φ)]b1(φ, γ)f(x)dx.

See the top plot of Fig.2 for illustration. Then the first extremal point γ in MIVin(γ) will be our most

profitable parameter, provided that it is not γmax. Formally, our optimal parameter is γ∗ = min
γ

Θin

if γ∗ 6= γmax, where the extremal point set of MIVin(γ) in (γmin − 1, γmax] is defined by:

Θin =
{
γ :
(

arg max
γmin−1<γ≤γmax

MIVin(γ)
)
∪
(

arg min
γmin−1<γ≤γmax

MIVin(γ)
)}
.

Stage 2 — Movement towards the object, where incremental image intensities change the most

or the least. If Stage 1 is already successful, we consider Stage 3 next. If not, i.e. min
γ

Θin = γmax, we

consider the local mean intensity variation function LMIVin(γ) within δγ band strip (as illustrated

in bottom plot of Fig.2). For a fixed δγ > 0, the quantity [1 − H(φ)][H(φ + γ + δγ) − H(φ + γ)]

defines the narrow strip of width δγ near the narrow band γ. We define LMIVin(γ) by

LMIVin(γ) =

{∫
Ω[1−H(φ)][H(φ+ γ + δγ)−H(φ+ γ)][f(x)− LMIin(γ, δγ)]2dx∫

Ω[1−H(φ)][H(φ+ γ + δγ)−H(φ+ γ)]dx

} 1
2

where LMIin(γ) is the mean intensity of f in δγ band strip at γ:

LMIin(γ) =
Iin(γ + δγ)− Iin(γ)∫

Ω[1−H(φ)][H(φ+ γ + δγ)−H(φ+ γ)]dx
.
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Our optimal parameter γ∗ is taken as γ∗ = min
γ

Ξin where

Ξin =
{
γ :
(

arg max
γmin−1<γ≤γmax

LMIVin(γ)
)
∪
(

arg min
γmin−1<γ≤γmax

LMIVin(γ)
)}
.

Overall, from Stages 1-2, we select our localizing parameter γin by

γin =


min
γ

Θin, if min
γ

Θin < γmax;

min
γ

Ξin, otherwise.
(9)

Analogously, we choose the outer parameter γout via these quantities

Iout(γ) =

∫
Ω
H(φ)[1−H(φ− γ)]f(x)dx; MIout(γ) =

Iout(γ)∫
ΩH(φ)[1−H(φ− γ)]dx

;

MIVout(γ) =

{∫
ΩH(φ)[1−H(φ− γ)](f(x)−MIout(γ))2dx∫

ΩH(φ)[1−H(φ− γ)]dx

} 1
2

;

LMIout(γ) =
Iout(γ + δγ)− Iout(γ)∫

ΩH(φ)[H(φ− γ)−H(φ− γ − δγ)]dx
;

LMIVout(γ) =

{∫
ΩH(φ)[H(φ− γ)−H(φ− γ − δγ)][f(x)− LMIout(γ, δγ)]2dx∫

Ω

H(φ)[H(φ− γ)−H(φ− γ − δγ)]dx

} 1
2

with Θout, Ξout similarly defined; hence the optimal γout is chosen as

γout =


min
γ

Θout, if min
γ

Θout < γmax;

min
γ

Ξout, otherwise.
(10)

In a discrete setting, we take positive integers for γin, γout and set δγ = 1, and η0 = 0.02 for

removing the small disturbance of MIVι(γ) or LMIVι(γ) (with ι=‘in’, ‘out’). Then Θι and Ξι can

be simplified to the following Θ̄ι and Ξ̄ι respectively:

Θ̄ι =
{
γmax

}
∪
{
γ ∈ N : γmin ≤ γ ≤ γmax such that

MIVι(γ) ≤ (1− η0)MIVι(γ − 1) and MIVι(γ) < (1− η0)MIVι(γ + 1))
}

∪
{
γ ∈ N : γmin ≤ γ ≤ γmax such that

MIVι(γ) ≥ (1 + η0)MIVι(γ − 1) and MIVι(γ) > (1 + η0)MIVι(γ + 1))
}

;

Ξ̄ι =
{
γmax

}
∪
{
γ ∈ N : γmin ≤ γ ≤ γmax such that

LMIVι(γ) ≤ (1− η0)LMIVι(γ − 1) and LMIVι(γ) < (1− η0)LMIVι(γ + 1))
}

∪
{
γ ∈ N : γmin ≤ γ ≤ γmax such that

LMIVι(γ) ≥ (1 + η0)LMIVι(γ − 1) and LMIVι(γ) > (1 + η0)LMIVι(γ + 1))
}
.

To alleviate the effect of image noise on MIVι(γ) or LMIVι(γ), we replace absolute inequality

tests by relative inequalities, e.g., MIVι(γi),MIVι(γi+1) ( or LMIVι(γi), LMIVι(γi+1)) are only

compared for every minimizer/maximizer γi ∈ Θι (or γi ∈ Ξι) if

|MIVι(γi)−MIVι(γi+1)| ≥ η3|MIVι(γi) +MIVι(γi+1)|;

or |LMIVι(γi)− LMIVι(γi+1)| ≥ η3|LMIVι(γi) + LMIVι(γi+1)|
(11)
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for some 0 < η3 < 1; otherwise the difference is small and γi is not considered as an extremal point.

Stage 3 — Movement away from ‘homogeneous’ subregions in a fast way (i.e. using the largest

band width). The above two Stages lead to optimized parameters for band widths γin and γout. One

of these two parameters needs to be modified in one of the following special cases of the zero level

set surface: i) it is entirely within the object; ii) it completely embeds the object. Here the latter is

less likely with our initially supplied surface. Nevertheless to accelerate the surface evolving process,

we propose γout = γmax for i) or γin = γmax for ii).

To tell if one of these two cases holds, we compare both mean intensities (i.e. MI) and mean

gradients between Ωγin and Ωγout . Their mean gradients can be respectively defined by

MGin(γin) =

∫
Ω[1−H(φ)]H(φ+ γin)|∇f(x)|dx∫

Ω[1−H(φ)]H(φ+ γin)dx
;

MGout(γout) =

∫
ΩH(φ)[1−H(φ− γout)]|∇f(x)|dx∫

ΩH(φ)[1−H(φ− γout)]dx
.

If
|MIin(γin)−MIout(γout)|
|MIin(γin) +MIout(γout)|

< η1/2 and
|MGin(γin)−MGout(γout)|
|MGin(γin) +MGout(γout)|

< η2/2 for some small η1, η2

such that 0 < η1, η2 < 1, then one of the above two cases is present. Using any initial slice where

markers are specified, we can differentiate case i) from ii) by measuring and comparing the distances

from such markers. This completes our selection procedure of 3 Stages.

To summarize, our proposed γ-choice is based on three quantities:

• the mean variations MIV (γ),

• the local mean variations LMIV (γ) and

• the mean gradient variations MG(γ).

The procedure is illustrated for three examples in Figure.3(a)-3(c). The use of these 2D images is

for visual illustration purpose as our procedure applies to 3D images. There, we set γmin = 2 and

γmax = 30, and the other parameters as follows: η1 = 0.2, η2 = 0.2 and η3 = 0.1. Clearly the

γ-choice is effective for moving the zero level curve in monkey image and CT image, for example

in Figure.3(a)-3(c) we can see that mean variation MIVin(γ) of inner narrow band has a minimizer

γin = 5, while mean variation MIVout(γ) of outer narrow band is a monotone decreasing function.

So we should check the minimizers/maximizers of local mean variation LMIVout(γ), however the

difference |MIVι(γi) −MIVι(γi+1)| (or (11)) for every minimizer/maximizer γi < 21 is small and

such minimizer/maximizer γi is not considered as an optimal extremal point.

3.3 Fast solution of (7) in a sub-domain

Solution of (7) can be expensive in the whole 3D domain Ω. If N is the number of points (pixels)

in each spatial direction, and the number of voxels is N3, the level set algorithm in solving (7) has

12
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Figure 3: Choice of γin and γout by our narrow band algorithm. First column: the plots of mean
variation MIVin(γ) and MIVout(γ) with respect to localizing parameter γ; second column: The plots
of local mean variation LMIVin(γ) and LMIVout(γ) with respect to localizing parameter γ; third
column: narrow band Ωγin,γout between blue contour and magenta contour is captured by parameter
γin and γout (computed by using (9), (10) and filter term (11)), and green contour is the tested zero
level.
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at least an O(N3) complexity per time step. However the number of voxels in Ωγin,γout near the

evolving surface is much less, roughly O(N2); see Figure 1 for an illustration. As remarked in [39]

and others, in a surface evolving process, we are interested in the motion of the zero-level set and

not in the motion of each isophote of the surface. So we only need to compute in a cuboid containing

the surface Γ(t), such a technique significantly decreases the computational complexity, in particular

when implemented efficiently. As remarked, the method of fast sweeping as used in [40, 1, 2] for a

different model may also be applied here.

This cuboid idea is used in this work with the cuboid constructed by choosing points that lie

less than some given distance away from the surface Γ(t) (such as γin and γout as mentioned). The

resulting local domain contains the zero-level set – the active marching surface Γ(t).

3.4 The overall numerical algorithm

Our new algorithm for solving (7) as summarized in the following Algorithm 1 has these ingredients:

– the given marker nodes on slices of a 3D datum are made full use to produce an accurate

initial level set contour surface;

– optimized inner and outer band widths are found using local variations near the evolving

contour surface;

– A nonlinear multigrid method using a gradient descent smoother is employed in a cuboid

containing the narrow banded domain to maintain the level set function to be a signed distance

function;

– The gradient gradient solution is only conducted in the narrow banded domain to give a fast

implementation.

Here the first two aspects are indispensable for the success of our approach, while the last two aspects

ensure a fast solution method but there exist alternative ways of implementation.

Algorithm 1 is stopped if the maximum number it of iterations is reached (usually it = 1000), or

the relative error in two consecutive iterative steps is smaller than a tolerance η0 (typically η0 = 10−6

for a practical segmentation), or the number of pixels inside a zero level set is smaller than 15.

4 Numerical Experiments

This section presents some test results to demonstrate three points:

• effectiveness of our initial solution construction based on A;

• comparison with the BC model [9] for 3D segmentation;

• effectiveness of our new model for some complex extractions.
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Algorithm 1 (A fast surface marching algorithm)

step 1. Input markers set: A = {x̄` = (x`1, x
`
2, x

`
3)T : ` = 1, . . . , ¯̀}; set n = 0 and it = Itin.

step 2. Obtain the initial level set function φ0 by our initial strategy from

Appendix 1.

step 3. Obtain the Reinitialization sub-region ΩL
tn from Section 3.1.

step 4. Reinitialization the level set function φn in sub-region ΩL
tn by multigrid.

step 5. Obtain inner and outer cuboid-size: γnin and γnout from Section 3.2.

step 6. Obtain local mean intensities C1 and C2 and construct the marching cuboid.

step 7. Solve the evolving equation in the cuboid.:
- φn+1 = ELV local(φn, γnin, γ

n
out, . . . , Itin);

step 8. Check for convergence using stopping criteria

- if not satisfied; set n = n+ 1 and go to step 3.;
- else return solution φ∗ = φn+1.

Both synthetic and real life medical images are chosen for our tests below. In all results, we have

used the marker set A = {xi = (x1
i , x

2
i , x

3
i ) : i = 1, . . . , np} for a relatively small number np ≥ 9, which

is the sum of 3 sets of markers on three image slices only. We take the fitting weights λ1 = λ2 = 1,

smoothing parameter ε = 1, discretization scale h = 1 and time step τ = 0.1, we also set γmin = 2

and γmax = 30 as mentioned in the previous section.

1). Tests on the initial solution strategy. Here, we begin our numerical experiments by

demonstrating the usefulness of initial evolving surfaces in Fig.13 for image selective segmentation

on a synthetic 3D image in Fig.4. This synthetic image features two important challenges that can

be resolved effectively by our strategy: 1)a thin separation gap, i.e., the interested object is near

other objects of the same intensity; 2) a highly skewed object, i.e., the interested region is a long and

flat object. Fig.4(a) shows a result with an initial contour by our strategy (Appendix 1) where the

middle non-convex object is the aim of detection. Fig.4(b) shows the result of two objects within zero

level of φ0 captured by a simplex initial solution strategy. Fig.4(c) and 4(d) show their slices along

z-direction, respectively. Clearly our proposed construction for the initial surface is more logical than

the alternative approach.

2). Comparisons with the Badshah-Chen model [9] in 3D. We have explained that the

Badshah-Chen model [9] has improved the geodesic model by Gout et al.[27] for noisy images, and

that the model works well when the separation distance (of the interested object from other nearby

objects) is large and the target feature is of a simple convex shape. We now illustrate the above

remarks using two test cases as in Fig.5 and Fig.6.

First, Fig.5 shows the results for a 3D image by our proposed method; the original image with its
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(a) (b)

1

(c)

1

(d)

Figure 4: Comparisons for initial solution strategies. (a) Successful result by our proposed initial
solution; (b) Unsuccessful result by simplex initial solution; (c)-(d) Slice-presentations of (a) and (b),
respectively.
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initial zero level by a polyhedral surface and markers sets are shown in Fig.5(a)-5(b) and 5(d). The

successful result and some selected slices from our new method are shown in Fig.5(c) and 5(e)-5(f).

In contrast, starting from the same initial guess as shown in Fig.5(a)-5(b) and 5(d), the Badshah-

Chen model detects the incorrect result (evidently redundant features are extracted) shown in Fig.6.

Additionally, computation time of our approach is about 20 minutes while the BC model will cost

more than 2 hours on the same computer. On the whole, our method yields encouraging results.

3). Tests for other complex extractions. Our final two experiments are conducted on harder

and more challenging medical data. Here in test 1, the interested object has a complex shape and a

small separation gap: see Fig.7. Then segmentation solutions using our proposed method are shown

in Fig.7(c),7(e)-7(f).

Similarly for test 2, the original and our segmented results are shown in Fig.8. Clearly our new

method delivers the expected result and correctly segments the intended objects.

4). RV Segmentation Challenge in Cardiac MRI from MICCAI

Although our motivation for this work comes from organ extraction problems from the local Royal

Liverpool University Hospital and our developed model has been shown to be effective, it is useful

to test our model on the datasets of the MICCAI Segmentation Grand Challenges. Unfortunately

such datasets are not widely or publicly available and only some partial datasets are obtainable.

Nevertheless in this final test, we apply our 3D selective segmentation method to the datasets

from the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge (RVSC)1 that was set to

segment the Right Ventricle for a training set and a test set, with each slice contour being represented

as zero level of level set function. As we have mentioned in previous experiments, markers are placed

on the third, the middle and the third from last slices (3, 5 and 3 markers respectively) to construct

the original guess.

Here we compare our algorithm (3D implementation) with the manual outlining (2D slices) from

RVSC in the RSMr (region similarity measure ratio) value which is defined by

RSMr =
#(Ω∗1 ∩ Ω∗2)

#(Ω∗2)

and in visual quality where Ω∗1 and Ω∗2 are the regions extracted by our solution contours (to be called

“automatic”) and manual contours (to be denoted by “manual”) in 2D slices and #(U) denotes the

number of pixels in region U . We remark that all not manual outlines are published on the MICCAI

site, although the full data of RVSC are available for testing.

Firstly, our segmentation algorithm is run on the 3D image of Patient 12 (a training data

set) while comparisons can only be done for manual delineations of some contours (red contour)

1MICCAI grand challenge website: http://www.grand-challenge.org/site/grand-challenges/all challenges, the au-
thors also thank Caroline Petitjean for data downloading authorization of Test1 Set and Training Set in links:
http://www.litislab.eu/rvsc/downloadfiles/.
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(a) (b) (c)

(d) (e)

1

(f)

Figure 5: Comparisons with Badshah-Chen model in [9] – Part 1. (a) Original datum: slice-
representation and marker sets in three slices(red dots are the markers); (b) and (d) Initial solu-
tion surface by our new strategy; (c) and (e) Successful result by our proposed method; (f) Slice-
presentations of (e).
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(a) (b)

1

(c)

Figure 6: Comparisons with the BC model in [9] – Part 2. (a)-(b) Unsuccessful result by the BC
model; (c) Slice-presentations of (b), here the same initial guess with Figure 5 is used in this model.
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(a) (b) (c)

(d) (e)

1

(f)

Figure 7: Test 1 for a complex shape problem. (a) Original datum: slice-representation and marker
sets in three slices(red dots are the markers); (b) and (d) Initial solution surface by our new strategy;
(c) and (e) Successful result by our proposed method; (f) Slice-presentations of (e).
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(a) (b) (c)

(d) (e)

1

(f)

Figure 8: Test2 for the complex shape problem. (a) Original datum: slice-representation and marker
sets in three slices(red dots are the markers); (b) and (d) Initial solution surface by our new strategy;
(c) and (e) Successful result by our proposed method; (f) Slice-presentations of (e).
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Figure 9: Comparison of our segmentation result with manual segmentation in detected areas.

in Figures 10(d)-10(f) and 10(j)-10(l). There, we also display the closeness to the manual detec-

tion by percentages in segmented areas for the concerned slices. Since the manually segmented

organ volumes are not published, we compare all slices (numbered 40, 60, 68, 88, 100, 108, 120,

128, 140, 148, 160, 168, 180, 288) that have known manually segmented contours in Figure 9

segmented areas. In fact, our plot of area comparison is similar to the winning result described

in www.litislab.eu/rvsc/workshop/files/zuluaga.pdf/attachment download/attachedFile for volume

comparison.

Secondly, the Patient 23 (from the test dataset) is used to test the performance of our algorithm

in Figure 11(a)-11(h). Again, our method can be seen to yield satisfactory results.

5 Conclusions

This paper presented an efficient segmentation model based on the geometrical constraints, an edge

detector function and a markers distance function, capable of detecting a single object in 3D datum

reliably. The efficiency is achieved by evolving the active surfaces in a narrow band sub-domain

and re-initialization is done by a fast multigrid method. Test results show that the new algorithm

performs better than the BC model [9] generalized to 3D and it is reliable for a range of challenging

problems and robust in terms of segmentation quality. Future works will consider the local features

based selective segmentation for texture images and other 3D segmentation frameworks.

Appendix 1 – Generation of an initial solution using A

The initial solution φ (i.e. φ0) should take the value −1 inside sub-domain containing the marker set

A and 1 outside it.

In previous work on 2D models, it can be a single curve (e.g. an ellipse or a square) if global

segmentation is desired; for local and selective segmentation [9], one may use a polygon consisted of
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(a) automatic: 60th slice (98.79%) (b) automatic: 68th slice (98.13%) (c) automatic: 88th slice (97.15%)

(d) manual: 60th slice (e) manual: 68th slice (f) manual: 88th slice

(g) automatic: 100th slice (100%) (h) automatic: 108th slice (94.22%) (i) automatic: 120th slice (97.29%)

(j) manual: 100th slice (k) manual: 108th slice (l) manual: 120th slice

Figure 10: Comparative results by our algorithm for Patient 12 (the training set). Our 3D selective
segmentation results for different slice representations: Figure 10(a)-10(i); manual results of the
training set: Figure 10(d)-10(l). Here % values are for RSMr, comparing our automatic algorithm
with the manual segmentation.
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(a) 37th slice (b) 49th slice (c) 54th slice (d) 63th slice

(e) 81th slice (f) 85th slice (g) 107th slice (h) 112th slice

Figure 11: Comparative results by our automatic algorithm for Patient 23 (the test1 set).

points in the given marker set assuming that it contains three or more points. However in 3D, the

initial guess can be nontrivial, to allow generality.

Here we assume that our 3D object is present in many slices (e.g. 400) and a user has given

marker sets on 3 slices only. On at least two slices we need 3 or more markers in order to construct

an initial surface φ in 3D. Without losing generality, we consider how to link up the markers in the

first two adjacent slices to form the initial φ0.

Suppose that on the first marker slice the marker set A00
1 = {pi : 1 6 i 6 m1} is given in

anticlockwise order and on the second marker slice we have A00
2 = {pi : m1 + 1 6 i 6 m1 + m2}

also in anticlockwise order. If m1 = 6,m2 = 4 we have A00
1 = {01, 02, 03, 04, 05, 06} and A00

2 =

{07, 08, 09, 10} (see Fig.12(a)). For later use, define by d(p,A) = min
pi∈A

d(p, pi) the distance between

point p and the marker set A and accordingly by I(p,A) = arg min
i
|d(p, pi) − d(p,A)| the index

number achieving the minimal distance. That is, d(p,A) = d(p, pI(p,A)).

Our algorithm below will first locate the nodes which define the ‘diameter’ of the implicit polygon

on each slice; these nodes will be connected across slices and they divide each marker set into 2

overlapping subsets. Next we recursively subdivide the subsets until each corresponding subset pair

makes up one unique triangle (i.e. one set having 1 node and the other having two) and then the

corresponding nodes will be connected across slices. Unless both slices have the same number of

nodes, typically, two or more nodes from one slice may be connected to the same node on the other

slice.

Here is our proposed algorithm for computing the initial φ0:
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i). Step 1 – First two edge pairs. Compute the respective center points Pc1 and Pc2 of

A00
1 , A00

2 . Then through these center points we draw lines along x-direction and y-direction

intersecting with the boundary ∂Ω at ai, bi, ci, di (anticlockwise) respectively for i = 1 (slice

1), 2 (slice 2); note on slice 1, a1, c1 are along the x-direction.

To obtain a good approximation to the shape of the desired object, the first two edge pairs defin-

ing the ‘diameter’ of the polygon formed by the markers on each slice will be most important.

Specifically, if
2∑
i=1

(d(ai,A00
i ) + d(ci,A00

i )) ≤
2∑
i=1

(d(bi,A00
i ) + d(di,A00

i ))

then the x-direction oriented pairs {Î1, Ǐ1} ≡ {I(a1,A00
1 ), I(a2,A00

2 )} and {Î2, Ǐ2} ≡ {I(c1,A00
1 ), I(c2,A00

2 )}

are chosen as the first two edge-pairs; else if the above condition is not satisfied, the two y-

direction oriented edge-pairs {Î1, Ǐ1} ≡ {I(b1,A00
1 ), I(b2,A00

2 )} and {Î2, Ǐ2} ≡ {I(d1,A00
1 ), I(d2,A00

2 )}

are chosen. Further the marker sets A0
1 and A0

2 are split into four overlapping parts A10
1 , A11

1 ,

A10
2 , and A11

2 or two corresponding subset pairs A10
1 —A10

2 , A11
1 —A11

2 along the chosen coordi-

nate direction.

We illustrate the selection idea in Fig.12(b) where {Î1, Ǐ1} = {02, 08} and {Î2, Ǐ2} = {06, 10}.

Subsequently A10
1 = {06, 01, 02}, A11

1 = {02, 03, 04, 05, 06}, A10
2 = {10, 07, 08} and A11

2 =

{08, 09, 10}.

ii). Step 2 – Recursive splitting of corresponding subsets. The obtained subsets of makers

will be connected up next; the task is easy if all contain a single node and, if not, we recursively

split them simultaneously across the 2 slices until one subset in all subset pairs contains a single

node or only 2 nodes. Our idea of subdividing is to ensure the vertical distance of a subset

dividing line is minimal. Note that the total number of nodes in a subset pair is at least 3.

For simplicity, consider the subset pairA10
1 andA10

2 . Three cases may occur. Firstly, when either

A10
1 or A10

2 has a single node, then connect this single point to all points of another marker set

and return the corresponding triangles. Secondly when either A10
1 or A10

2 has exactly 2 nodes;

suppose A10
1 = {p10

1 , p
10
2 } and A10

2 = {q10
j : 1 6 j 6 m, m ≥ 2}. The split of A10

1 is easy.

Then the node in A10
2 that can minimize both d(p10

1 ,A10
2 \{q10

1 }) and d(p10
2 ,A10

2 \{q10
m }) is used

to split the other subset. The new pairs of subsets fall into the first case. Thirdly, when index

numbers of both marker sets are more than 2, especially take A10
1 = {p10

i : 1 6 i 6 n, n > 2} and

A10
2 = {q10

j : 1 6 j 6 m,m > 2}, and find d(p10
i , q

10
j ) = d(A10

1 /{p10
1 , p

10
n },A10

2 /{q10
1 , q

10
m }); then

the corresponding edge-pair p10
i —q10

j splits the marker sets A10
1 and A10

2 into four parts or two

corresponding subset pairs. Further recursively repeat the above process until all subset pairs

go through the first case; see Fig.12(c)-12(e)) for one example. Finally triangulating in each of
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Figure 12: Generation of polyhedral surface by our strategy.

slice 1 and slice 2 to obtain all triangles, we arrive at a polyhedral surface (as in Fig.12(f)).

iii). Step 3 – Completion of the polyhedral surface. Repeat Steps 1-2 for slice 2 and slice

3 to obtain the overall initial surface for φ = 0. Compute outer normals of all triangles on

the polyhedral surface to seek the inner region and outer region of the polyhedral surface by

the algorithm from [53] and complete the initial level set function φ0 such that Γ = {x ∈ Ω :

φ0(x) = 0}, Ωin = {x ∈ Ω : φ0(x) < 0} and Ωout = {x ∈ Ω : φ0(x) > 0}.

Figure 13 shows two initial solution strategies for a group of user-supplied marker sets in three

dimensions. On the left three slices of 3D datum are shown on 3D cubic space that contains marker

sets (red dots). On the middle the initial zero level surface constructed by the simplex surface strategy

is represented in a neighborhood of three slices. We show the initial zero level surface constructed

by our strategy on the right.
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(a) (b) (c)

Figure 13: Initial solution selection strategies. (a) Original datum slices and marker sets in three
slices(red dots are the markers); (b) Initial solution surface by simplex strategy; (c) Initial solution
surface by our new strategy.
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