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Abstract. Many effective models are available for segmentation of an image

to extract all homogenous objects within it. For applications where segmenta-
tion of a single object identifiable by geometric constraints within an image is

desired, much less work has been done for this purpose. This paper presents

an improved selective segmentation model, without ‘balloon’ force, combining
geometrical constraints and local image intensity information around zero level

set, aiming to overcome the weakness of getting spurious solutions by Badshah

and Chen’s model [8]. A key step in our new strategy is an adaptive local band
selection algorithm. Numerical experiments show that the new model appears

to be able to detect an object possessing highly complex and nonconvex fea-

tures, and to produce desirable results in terms of segmentation quality and
robustness.

1. Introduction. In the past two decades, image segmentation has been increas-
ingly used because of rapid development in medical and satellite imaging among
other applications. The goal of segmentation is to obtain a partition of a given
image into a finite number of semantically important regions such as homogenous
features or similar medical structures. A lot of competing approaches have been pro-
posed to model image segmentation problems, including histogram analysis, region
growing, edge detection and variational partial differential equation (PDE) methods
based on optimizing energy functionals [6, 7, 8, 14, 18, 19, 22, 25, 28, 32, 34, 37, 44],
and the research field is still much active.
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An early segmentation approach for computer vision is edge detection [5, 13, 38,
41] based on local properties of first or second order derivatives of image functions.
Kass et al. [25] proposed the first energy minimizing functional for modelling image
segmentation based on deforming a parameter curve towards the final solution curve
defining edges of the detected objects. Although this classical ‘Snake’ deformation
model was not robust and could not directly deal with changes in topology of the
curves, it introduced the powerful variational theory of energy minimization and
Euler-Lagrange partial differential equations (PDEs) into image processing which
was mostly treated in the discrete matrix setting before [5]. In improving this model,
Caselles et al. [14] gave a geodesic active contour model to overcome the weakness
of the above model and in particular allow topology changes of the evolving curves
through embedding a level set function. Mumford and Shah [34] proposed the
most celebrated variation model for segmentation of images with piecewise smooth
intensity. The model cannot be implemented directly and easily. Ambrosio and
Tortorelli [3] approximated the Mumford-Shah model by using simplified measures
of an edge length term through introducing a smoothed region for the edges (jumps).
Shen [40] considered the special case of the Ambrosio and Tortorelli model for
piecewise constant images. Also for images with piecewise constant intensity, Chan
and Vese [18] implemented the Mumford and Shah model for two phases using a
level set representation and for multiphases Vese and Chan [17, 44] similarly found
a way to implement the Mumford-Shah model. Another useful class of multiphase
global segmentation models is the piecewise constant level method of Tai et al. [43]
which only needs a single level set function to represent multiple phases. While
gradient descent methods have been most widely used, fast and reliable algorithms
for some of these models have been proposed in [6, 7, 24, 43].

The above variational models aim to segment a given image to find all meaningful
objects within it. However in some applications e.g. medical diagnosis, surgery sim-
ulation, object tracking etc., it is absolutely necessary to locate a particular object
among all objects in an image. For instance, a specialist doctor in diagnosis of a dis-
ease progression of a particular organ is only interested in the interested organ, not
even adjacent organs while, understandably, when monitoring a particular suspect
in a large crowd, one is only interested in precisely locating the intended suspect,
not any other irrelevant people. Of course, one may start evolving an active contour
from within or near the desired object and hope to locate its precise boundary. This
works well for some problems. However unless neighbouring objects are far apart,
the above global minimization models cannot reliably locate a single object.

Recently Gout et al. [22] and Badshah and Chen [8] proposed different selective
segmentation models to tackle this feature selection problem. Both models are
effective for segmenting a class of images. The former is a geodesic active contour
model of parabolic PDEs; since it is an edge based model, its main weakness (as
shared by all edge based models) is a lack of robustness in dealing with image noise.
The latter model combined the edge detection ideas of the former with global domain
based energy minimization idea of [18], resulting in improved robustness in dealing
with image noise. However for some problems, both models can fail or cannot isolate
a single and intended object; often adjacent objects as well as the intended object
are picked up. In fact, if adjacent objects have a similar image intensity value C1

to the intended object, the Badshah and Chen [8] model will converge to all such
objects having similar image intensity of value C1 i.e. the model fails to achieve
the desired object selection; stopping the iteration early is one way of getting good
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approximations. In some cases, one may observe the unfortunate scenario where an
evolving curve passes through the boundary of the desired object and moves away
from it instead of stopping. This motivates us to think about a way of using local
intensity information to inform the model to stop at intended object boundaries.

In the literature, the concept of local geometric information has been used several
times before [45, 37, 26, 27, 33, 35, 39]. The first idea is to use the numerical
methodology by [30, 1, 2, 39] known as fast marching methods, which were later
extended in [23], through evolving boundary contours in a neighbourhood of the
underlying zero level set curves instead of solving for the level set function in the
entire image domain. The second idea is to build narrow band approximations into
the variational formulation [27, 33]. Our preliminary results from using the second
idea by adopting the Lankton et al. [26] and Mille [33] methods in a narrow band
variant of the Badshah and Chen [8] model suggest that the improvement is visible
but it can still not deal with some examples for selective segmentation. The major
problem with a fixed narrow band around the evolving contour is that the choice
of band width is problem dependent; if the width is too large, the active contour
is likely to pass through object boundary and detect other neighboring objects and
if it is small, the active contour may not always evolve towards the desired image
boundary.

In this paper, we propose an adaptively varying narrow band algorithm to seg-
ment a large class of image problems, particularly problems that cannot be seg-
mented by the previous methods and the fixed narrow band method.

The rest of this paper is organized as follows. In Section 2, we briefly review the
Chan-Vese segmentation model [18] and the image selective segmentation model
by Badshah and Chen [8]. In Section 3, we first present a fixed γ-band method
(F-M) based on local image features and a narrow band region, aiming to capture
only local image intensity surrounding zero level and selectively extract one marked
object from a given image. Then we give our variable γ-band method (V-M) and
analyze the local function b(φ, γ) to highlight the performances of our proposed
model. The gradient descent method [18, 16, 17, 42] is employed to solve the our
minimization models. In Section 4, we show some numerical results using our new
model for both synthetic and medical images in addition to comparing with the
Badshah-Chen method [8], a global method and the Lankton-method [26]. We
conclude this paper in Section 5.

To proceed, let the image domain Ω ⊂ R2 be open and bounded, f = f(x) be
the given image and φ : Ω → R be a Lipschitz continuous level set function in Ω.
Then Γ = {x ∈ Ω : φ(x) = 0} is the zero level set (curve), that will divide Ω into
two segmented domains:

Ωin = {x ∈ Ω : φ(x) < 0}, Ωout = {x ∈ Ω : φ(x) > 0}

with Ω=Ωin ∪Γ∪Ωout. Let ∇φ(x1, x2) = (φx1 , φx2) be the gradient of the level set

function φ(x), where φxj
= ∂φ

∂xj
, j = 1, 2. Let A = {x̂i : i = 1 . . . np} is a marker set

which is given on or near the boundary of a detected object in a given image f(x)
which can be used to define an initial contour and to guide its evolution towards Γ.

2. Review of two existing models. In this section, we mainly review the Chan-
Vese model [18] as an example of a global segmentation model and the Badshah and
Chen image selective segmentation model [8] of combining geometrical constraints
with the piecewise constant intensity fitting conditions. The latter model finds
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the desired interface Γ by minimizing of an energy functional under several given
markers.

Denote by H(z) the Heaviside function and by δ(z) = H ′(z) the Delta function.
Then the length of Γ can be computed by

∫
Ω
g(x)|∇H(φ(x))|dx. In implementa-

tions, both H(z) and δ(z) shall be regularized as follows [18, 19, 45, 35]:

(1) Hε(z) =


1, z > ε;

(
z

2ε
+

1

2π
sin

πz

ε
+ 1),|z| 6 ε;

0, z < −ε,

δε(z) =


1

2ε
(1 + cos

πz

ε
),|z| 6 ε;

0, |z| > ε,

where δε(z) = H ′ε(z), or alternatively

Hε(z) =
1

2
(1 +

2

π
arctan(

z

ε
)), Hε(z) =


1, z > ε;

− z3

4ε3
+

3z

4ε
+

1

2
, |z| 6 ε;

0, z < −ε.

Finally denote by ~n = ∇φ
|∇φ| the normal direction on level lines of φ and the mean

curvature by κ = ∇ · ∇φ|∇φ| ; refer to [35].

2.1. The Chan-Vese model. The Chan and Vese model [18] considers the simple
case where the image f(x) can be approximated by two regions of piecewise constant
image intensity, separated by the boundary Γ. Denote these (unknown) intensity
values by C1 and C2. Assume that the region of interest is represented by C1 inside
Γ whereas, outside Γ, the intensity of f(x) is approximately C2.

The Chan-Vese model minimises the following energy functional

(2) E(Γ, C1, C2) =

∫
Γ

ds+
{∫

Ωin

(f(x)− C1)2dx+

∫
Ωout

(f(x)− C2)2dx
}

where C1 and C2 are two constants that respectively approximate the image in-
tensity in Ωin and Ωout. This is a reduced Mumford-Shah functional introduced
in [34] for a general piecewise smooth image f(x) which is not amenable to di-
rect implementation; approximations to the Mumford-Shah functional can lead to
amenable implementations [3, 19]. With a level set formulation, the above energy
minimization problem can be written as

Eε(φ,C1, C2) =

∫
Ω

δε(φ(x))|∇φ(x)|dx+
{∫

Ω

[1−Hε(φ(x))](f(x)− C1)2dx

(3) +

∫
Ω

Hε(φ(x))(f(x)− C2)2dx
}
.

Firstly keeping the level set function φ(x) fixed and minimizing the functional
Eε(φ,C1, C2) with respect to C1 and C2, one derives

(4) C1 =

∫
Ω

[1−Hε(φ(x))]f(x)dx∫
Ω

[1−Hε(φ(x))]dx
, C2 =

∫
Ω
Hε(φ(x))f(x)dx∫
Ω
Hε(φ(x))dx

.
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Secondly fixing constants C1 and C2 in Eε(φ,C1, C2), by first variations with respect
to φ(x), then we derive the following level set evolution equation:

∂φ

∂t
= δε(φ)∇ ·

( ∇φ
|∇φ|

)
+ δε(φ)

{
(f(x)− C1)2 − (f(x)− C2)2

}
,

δε(φ)

|∇φ|
∂φ

∂~n
= 0 on ∂Ω.

(5)

The above model offers a very powerful, flexible method that can successfully
segment many types of images, including some that would be difficult or impossible
to segment with edge-based methods. Of course, there exist many other methods for
global segmentation; see [19, 29, 43] and the references therein. In addition, Chan,
Esedoglu and Nikolova [15] proposed a convex approach to improve the Chan-Vese
model for solving noise removal and image segmentation problems; Brown, Chan
and Bresson [10] developed a multi-phase piecewise constant image segmentation
model based on convex approach, more details also refer to [9, 21, 11]. Such mod-
els overcame sensitivity of Chan-Vese model employing the level set formulation to
the initialization and the selection of parameters, though they still are global seg-
mentation models (extract all such objects having similar image intensity, not one
satisfying the expected selection requirement). Hence, whenever the functionality
of selectivity is needed, global segmentation methods are not suitable. For example
in Fig. 10, we might like to segment the right kidney only whilst the above meth-
ods will give the kidney along with other organs. With any subsequent manual
selection, this defeats the objective of automatic segmentation.

2.2. The Badshah-Chen model. To only detect the boundary of a single ob-
ject among all homogeneity intensity objects, improving on the edge-based model
of Gout et al. [22], Badshah and Chen [8] proposed an image selective segmenta-
tion energy functional combining edge detection under geometrical constraints with
intensity fitting terms similar to Chan-Vese [18] as follows:

E(Γ, C1, C2) = αEedge(Γ) + Efitting(Γ, C1, C2)

(6)

= α

∫
Γ

d(x)g(x)ds+

{
λ1

∫
Ωin

|f(x)− C1|2dx+ λ2

∫
Ωout

|f(x)− C2|2dx

}
.

This model delivers the objective of selectivity and inherits the advantages of the
Chan-Vese model: (i) it can detect contours of the image with low variations of
intensity gradients; (ii) it also can segment a noisy image without smoothing the
image. Using a level set formulation, they derived first the Euler-Lagrange equation
from minimizing the energy and then the following evolution equation (6):

(7)
∂φ

∂t
= δε(φ)

(
α∇ ·

(
d(x)g(x)

∇φ
|∇φ|

)
+ λ1(f(x)− C1)2 − λ2(f(x)− C2)2

)
where d(x) is a marker distance function, which is close to zero when towards the
given markers and to one elsewhere, and g(x) is an edge detector function which
is constructed to take small values (towards 0) near image edges and large values
(towards 1) in flat regions.

As with methods of geodesic active contours, the idea behind g(x) is that the
large gradient |∇f(x)| of image f(x) indicates an edge so in most active contours
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models [14, 8, 19, 22, 25] a decreasing function g of the gradient |∇f(x)| is chosen
as an edge detector. A typical example in image segmentation is the following

g(x) =
1

1 + a|∇f(x)|2

with a > 0, and there also exist other variants [19] e.g. g(x) = exp(−b|∇f(x)|s), b >
0, s > 0 or g(x) = −|∇f(x)|2 – a negative function. To deal with noise, ∇f(x)
shall be replaced by its smoothing image ∇fσ. We remark that a related but less
commonly used nonlinear choice is to take g(u(x)) = eiv/(1 + (Im(u)/kv)2), with
v ≥ 0, k > 0, in a complex formulation [20, 4]. In [22, 8], the following distance
function is used:

(8) d(x) = d1(x) =

np∏
i=1

(
1− exp(−|x− x̂i|

2

2σ2
)
)

where normally σ = 4 or σ = 3. Anther distance function is presented in [22] as
follows:

(9) d(x) = d2(x) =
min
x̂i∈A

|x− x̂i|

max
x̂i∈A

max
x̄∈Ω
|x̄− xi|

=
1

M
min
x̂i∈A

|x− x̂i|.

Clearly with the above choices for equation (7), the contour Γ is encouraged to
evolve into the neighborhood of markers by optimizing d(x), while it is to stop on
edges (i.e. high values of the gradient) of the desired object by optimizing g(x).
This is true if the last 2 terms of (7) are not dominant.

At initial iterations, the coefficient g(x)d(x) is not yet small. To encourage faster
evolution, a ‘balloon’ force term βd(x)g(x)|∇φ(x)| is added [8] to the equation (7)
to attract the contours to the correct boundaries where g(x)d(x) ≈ 0 as used by
[14, 22] previously.

However the Badshah-Chen model [8] is only a practical model and not a theo-
retically robust model, because asymptotically its solution is dominated by global
image intensity fitting terms and tends to that of global segmentation (i.e. cap-
turing all objects having similar image intensity). Since in some applications it is
absolutely necessary to segment a particular object among all similar intensity ob-
jects, there is an urgent need for local and selective models. This is rather like the
case of an inverse scale-space method for image denoising [12], starting from a clean
and flat image and converging to the noisy image. As shown in Fig.1 for model [8],
the contour is already evolved into Γ (which is the intended extraction) at (a) but
the method has not converged, while (b-c) are already too late to stop. Here, the
test image in Fig.1 is of size for 512× 512 with f(x) : Ω→ [0 255], α = 0.1× 2552

and λ1 = λ2 = 1. Fig.1(b) is the result after 200 iterations (passing through the
desired solution of a concave box satisfying the expected selection requirement).
The final result stops in incorrect contours of Figure 1(c) after 642 iterations. The
Badshah-Chen model fails to segment selectively this concave box. Clearly, it is
crucial to know when to terminate iterations, before converging to the wrong so-
lution. This motivates us in this paper to use different fitting terms and to stop
automatically.

3. An improved model based on local features. The primary aim of this sec-
tion is to present our new selective segmentation model to overcome the drawbacks
of [8]. To introduce it, our initial model is based on local intensity information [33]
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(a) (b) (c)

Fig. 1. Evolving sequences of the Badshah-Chen method passing
through the desirable solution of (a).

of the segmented image and geometrical constraints as in [8], so only pixels in a
neighborhood (i.e. a fixed narrow band region) of zero level curve are used in data
fitting; we hope other homogenous objects do not attract the contour. It turns out
that this initial model does improve on [8] but it is not robust enough with respect
to the fixed band width. We further propose a robust variable band model which
selects the band width adaptively as the curve evolves.

Below we shall give first our fixed band model and then our recommended variable
band model.

3.1. A Fixed-γ Method based on local features. We first generalize the Badsh-
ah-Chen model [8] to a local constrained minimization segmentation model (denoted
by F-M) using narrow band fitting terms

(10) min
Γ,C1,C2

{
E(Γ, C1, C2) = αEG(Γ) + EF (Γ, C1, C2)

}
where EG(Γ) =

∫
Γ
G(x)ds and G(x) = g(x)d(x) as in Badshah and Chen [8], and

(11) EF (Γ, C1, C2) =

{
λ1

∫
Ωin(Γ)

(f(x)− C1)2dx+ λ2

∫
Ωout(Γ)

(f(x)− C2)2dx

}
,

with Ωin(Γ) and Ωout(Γ) denoting the γ-band inside and outside region from Γ
respectively as in [33]. Since we assume that φ is negative inside the desired region
and positive outside it, then the local fitting energy function

(12) b(φ(x), γ) = H(φ(x) + γ)(1−H(φ(x)− γ))

characterizes the domain Ωγ = Ωin(Γ)∪Γ∪Ωout(Γ) which is a narrow band region
surrounding the local boundary Γ; inside Ωγ , b = 1 and elsewhere b = 0. Other
local energies [26, 27] may also be introduced into this model.

From properties of the Heaviside function H(φ), i.e. (1 − H(φ))b(φ(x), γ) = 1
in Ωin(Γ) and H(φ)b(φ(x), γ) = 1 in Ωout(Γ), the above optimization problem (10)
can be rewritten as:

min
φ,C1,C2

α

∫
Ω

G(x)|∇H(φ)|dx+

{
λ1

∫
Ω

(1−H(φ))b(φ(x), γ)(f(x)− C1)2dx

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX
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(13) + λ2

∫
Ω

H(φ)b(φ(x), γ)(f(x)− C2)2dx

}
Further when the level set function φ is fixed, the local mean intensity values C1,
C2 respectively inside and outside regions of a zero level set curve are given by:

C1 =

∫
Ω

(1−H(φ))b(φ(x), γ)f(x)dx∫
Ω

(1−H(φ))b(φ(x), γ)dx
, C2 =

∫
Ω
H(φ)b(φ(x), γ)f(x)dx∫
Ω
H(φ)b(φ(x), γ)dx

.(14)

When C1, C2 are fixed, we calculate the Gâteaux derivatives of the energy functional
in (13) and deduce the following Euler-Lagrange equation for φ:

−αδε∇ ·
(
G(x)

∇φ
|∇φ|

)
− λ1

[
δε(φ)b(φ, γ)− (1−Hε(φ))

∂b(φ, γ)

∂φ

]
(f − C1)2

+ λ2

[
δε(φ)b(φ, γ) +

∂b(φ, γ)

∂φ
Hε(φ)

]
(f − C2)2 = 0;

G(x)
δε(φ)

|∇φ|
∂φ

∂n

∣∣∣∣∣
∂Ω

= 0,

(15)

where Hε is a regularised Heaviside function by (1). The above PDE may be solved
by a gradient descent method as used by [19, 35].

For practical applications our F-M is stopped if the maximum number of gradient
descent iterations is reached (usually it = 3000), or the relative error in two consec-
utive iterative steps is smaller than a small number η0 > 0 (typically η0 = 10−11 for
a convergence test and only η0 = 10−6 for a practical segmentation), or the number
of entire inner pixels of zero level is smaller than 10. Here let EL FM local denote
the time marching evolving process solving the Euler-Lagrange equation (15), where
the previous step φn and band width γ̄ are fixed. A pseudo-code implementation
of our F-M is then summarized in the following algorithm:

Algorithm 1 (A Fixed-γ Method based on local features).

step 1. Input markers set: A = {x̄` = (x`1, . . . , x
`
m)T : ` = 1, . . . , ¯̀}, m = 2

for 2D problem and m = 3 for 3D problem. Set the localizing

parameter: inner γ̄ and the initial level set function φ0.
Set n = 0 and it = 2.

step 2. Re-initialize the level set function φn.
step 3. Solve the evolving equation (15):

- φn+1 = EL FM local(φn, γ̄, it);
step 4. Check for convergence using the above criteria.

- If not satisfied; set n = n+ 1 and go to step 3.;
- Else return solution φ∗ = φn+1 ;

We remark that this model is based on geodesic active contours and local intensity
fitting conditions in which an edge detector attracts the curve to the boundary of
an object once an active contour is close to the boundary. Since local region terms
are more likely to capture the mean intensity of the inside and outside regions
immediately around zero level curves than global fitting terms, such a model can
segment selectively an object with weak edges (i.e. low intensity contrast near
edges) than the previous model [8], provided that the initial contour is suitable and

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX
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the user supplied band width γ is appropriate. As we see, the latter assumptions
turn out to be the main weak points of the F-M model – essentially the localizing
parameter γ is sensitive and image dependent in order for the model to achieve
selectivity all the time.

Specifically, since the localizing parameter γ drives the local function b(φ, γ) in
energy functional E(φ,C1, C2) in a dominant way, a small γ helps b(φ, γ) to capture
less image features and the contour may stop the steady state without reaching the
intended object boundary or shrink to a point. Conversely if γ is too large, the
active contour is likely to detect other objects which would also fail the selectivity
functionality of the model.

3.2. A Variable-γ method based on local features. The central question is
how to select γ automatically because it is in general unknown a priori. But we know
that intensity variations within inner and outer narrow regions are approximately
zero when the zero level curve stops on the object boundary. This observation can
be explored by varying the band widths in order to automatically select the band
width that helps reducing such intensity variations. This locally optimal band width
leads to our variable-γ method. Therefore the basic idea for finding the optimal γ
automatically is to select from the extremal points of two functions (defined shortly):
a mean intensity variation function and a local mean intensity variation function
with respect to the localizing parameter γ surrounding the zero level curve.

In our proposed method below, we shall treat Ωin(Γ) and Ωout(Γ) separately and
hence there is no need to use the same γ parameter. To this end, we shall redefine
them using different γ’s. In particular, let Ωin(Γ) denote the γin-band inside region
from Γ and Ωout(Γ) the γout-band outside region from Γ. Then we redefine the local
fitting energy function as

(16) b(φ(x), γin, γout) = H(φ(x) + γin)(1−H(φ(x)− γout))
which characterizes the narrow band domain Ωγin,γout = Ωin(Γ) ∪ Γ ∪ Ωout(Γ)
which is a narrow band region surrounding the local boundary Γ. As before in-
side Ωγin,γout

, b = 1 and elsewhere b = 0. Even with two parameters γin, γout, as
long as they are fixed, the local model will be similar to F-M. That is, we solve

min
φ,C1,C2

α

∫
Ω

G(x)|∇H(φ)|dx+

{
λ1

∫
Ω

(1−H(φ))b(f(x)− C1)2dx

+λ2

∫
Ω

H(φ)b(f(x)− C2)2dx

}(17)

instead of (13) and the main level set equation

−αδε∇ ·
(
G(x)

∇φ
|∇φ|

)
− λ1

[
δε(φ)b− (1−Hε(φ))

∂b

∂φ

]
(f − C1)2

+ λ2

[
δε(φ)b+

∂b

∂φ
Hε(φ)

]
(f − C2)2 = 0,

(18)

instead of (15), where b = b(φ(x), γin, γout). In each optimization step, we first
choose optimized γin, γout and then update C1, C2, φ.

However, our idea below is to select γin, γout in an automatic way. The selection
is based on changes of the fitting terms as a function of such band parameters.
Minimizing such a function locally provides the optimized band widths. Once this
is done, our resulting model will be a variable γ-model (to be denoted by V-M).

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX
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To proceed, we first discuss γin and the inside band region Ωin. Note [1 −
H(φ)]b(φ, γin, γout) = [1−H(φ)]H(φ+ γin) which is 1 inside Ωin and 0 elsewhere.
In Ωin, define its mean intensity variation function MIVin(γin) for a given level set
function φ as the derivation from its mean intensity MIin(γin) by

MIVin(γin) =

{∫
Ω

[1−H(φ)]H(φ+ γin)[f(x)−MIin(γin)]2dx∫
Ω

[1−H(φ)]H(φ+ γin)dx

} 1
2

,

MIin(γin) =
Iin(γin)∫

Ω
[1−H(φ)]H(φ+ γin)dx

,

Iin(γin) =

∫
Ω

[1−H(φ)]H(φ+ γin)f(x)dx.

(19)

An extremal point set of MIVin(γ) in [γmin−1, γmax] can be defined by:

Θin =
{
γ :
(

arg max
γmin−1<γ≤γmax

MIVin(γ)
)
∪
(

arg min
γmin−1<γ≤γmax

MIVin(γ)
)}

where we assume γmin, γmax are two given bandwidths with γmax > γmin > 1 and
in the discrete setting γmin ≥ 2. See Fig.3(b) for one illustrating example of these
definitions.

If min
γ

Θin < γmax, then it is a suitable candidate for γin. If not, i.e. min
γ

Θin =

γmax, we have to use an extra test to see if γin = γmax is appropriate as unnecessarily
large γin might help the evolving curve to capture nearby objects. Note that for a
fixed band gap δγ > 0, the quantity [1−H(φ)][H(φ+ γ + δγ)−H(φ+ γ)] defines
the narrow strip of width δγ near the narrow band γ. This further test is based on
the local mean intensity variation function LMIVin(γ) within this band gap:

LMIin(γ) =
Iin(γ + δγ)− Iin(γ)∫

Ω
[1−H(φ)][H(φ+ γ + δγ)−H(φ+ γ)]dx

;

LMIVin(γ) =

{
K∫

Ω
[1−H(φ)][H(φ+ γ + δγ)−H(φ+ γ)]dx

} 1
2

,

(20)

where K =
∫

Ω
[1−H(φ)][H(φ+γ+δγ)−H(φ+γ)][f(x)−LMIin(γ, δγ)]2dx. Define

an extremal point set of LMIVin(γ) in [γmin−1, γmax] by:

Ξin =
{
γ :
(

arg max
γmin−1<γ≤γmax

LMIVin(γ)
)
∪
(

arg min
γmin−1<γ≤γmax

LMIVin(γ)
)}
.

Then in this case, min Ξin is a suitable choice for γin. Fig.2 illustrates the setup of
the above two definitions for a simple and evolving boundary Γ. Therefore the local
parameter γin describing the local inside domain Ωin is automatically selected by

γ̌in =


min
γ

Θin, if min
γ

Θin < γmax;

min
γ

Ξin, otherwise.

Similarly to the inner γin-choice, the procedure for selecting γout only requires mi-
nor modifications since the main change is to replace the local characteristic function
[1−H(φ)]b(φ, γin, γout) = [1−H(φ)]H(φ+γin) for domain Ωin by H(φ)b(φ, γin, γout)

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX
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(a)

(b)

Fig. 2. Illustration of domains for mean intensity calculations
(Top: MI and Bottom: LMI).

= H(φ)[1−H(φ− γout)] for the local domain Ωout. The modified formulae are

Iout(γ) =

∫
Ω

H(φ)[1−H(φ− γ)]f(x)dx;

MIout(γ) =
Iout(γ)∫

Ω
H(φ)[1−H(φ− γ)]dx

;

MIVout(γ) =

{∫
Ω
H(φ)[1−H(φ− γ)](f(x)−MIout(γ))2dx∫

Ω
H(φ)[1−H(φ− γ)]dx

} 1
2

;

(21)

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX
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LMIout(γ) =
Iout(γ + δγ)− Iout(γ)∫

Ω
H(φ)[H(φ− γ)−H(φ− γ − δγ)]dx

;

LMIVout(γ) =

{
K1∫

Ω
H(φ)[H(φ− γ)−H(φ− γ − δγ)]dx

} 1
2

,

where K1 =
∫

Ω
H(φ)[H(φ − γ) − H(φ − γ − δγ)][f(x) − LMIout(γ, δγ)]2dx, and

Θout, Ξout are similarly defined. Hence

γout =


min
γ

Θout, if min
γ

Θout < γmax;

min
γ

Ξout, otherwise.

In numerical implementations, in a discrete setting, we naturally take positive
integers for γin, γout and set δγ = 1. Then Θin and Ξin can be simplified to the
following Θ̄in and Ξ̄in respectively:

Θ̄in =
{
γmax

}
∪
{
γ ∈ N : γmin ≤ γ ≤ γmax such that

MIV (γ) ≤MIV (γ − 1) and MIV (γ) < MIV (γ + 1))
}

∪
{
γ ∈ N : γmin ≤ γ ≤ γmax such that

MIV (γ) ≥MIV (γ − 1) and MIV (γ) > MIV (γ + 1))
}

;

Ξ̄in =
{
γmax

}
∪
{
γ ∈ N : γmin ≤ γ ≤ γmax such that

LMIV (γ) ≤ LMIV (γ − 1) and LMIV (γ) < LMIV (γ + 1))
}

∪
{
γ ∈ N : γmin ≤ γ ≤ γmax such that

LMIV (γ) ≥ LMIV (γ − 1) and LMIV (γ) > LMIV (γ + 1))
}
.

We also remark that small oscillations may be associated with the computed quan-
tities MIVι(γ) and LMIVι(γ) (with ι =′ in′/′out′) if image noise is present.
To alleviate the effect of image noise or false boundaries, then all we need to
do is to replace absolute inequality tests by relative inequality ones, e.g., the
comparison of MIVι(γi),MIVι(γi+1) is replaced by |MIVι(γi) − MIVι(γi+1)| <
η3|MIVι(γi) + MIVι(γi+1)| for some 0 < η3 < 1 — if true, the difference is small
and γi is not considered as an extremal point.

Now the overall procedure of finding an optimal γι is summarized below in Al-
gorithm 2. Using Algorithm 2, we would obtain two independent and optimized
parameters γ̌in and γ̌out. We hope to refine them, if they are quite different, in
the case of both small gradient variations and small intensity variations in Ωin as
well as Ωout; the idea is to take large values in this case. Define the mean gradient
variation in Ωin and Ωout respectively by

MGIin(γ̌in) =

∫
Ω

[1−H(φ)]H(φ+ γ̌in)|∇f(x)|dx∫
Ω

[1−H(φ)]H(φ+ γ̌in)dx
;

MGIout(γ̌out) =

∫
Ω
H(φ)[1−H(φ− γ̌out)]|∇f(x)|dx∫

Ω
H(φ)[1−H(φ− γ̌out)]dx

.

(22)

Then the special case that we are concerned with is when

|MIin(γ̌in)−MIout(γ̌out)|
|MIin(γ̌in) +MIout(γ̌out)|

<
η1

2
and

|MGIin(γ̌in)−MGIout(γ̌out)|
|MGIin(γ̌in) +MGIout(γ̌out)|

<
η2

2

for some small η1, η2 such that 0 < η1, η2 < 1. If so, unless γ̌in = γ̌out, we will set
the smallest quantity to be γmax.

Inverse Problems and Imaging Volume 8, No. 1 (2014), X–XX
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Algorithm 2 (Inner or outer γ-choice).
γ̌ = Band width(γmin, γmax, η3, ι)
% ι =′ in′ — compute inner γ-choice;
% ι =′ out′ — compute outer γ-choice.

Step 1. set i=1; γ0 = γmin − 1;
Step 2. find the first γi > γi−1 such that γi ∈ Θ̄ι;
Step 3. if γi 6= γmax; find the first γi+1 > γi such that γi+1 ∈ Θ̄ι;

else set γ̌ = γi and go to step 5;
Step 4. if |MIVι(γi)−MIVι(γi+1)| < η3|MIVι(γi) +MIVι(γi+1)|;

- i=i+2, and go to step 2;
else set γ̌ = γi and go to step 5;

Step 5. if γ̌ < γmax; return γ̌;
else go to step 6;

Step 6. set i=1; γ0 = γmin − 1;
Step 7. find the first γi > γi−1 such that γi ∈ Ξ̄ι;
Step 8. if γi 6= γmax; find the first γi+1 > γi such that γi+1 ∈ Ξ̄ι;

else set γ̌ = γi and return γ̌;
Step 9. if |LMIVι(γi)− LMIVι(γi+1)| < η3|LMIVι(γi) + LMIVι(γi+1)|;

- i=i+2, and go to step 7;
else set γ̌ = γi and return γ̌.

So finally our implementation of the proposed γ-choice will be based on many
quantities of inside and outside respectively: the mean variations MIV (γ), the
local mean variations LMIV (γ), the mean values MI(γ̌) and the mean gradient
variations MGV (γ̌) as summarized in the following Algorithm 3. Usually we fix

Algorithm 3 (A robust localizing parameter-choice algorithm (RLPCA)).
[γin, γout] = RLPCA(γmin, γmax, η1, η2, η3)
• Compute inner and outer band width via Algorithm 1:

- γ̌in = Band width(γmin, γmax, η3,
′ in′);

- γ̌out = Band width(γmin, γmax, η3,
′ out′).

• Compute MIin(γ̌in), MIout(γ̌out), MGIin(γ̌in) and MGIout(γ̌out); then

– If
∣∣∣MIin(γ̌in)−MIout(γ̌out)
MIin(γ̌in)+MIout(γ̌out)

∣∣∣ < η1/2 and
∣∣∣MGIin(γ̌in)−MGIout(γ̌out)
MGIin(γ̌in)+MGIout(γ̌out)

∣∣∣ <
η2/2,
∗ if γ̌in < γ̌out

- γin = γmax, γout = γ̌out;
∗ elseif γ̌in > γ̌out

- γin = γ̌in, γout = γmax;
∗ else

- γin = γ̌in, γout = γ̌out.
∗ endif

– Else
- γin = γ̌in, γout = γ̌out.

– Endif

two γ constraints as γmin = 2 and γmax = 30, and the other parameters as follows:
η1 = 0.1, η2 = 0.2 and η3 = 0.1.
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Fig. 3. Inner and outer γ-choice by Algorithm 3. (a) the
tested zero level; (b) Mean variation MIVin(γ) and MIVout(γ)
with respect to localizing parameter γ; (c) Local mean variation
LMIVin(γ) and LMIVout(γ) with respect to localizing parame-
ter γ; (d) Donuts with donut radiuses are localizing parameter
r = γin = 17 and r = γout = 8 selected by Algorithm 3, respec-
tively.

To illustrate our γ-choice by Algorithm 3, we consider one image with an initial
guess (denoted by a large circle on the triangle shape) as shown in Fig.3(a) where we
set γmin = 2, γmax = 30. Fig.3(b) shows the mean variation curves of MIVin(γ) and
MIVout(γ) as defined by (19) and (21); one observes that MIVin(γ) is an increasing
function with respect to γ so γin has to be decided by using LMIVin(γ). But
MIVout(γ) has a clear extremal point and defines an optimal parameter γout = 8.
Fig.3(c) shows the local mean variation curves of LMIVin(γ) and LMIVout(γ)
by (20) and (3.2); our concerned MIVin(γ) curve has three extremal points γ =
17, 23, 29 so we take the optimal value γin = 17. The other curve MIVout(γ) is not
needed but it shows two extremal points γ = 6, 19 (which would suggest γout = 6
if it is not yet decided). Thus on this initial optimization step, Fig.3(d) indicates
that the optimal choices are γin = 17, γout = 8 by Algorithm 3. Further we found
that MIin = 202.4,MIout = 250.1,MGIin = 9.8 and MGIout = 4.3 (i.e. gradient
variations not small) so we do not need to reset γin = 17, γout = 8.
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An explicit scheme for a gradient descent method for equations (15) and (18) is
implemented in our numerical experiments. As with F-M, our V-M is also stopped
if the maximum number of evolving iterations is reached (usually it = 3000), or
the relative error in two consecutive iterative steps is smaller than a small number
η0 > 0 (typically η0 = 10−6 for a practical segmentation), or the total number of
pixels of φ < 0 is smaller than 10. A pseudo-code implementation of our V-M is
then summarized in Algorithm 4.

Algorithm 4 (A Variable-γ Method based on local features(V-M)).

step 1. Input markers set: A = {x̄` = (x`1, . . . , x
`
m)T : ` = 1, . . . , ¯̀}, m = 2

for 2D problem and m = 3 for 3D problem. Define γmax, γmin, and
the initial level set function φ0. Let set n = 0 and it = 2.

step 2. Re-initialize the level set function φn by some algorithm

(e.g. multigrid).
step 3. Obtain inner and outer band-width via Algorithm 2:

- [γnin, γ
n
out] = RLPCA(γmin, γmax, η1, η2, η3);

step 4. Update C1, C2 and then solve the evolving equation (18):
- φn+1 = EL VM local(φn, γnin, γ

n
out, it);

step 5. Check for convergence using the criteria as with F-M.
- If not satisfied, set n = n+ 1 and go to step 3;
- Else return solution φ∗ = φn+1.

4. Numerical experiments. The main aim of this section is to show that our
new Algorithm 4 is effective and robust in selectively segmenting the desired object
boundary from different initial solutions and for synthetic and real medical images.
In all experiments, a marker set A = {xi = (x1

i , x
2
i ) : i = 1, . . . , np} is given around

the boundary of the desired object, and the fitting weight λ1 = λ2 = 1 is fixed.

4.1. Refinements for the geometric constrained term. In this subsection, we
briefly give the details on how to improve the performances of model by employing
the geometric constrained term(other explains also refer to [8, 22]). Here we only
explain how the markers distance function performs when a marker set is supplied,
and see more details about the edge function in [14].

In Fig.4, we test the above markers distance functions d1(x) from (8), d2(x) from
(9) and our improving distance function d3(x) which is essentially d1(x) with a fixed
σ replaced by σ = σ̄ = max (σ1, σ0) and σ1 = min1≤i<j≤np |xi−xj | (to allow flexible
scaling). Here all test images are of size 512×512 and the black regions indicate that
the edge function approaches to 0, the white regions denote their intensities close
to 1, red circles show the location of the markers. Fig.4(b) shows the performance
of d1(x) with σ = 4 like in [8, 22] where only very small regions are effected by the
marker set and, furthermore if the initial zero level is given the location of outside
of this region, its influence also will be lost; so the performance of this function
in model also is negligible. We can also observe that d2(x) extends its influence
in a much large region which unfortunately would encourage an evolving curve
to reach other unintended objects. Our improving distance function d3(x) with
automatically tuned parameter σ̄ is shown in Fig.4(d) where a large but localised
capturing region is found. So we recommend the improved d3(x) as the new distance
function in our model.
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(a) Image and Markers. (b) Distance function d1(x) with a fixed σ = 4

[8, 22].

(c) Distance function d2(x). (d) Our advising distance function d3(x).

Fig. 4. Comparison of three distance functions

Clearly with the above choices for the markers distance function, the contour Γ
is encouraged to evolve into the neighborhood of markers by optimizing d(x) (espe-
cially when one reduced the weight of the local intensity fitting term), whereafter
the edge function and the local intensity energy will play important roles in driving
the contour Γ to the edge of object.

Before we test the proposed numerical algorithm, we first remark on how the
markers influence the results; several examples in Fig.5 illustrate the efficiency of
the locations of the markers for the selective segmentation problem. The successful
cases include setting

– four markers within Γ in Fig.5(a);
– five markers around the edge Γ in Fig.5(b);
– five markers outside but near the edge Γ in Fig.5(c).

As somehow expected, the unsuccessful cases include setting
– six markers far away from Γ in 5(d);
– four markers to define an initialization covering both part of the intended

object and another unintended object in Fig.5(e).

Although three markers provide a minimum set for our model to work, increasing
the marker set would help fast and selective segmentation.

4.2. The tests for proposed fixed- and variable-γ methods. In this subsec-
tion, through experiments, we aim to

1. demonstrate the advantages of our V-M over the F-M in delivering a successful
segmentation result for different regularization parameters α.
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(a) Initialization Inside Γ: successful (b) Near Γ: successful

(c) Just Outside Γ: successful (d) Away from Γ: unsuccessful

(e) Including other objects: unsuccessful

Fig. 5. Test on the influence of geometric marker sets and initial-
ization on model performance.

2. compare the V-M with our F-M with a range of fixed parameters γ to conclude
that there does not exist a robust choice.

3. show the advantages of the V-M over the F-M in selectively segmenting a
noisy image.

Two test sets will be used in this subsection, to be named as Test1A, Test1B
respectively as represented in Fig.6. For simplicity, below, we use the symbol “8”
to denote a failed segmentation result, “w” a result with redundant objects (also
failed) and “4” a success.

4.2.1. Dependence tests on the regularization parameter α. The regularization pa-
rameter α in a global segmentation model not only controls a balance of the terms
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(a) Initial solution φ1 in Test1A. (b) Initial solution φ2 in Test1A.

(c) Initial solution φ3 in Test1A. (d) Initial solution φ1 in Test1B.

(e) Initial solution φ2 in Test1B. (f) Initial solution φ3 in Test1B.

Fig. 6. Test datasets. Problem Test1A with three different initial
guesses φ1, φ2 and φ3 followed by Problem Test1B with further
three different initial guesses φ1, φ2 and φ3 from top/left to bot-
tom/right, where red stars are markers constraining the target.

but also implicitly defines the minimal diameter of detected objects among a pos-
sibly noisy background. For (10), we investigate out variable-γ method and the
fixed-γ method for different regularization parameters α. We take Test1A and
Test1B as shown in Fig.6 to illustrate comparisons between two methods. We use
α = 0.1× 2552, 0.01× 2552.

Firstly we consider α = 0.1 × 2552 for both methods: we test the F-M with a
localizing parameter ranging from γ = 2 to γ = 7 and the V-M. The same initial
guesses are used in both methods. Tab.1 summarizes the results for such tests. In
Test1A with α = 0.1 × 2552, if γ = 2 is used, the contour will shrink to one point
as the curve evolves, but inversely if γ = 7 is chosen, the contour will pass through
the thin edge and detect the nearest (redundant) objects. However, γ = 3-6 are
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three feasible choices from our experiments. For the V-M, since γ is automatically
selected, a successful segmentation is obtained. The results of Test1B are also
represented in Tab.1 with similar observations. Secondly with the regularization
parameter α = 0.01 × 2552, we also show the results for both methods in the
bottom row of Tab.1. As expected from the experiments, although both methods
are very successful in segmenting the given images; less choices of γ for the F-M
lead to successful segmentation.

Test1A-1 Test1B-1
α F-M V-M F-M V-M

2 3 4 5 6 7 2 3 4 5

0.1× 2552 8 4 4 4 4 w 4 8 4 4 w 4
0.01× 2552 4 4 w w w w 4 4 w w w 4

Tab. 1. Comparisons for the regularization parameter α-independence.

4.2.2. Dependence tests on initial level set contours. For tests Test1A and Test1B,
three different initial guesses φ1, φ2 and φ3 (as shown in Fig.6) are tested to assess
the robustness of the proposed methods.

In Tab.2 we present the segmentation results from our tests. It appears that φ3

cannot make the F-M work for any γ. In contrast, the V-M is successful for any
initial guess.

To visualize the synthetic image (Test1A), we show in Figure 7 (a)-(c), the seg-
mentation contours, where for completeness the first column of plots shows three
initial positions for Test1A with four markers, the results from using the F-M with
three different fixed parameters γ (middle 3 columns) and in the last column the
result by the V-M. Here, one observes all three cases of symbols shown in Tab.2,
where P=Problem. Clearly our V-M is robust.

3)
P Test1A Test1B

Ini φ φ1 φ2 φ3 φ1 φ2 φ3

γ 2 3-6 7 4 5 6 7 23 24 25 2 3-4 5 4 5 22 23 24
F-M 8 4 w 8 8 4 w 8 w w 8 4 8 8 w 8 w w
V-M 4 4 4 4 4 4

Tab. 2. Comparisons of segmentation results from different initial guesses.

4.2.3. The tests for noise images. To assess the effect of noise on our models, we
repeat the first two cases φ1, φ2 of Fig. 7 with noise added.

In Tab.3 and Fig.8, we have summarized the test results. One observes that while
the F-M still works with the initial guess φ1 and one particular choice of γ = 6, it
fails in the other case. Clearly the V-M method works fine.

In summary, we observe that the F-M uses a fixed size of the inner and the outer
narrow bands to restrict the evolution of the curve, in the other words, the V-M
adjusts the size of the bands at each iteration automatically by Algorithm 3 to
efficiently abstract regions of interest and to provide robustness. The results from
the above comparisons show that the V-M out performs the F-M.
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F-M with γ = 2 F-M γ = 6 4 F-M γ = 7 V-M 4

F-M with γ = 5 F-M γ = 6 4 F-M γ = 7 V-M 4

F-M with γ = 23 F-M γ = 24 8 F-M γ = 25 V-M 4

Fig. 7. Comparisons of F-M and V-M for different initial guesses
of Test1A (Fig.6). From left to right in top line with φ1: Contour
by F-M with γ = 2, γ = 6, γ = 7, contour by V-M; from left to
right in middle line with φ2: Contour by F-M with γ = 5, γ = 6,
γ = 7, contour by V-M; from left to right in bottom line with φ3:
Contour by F-M with γ = 23, γ = 24, γ = 25, contour by V-M.
Clearly the use of a fixed narrow band alone does not lead to a
robust method.

Problem Initial level set γ F-M V-M

2 8
φ1 3-6 4 4

7 w
4 8

Test1A-Noise φ2 5-11 w 4
12 w
22 8

φ3 23 w 4
24 w

Tab. 3. Comparisons for noisy images.
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F-M with γ = 6 4 F-M γ = 7 8 V-M 4

F-M with γ = 6 8 F-M γ = 7 8 V-M 4

Fig. 8. Comparisons of F-M and V-M in dealing with noise images
using the first two initial guesses of Test1A (Fig.6). From left to
right in top line with φ1: Contour by F-M with γ = 6, γ = 7,
contour by V-M; from left to right in top line with φ2: Contour by
F-M with γ = 6, γ = 7, contour by V-M. Again V-M is better.

4.3. Comparison with global energy models. It is true that for simple exam-
ples where the desirable object is well separated from neighboring ones, one can
even use a global segmentation model to selectively segment the object (because a
localized level set function can gets converged to a local solution). However, this
does not lead to a reliable method and the necessity of a selective segmentation
becomes apparent with realistic images.

Here for two examples, we compare the segmentation results of our V-M method
with the Chan-Vese [18] model. Both methods start from the same initial curves.
From Fig.9, one observes that the global model fails for the first example but it
gives a reasonable segmentation for the second one (which would be classified as
“w” as it picks up extra edges). In contrast, our V-M method delivers the desirable
results.

4.4. Comparisons with the Badshah-Chen [8] model. We have explained that
the Badshah-Chen [8] model has improved the geodesic model by Gout et al. [22] for
noisy images, and that its gradient descent iterations can get close to the desirable
solution but may pass it to converge to nearby (and redundant) objects if early
termination is not done. Three test examples are given below.

Fig.10 shows the first comparative test for a medical MRI image; the original
image with its initial zero level by a quadrilateral and 3 markers are shown in the
top-left of Fig.10. We are interested in locating an organ on the right in the MRI
image. We remark that many global segmentation methods are also tried and they
all lead to incorrect results. The incorrect result obtained by using the Badshah-
Chen model after 540 iterations contains the correct organ along with parts of other
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(a) Initial guess φ and 3 markers. (b) Global method 8

(c) Local method by V-M 4 (d) Initial guess φ and 4 markers.

(e) Global method 8/ w (f) Local method by V-M 4

Fig. 9. Comparison of a global method with local initial guess and
our local V-M. From left to right in top line: brain MRI image with
3 markers and initial zero level set, unsuccessful target detection
by global, successful detection by V-M; From left to right in bot-
tom line: monkey image with 4 markers and initial zero level set,
unsuccessful detection, successful detection by V-M.

organs as shown in Fig.10 (b,d-e). In contrast, Fig.10 (c,f-g) show the correct result
obtained by our V-M method.

The above test is repeated for two more examples respectively in Figs.11 and 12.
In each case, (a) shows the initial contour along with geometric markers and plots
(b,d-e) show the incorrect results by the Badshah-Chen model, while (c,f-g) show
the correct result by by our V-M method.

4.5. Comparison with the Lankton model based on a local fitting energy.
We have remarked that there exist several models using a local fitting energy to
localize a global segmentation model. Although our tests show that our adapted
F-M model using a local fitting energy is not robust for selective segmentation,
we wish to compare with other local models. The Lankton model [26] contains a
localizing function, like our b function in (12) or (16), of local balls with varying
sizes. To compare it with our V-M method, we consider both methods starting from
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(a) Initial φ (b) BC model 8 (c) V-M 4

(d) BC model 8 (e) BC model 8/ w

(f) V-M 4 (g) V-M 4

Fig. 10. Comparison 1 of the Badshah-Chen (BC) model and
V-M. (a) Initial guess and 3 markers; (b) Unsuccessful result by
the Badshah-Chen method; (c) Successful segmentation by V-M;
(d) Close up representation of (b); (e) Unsuccessful result by the
Badshah-Chen method; (f) Close up representation of (c); (g) Suc-
cessful result by V-M.

two different initial contours as shown in Fig.13(a) and Fig.13(f) with 4 markers
and the same α = 0.1 × 2552. As before, column 1 of the plots shows the initial
contours and the last column 5 shows the results from V-M, while the middle three
columns showing results of the Lankton model after 15000 iterations with ball radii
r = 3, r = 9 and r = 13 respectively. Clearly the Lankton model does not lead to
redundant objects (unlike [8]) but fails to give the correct segmentation in the first
case (middle 3 plots of row 1). It does succeed in the second case with (i) the ball
radius of r = 13. In comparison, Fig.13 (e,j) show that our V-M method gives the
correctly selected segmentation.
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(a) Initial φ (b) BC model 8/ w (c) V-M 4

(d) BC model 8 (e) BC model 8/ w

(f) V-M 4 (g) V-M 4

Fig. 11. Comparison 2 of the Badshah-Chen method and V-M. (a)
Initial guess and 3 markers; (b) Unsuccessful result by the Badshah-
Chen method; (c) Successful segmentation by V-M; (d) Close up
representation of (b); (e) Unsuccessful result by the Badshah-Chen
method; (f) Close up representation of (c); (g) Successful result by
V-M.

5. Conclusions. In this paper we presented an efficient selective segmentation
model based on the geometrical constraints (an edge detector function and a markers
distance function) and the local features surrounding the evolving curve Γ, with an
adaptively variable-γ band. Both F-M and V-M methods for capturing the local
image intensity information around Γ are considered, with the latter recommended.
Unlike previous work, our proposed methods do not need a ‘balloon’ force to drive
the contour Γ to the edge of a desirable object. The numerical results indicated
that our proposed method is fairly robust and reliable in terms of quality and
robustness. On one hand it can segment selectively a single object with noise and
complex structures and on the other hand it is less sensitive to initial solutions
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(a) Initial φ (b) BC model 8 (c) V-M 4

(d) BC model 8 (e) BC model 8

(f) V-M 4 (g) V-M 4

Fig. 12. Comparison 3 of the Badshah-Chen method and V-M. (a)
Initial guess and 4 markers; (b) Unsuccessful result by the Badshah-
Chen method; (c) Successful segmentation by V-M; (d) Close up
representation of (b); (e) Unsuccessful result by the Badshah-Chen
method; (f) Close up representation of (c); (g) Successful result by
V-M.

than previous models. Future works will consider the local features based selective
segmentation for texture images, and medical image selective segmentation in high
dimensions.
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(a) Initial φ1 (b) LM r = 3 8 (c) LM r = 9 8 (d) LM r = 13 8

(e) V-M 4 (f) Initial φ2

(g) LM r = 5 8 (h) LM r = 9 8 (i) LM r = 13 8 (j) V-M 4

Fig. 13. Comparison of the Lankton model (LM) and our V-M.
(a) Initial guess φ1 and 4 markers; (b-d) Unsuccessful result by
the LM with ball radii r = 3, r = 9 and r = 13, respectively; (e)
Successful segmentation by V-M; (f) Initial guess φ2 and 4 markers;
(g-h) Unsuccessful result by the LM with ball radii r = 5 and r = 9,
respectively; (i) Successful segmentation by the LM with ball radii
r = 13; (j) Successful segmentation by V-M.
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