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Mean curvature-based energy minimization denoising model by Zhu and Chan offers one approach for
restoring both smooth (no edges) and non-smooth (with edges) images. The resulting fourth-order partial
differential equations arising from minimization of this model is non-trivial to solve due to appearance of
a high nonlinearity and stiffness term, because simple alternative methods such as the fixed point method
and the primal dual method do not work. In this paper, we first present a relaxed fixed point method for
solving such equations and further to combine with a homotopy algorithm to achieve fast convergence.
Numerical experiments show that our method is able to maintain all important information in the image,
and at the same time to filter out noise.
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1. Introduction

Image denoising is a task to extract a ‘quality’ image u from the observed image f with η being
some noisy image. The common degradation model is

f = u + η. (1)

Here u, f and η are functions defined on a bounded convex region � of R
d (d = 2 or 3, in this

paper, the two-dimensional case is considered and we will assume � is a square in R
2).

The total variation (TV) model proposed by Rudin et al. [20] is a well-known model to obtain
u, the energy functional represented as

min
u

{
E(u) = α

∫
�

|∇u| dx dy + 1

2
‖u − f ‖2

}
. (2)

Here | · | is the Euclidean norm in R
2 and ‖ · ‖ is the norm in L2(�). The Euler–Lagrange equation

for the TV model is the second-order equation

−α∇ · ∇u

|∇u|β + (u − f ) = 0, (3)
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with homogeneous Neumann boundary condition ∂u/∂�n = 0 along ∂�. Here |∇u|β =√|∇u|2 + β(β > 0) and �n is the normal vector. Much theoretical work on this TV model has
been done in more recent years [8,10,20,22,25]. The model can produce desirable results from
removing noise while preserving edges for non-smooth images. But for smooth images, the TV
model suffers from staircasing effect. To remedy these unfavourable property, some researchers
proposed a modified models see [5,11–13,15,17–19,21]; others turned to higher order models
[2–4,7,9,16,26].

Mean curvature-based denoising model proposed by Zhu and Chan [26] is another model which
can restore effectively both blocky images (of piecewise constant intensities) and smooth images
(with no clear jumps), the energy functional is

min
u

{
J(u) = α

∫
�

�(κ(u)) dx dy + 1

2
‖u − f ‖2

}
. (4)

The functional � is defined as �(κ(u)) = |κ(u)|, �(κ(u)) = κ(u)2 or a combination of both,
below we shall take �(κ(u)) = κ(u)2. Here κ(u) is the mean curvature of the image defined by

κ(u) = ∇ · ∇u

|∇u| . (5)

To avoid non-smooth, we replace |∇u| by |∇u|β . Thus, we have

κβ(u) = ∇ · ∇u

|∇u|β , (6)

and the energy functional (4) becomes

min
u

{
Jβ(u) = α

∫
�

�(κβ(u)) dx dy + 1

2
‖u − f ‖2

}
. (7)

The corresponding Euler–Lagrange partial differential equation (PDE) for (7) is, for (x, y) ∈ �,

gβ(u) = α∇ ·
(

1

|∇u|β

(
I2 − ∇u∇uT

|∇u|2β

)
∇�′(κβ(u))

)
+ (u − f ) = 0, (8)

with homogeneous Neumann boundary condition ∂u/∂�n = 0 and κβ(u) = 0 along ∂�. Here
I2 ∈ R

2×2 is an identity operator, and �′(κβ(u)) is the derivative of �(κβ(u)). Since �(κβ(u)) =
κβ(u)2, so �′(κβ(u)) = 2κβ(u) and ∇�′(κβ(u)) = 2∇κβ(u). Due to the appearance of a high
nonlinearity and stiffness term, simple alternative methods (which worked for the TV model)
such as fixed point (FP) method [22] and primal dual method [8] do not work for this newer
model, as shown in [3].

Only two methods have been proposed to solve Equation (8).

(1) Gradient descent method. As used in [26], instead of the elliptic PDE, a parabolic PDE with
time as an evolution parameter is solved by the gradient descent method

ut = −α∇ ·
(

1

|∇u|β

(
I2 − ∇u∇uT

|∇u|2β

)
∇�′(κβ(u))

)
− (u − f ), (9)

with u(x, y, 0) = f . This method is preferred in many situations for its simplicity and fast
initial convergence, but its overall convergence is slow (or the time step must be small for
stability) to reach steady state since the parabolic term is nearly singular for small gradients.
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(2) Stabilized FP method and nonlinear multigrid. The idea of stabilized fixed point method is
to split the Euler–Lagrange equation (8) in two parts (convex and non-convex) and treat the
convex part implicitly and the non-convex part explicitly, after adding suitable stabilizing
terms. Thus, the stabilized FP method of [3] takes the form

uk+1 − γ∇ · ∇uk+1

|∇uk|β − α∇ ·
(

∇uk · ∇�′(κβ(uk))

|∇uk|3β
∇uk+1

)

= −γ∇ · ∇uk

|∇uk|β − α∇ · ∇�′(κβ(uk))

|∇uk|β + f . (10)

Further an efficient nonlinear multigrid for (8) is developed using this stabilized FP method
as a smoother. Although stabilization helps to derive a convergent FP method, the smoothing
parameter β in (10) cannot be small, and was typically chosen to be, say, 10−2 or larger.

2. FP curvature method

Before our relaxed FP method is presented, we introduce an FP curvature method to solve the
Euler–Lagrange equation (8) directly. The idea is motivated by the observation that the fourth-
order nonlinear operator of Euler–Lagrange equation (8) can be considered as a second-order
nonlinear operator compounding another second-order nonlinear operator, therefore, (8) can be
rewritten as

gβ(u) = 2α

(
∇ ·

(
1

|∇u|β

(
I2 − ∇u∇uT

|∇u|2β

)
∇

)) (
∇ · ∇u

|∇u|β
)

+ (u − f )

= 2αMN
β (u)

(
−∇ · ∇u

|∇u|β
)

+ (u − f ) = 0. (11)

The FP equation is obtained by freezing the second-order semi-definite nonlinear operator

MN
β (u) = −∇ ·

(
1

|∇u|β

(
I2 − ∇u∇uT

|∇u|2β

)
∇

)

at a known iterate u(l,0), and the formulation is

gl,0
β = 2αMN

β (u(l,0))

(
−∇ · ∇u

|∇u|β
)

+ (u − f ) = 0. (12)

Observed that the nonlinearity of the FP equation (12) is formed from multiplying a second-
order semi-definite linear operator 2αMN

β (u(l,0)) to −∇ · (∇u/|∇u|β). Clearly Equation (12) is
similar to the TV equation (3), and it is also a fourth-order nonlinear PDE, but the nonlinearity
is reduced, so smaller β (e.g. β < 10−6) is allowed. Many methods for TV equation (3) can be
used to solve (12). The procedure of FP curvature method for (11) contains outer iteration (FP
iteration) and inner iteration (solving FP equation). The whole procedure consists of a succession
of the following two steps.

(1) Solve the FP equation (12) to get its solution by u(l,∗) and set u(l+1,0) = u(l,∗).
(2) Set l := l + 1, use u(l,0) to update the second-order semi-definite linear operator MN

β (u), and
obtain a new FP equation (12).

Here we use u(0,0) = f at the very first FP equation, and the succession terminates by some
tolerance or the maximum number of iteration.
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3. The relaxed FP method

Due to high singularity of FP equation, solving (12) with small β is very time consuming. The
idea of relaxed FP method is motivated by reducing the singularity of FP equation (12). Observed
that if the second term of MN

β (u(l,0)) is dropped, the singularity is reduced and the remain term

MFP
β (u(l,0)) = −∇ ·

(
1

|∇u(l,0)|β ∇
)

still is a second-order semi-definite linear operator. Therefore, we get a relaxed FP equation

g̃l,0
β (u) = 2αMFP

β (u(l,0))

(
−∇ · ∇u

|∇u|β
)

+ (u − f ) = 0. (13)

The above equation has the same structure as FP equation (12), but the singularity is lower. So it
can be solved by the TV methods, such as the gradient descent method, the FP method and the
primal dual method and so on. Our recommendation is the following primal dual method.

− 2αMFP
β (u(l,0))∇ · w + (u − f ) = 0,

h(u, w) = w|∇u|β − ∇u = 0.
(14)

The linearization of the above (u, w) system is

⎡
⎢⎣

−2αMFP
β (u(l,0))∇· 1

|∇u|βI2 −
(

I2 − w(∇u)T

|∇u|β
)

∇

⎤
⎥⎦ [

δw
δu

]
= −

[
g̃l,0

β (u, w)

h(u, w)

]
. (15)

Equation (15) can be solved by first eliminating δw and solving the resulting equation for δu:

[
−2αMFP

β (u(l,0))∇ ·
(

1

|∇u|β
(

I2 − w(∇u)T

|∇u|β
)

∇
)

+ 1

]
δu = −g̃l,0

β (u)

and

δw = 1

|∇u|β
(

I2 − w(∇u)T

|∇u|β
)

∇δu − w + ∇u

|∇u|β .

We simply describe how relaxed FP equation will be solved by primal dual method in preparation
for a relaxed FP method.

Algorithm 1 [u, k, flag] ← RFP_solver(u(l,0), f , tol, maxit, α, β)

Step 1. Set k := 0, flag := 1, compute MFP
β (u(l,0)), g̃l,0

β (u(l,0)), and res0 := ‖g̃l,0
β (u(l,0))‖2.

Step 2. Compute update direction (δu(l,k), δw(l,k)) by primal dual method, set

u(l,k+1) = u(l,k) + δu(l,k), w(l,k+1) = w(l,k) + δw(l,k)

and k = k + 1.



278 F. Yang et al.

Step 3. Compute g̃l,0
β (u(l,k)), then set

relres := ‖g̃l,0
β (u(l,k))‖2

res0
.

Step 4. If relres ≤ tol, then
record the iteration, then return u = u(l,k) (solution has been found).

Else
if the maxit iterations have been performed, then

set u = u(l,0) and flag = 0.
Else return to step 2.

Just like the FP curvature method for (11), the relaxed FP method contains outer iteration (FP
iteration) and inner iteration (solving relaxed FP equation).

Algorithm 2
[u, iter, flag] ← RFP_method(u(0,0), f , tol1, tol, maxit1, maxit, α, β)

Step 1. Compute Jβ(u(0,0)) and set l := 1 and iter := 0.
Step 2. [u(l,0), it, flag] ← RFP_solver(u(l−1,0), f , tol, maxit, α, β).

Compute the energy function Jβ(u(l,0)) and iter = iter + it.
Step 3. If |Jβ(u(l,0)) − Jβ(u(l−1,0))| < tol1 or l = maxit1, then

return with u = u(l,0).
Else set l = l + 1, then return to step 2.

Step 4. iter = iter/l.

For the TV equation (3), we know that both the FP method and the primal dual method work
well for any non-zero β, but the convergence of the iteration slows down as β decreases, moreover,
the inner linear system is difficult to solve. Returning to relaxed FP equation (13), the same con-
clusions remain. To improve the convergence difficulty with small β, we introduced a homotopy
method based on gradually reducing the parameter β. We will use this procedure to achieve fast
convergence for our relaxed FP method.

4. Homotopy method

A homotopy method offers a convergent solution for a large class of nonlinear equations. As a
globally convergent method, it has versatility and robustness, and it has become an important
tool for solving nonlinear problems; see [1,14,23]. The basic idea of a homotopy algorithm is to
construct a continuous map H(u, t) with parameter t which deforms a simple function H(u, 0) to
the given function H(u, 1) as t varies from 0 to 1.

To find a required solution from tracking the solution curve � emanating from the solution of
H(u, 0), the homotopy algorithm requires � obey strict smoothness conditions. There are many
continuous maps that can satisfy these conditions.

Since we hope our homotopy equation is able to reduce the level of singularity and nonlinearity
for (8) when t is not near 1. We construct the homotopy map as follows:

H(u, t) = 2α∇ ·
(

1

|∇u|β(t)

(
I2 − ∇u∇uT

|∇u|2β(t)

)
∇

) (
∇ · ∇u

|∇u|β(t)

)
+ (u − f ) = 0, (16)

where β(t) = (1 − t)/t2, t ∈ (0, 1]. When t > 0 is small, β(t) is large and the level of singularity
and nonlinearity of H(u, t) = 0 is lower than (8), and so it is easier to solve. Of course, other
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choices of β(t) may be permitted as long as they ensure a positive and monotonically decreasing
β(t) such that β(1) = 0 and β(t0) > 0 is large when t0 ≈ 0. Since

1

|∇u|β(t)
= 1√|∇u|2 + (1 − t)/t2

= t√
t2|∇u|2 + (1 − t)

.

To allow t = 0, we can rewrite Equation (16) as

2α∇ ·
(

t√
t2|∇u|2 + (1 − t)2

(
I2 − t2∇u∇uT

t2|∇u|2 + (1 − t)2

)
∇

)

×
(

∇ · t∇u√
t2|∇u|2 + (1 − t)2

)
+ (u − f ) = 0. (17)

Here H(u, 0) = u − f implies that our initial solution is the given image (as commonly used in
denoising algorithms) and H(u, 1) = 0 will give the solution for (8) with β = 0.

We can solve a sequence of equations H(u, tk) = 0 for adaptively increasing tk up to 1 (in
practice, we will stop at certain t∗ < 1 near 1 such that β(t∗) = β, a prescribed small enough
smooth parameter). The solution of H(u, tk−1) = 0 serves as the good initial guess for iteratively
solving H(u, tk) = 0. The whole process is a special predictor–corrector path following procedure
with a staircase predictor. It consists of the following two phases.

Predictor step. For t0 = 0, the solution of H(u, t0) = 0 is known, namely u0 = f . After we have
obtained an approximate solution uk−1 of H(u, tk−1) for some tk−1 ∈ [0, 1), increase t with some
predictor steplength hk−1 to reach tk = tk−1 + hk−1 and the solution of H(u, tk) = 0 is provided
with the initial guess uk−1.

Corrector steps. From the initial point uk−1, approximately solve H(u, tk) = 0 by the relaxed
FP method.

As we know, the prediction phases and the correction phases mutually affect each other. The
predictor steplength h is adjusted according to the performance of the corrector procedure as
done below in Algorithm 3. When a corrector step terminates within prescribed steps of iter1, h
is considered too small for the next predictor and is increased, when the iterations terminate over
some iter2>iter1 steps and converge, h is considered too large and will be decreased, while if the
iterations diverge, the predictor–corrector step is abandoned and then is restarted starting with a
smaller h. The predictor–corrector path following procedure is shown as follows:

Algorithm 3 (Homotopy method)

u ← homotopy(f , tol1, tol, maxit1, maxit, h, α, β)

Step 1. Set k = 1, uk−1 := f and tk−1 := 0.
Step 2. Set tk := tk−1 + h.

If tk ≥ 2/(1 + √
1 + 4β), then

tk = 2/(1 + √
1 + 4β),

[uk , iter, flag] ← RFP_method(uk−1, f , tol1, tol, maxit1, maxit, α, tk).
If success then

return u = uk (solution has been found).
Else set h = h/2, tk = tk−1 + h(1 − tk−1).

Step 3. [uk , iter, flag] ← RFP_method(uk−1, f , tol1, tol, maxit1, maxit, α, tk).
If success, then

set k = k + 1.
If the iteration count iter is less than iter1, then

increase h by h := 1.2h.
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If the iteration count iter is more than iter2, then
reduce h slightly by h := h/1.2.

Return to step 2.
Else reduce h by h := h/2.

If h is unreasonably small, then
return with an error Flag.

Else return to step 2.

5. Numerical results

In this section we test our denoising algorithms on several images, 128 × 128 and 256 × 256
pixels, with an intensity range of [0, 255]. the signal to noise ratio (SNR), the peak signal to noise
ratio (PSNR), and the difference between a digital image and its denoised version are used to
measure the quality of the restored images, and we define them by

SNR =
∑n

i=1

∑n
j=1 u2

i,j∑n
i=1

∑n
j=1(ui,j − ũi,j)2

, PSNR = 10 log10
2552

(1n2)
∑n

i=1

∑n
j=1(ui,j − ũi,j)2

,

and

diff(ũ) = ũ − f ,

where u, ũ and f are, respectively, the original image, the restored image and the noisy image.
For ease of comparison, we shall denote by FP for FP curvature method and by RFP for relaxed
FP method.

5.1 Parameters test

α-Dependence test. We use the ‘triangular’ image with random noisy as the first test image
(Figure 1). Here we analyse how sensitive the performance of the FP curvature method and our
relaxed FP method is when α = 20, 50, 100, 150, while β = 10−2 is unchanged. We can see
a clear process of the changes of SNR using FP curvature method and relaxed FP method with
different α in Figure 2. Although both of them improve the quality of the image for the different
values of α, we see that the performance of the FP curvature method for smaller α is less efficient
while the relaxed FP method is more consistently behaved. Moreover, the relaxed FP method can
get a quality image within one or two outer iterations. Therefore, we can choose maxit1 = 1 or 2
in Algorithm 3.

β-Dependence test. After the analysis of the effect of α, we analyse how β affects the perfor-
mance of FP curvature method, relaxed FP method and Algorithm 3. To give an indication of the
level of the nonlinearity and singularity reduced by each method with respect to β. Here we take
suitable large α for each method respectively and vary β = 1, 10−2, 10−4, 10−6. The numerical
results for both methods are shown in Table 1. Here ‘iter’ means the total number of the primal
dual iterations, and we choose maxit1 = 20 and maxit = 50. As far as small β is concerned, the
number of the primal dual iterations and CPU time needed for Algorithm 3 and relaxed FP method
are less than FP method, and Algorithm 3 speeds up the convergence of relaxed FP method.

5.2 Comparisons of the TV model with Algorithm 3

The classical TV model is known to yield satisfactory results for removing noise while preserving
edges and contours of non-smooth objects. In this section, we conduct numerical experiments to
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Figure 1. The original ‘triangle’ image (left) and noisy image (right).
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Figure 2. The history of SNR for FP curvature method (left) and relaxed FP method (right) with different α.

Table 1. The numerical results for FP method and RFP method.

β Method iter PSNR Time

FP method 180 24.5708 108.73
1 Relaxed FP method 132 24.5884 67.01

Algorithm 3 78 24.5877 40.59

FP method 304 24.4520 187.91
10−2 Relaxed FP method 239 24.5868 135.01

Algorithm 3 83 24.6023 44.07

FP method 452 24.4547 1176.59
10−4 Relaxed FP method 418 24.5707 220.50

Algorithm 3 86 24.6027 44.28

FP method 639 24.4451 2928.32
10−6 Relaxed FP method 633 24.5694 441.79

Algorithm 3 92 24.6026 47.74

compare this method with our Algorithm 3. Test results obtained from comparing the classical
TV model and Algorithm 3 using images of ‘Pepper’ (Figure 3) and ‘Barbara’ (Figure 4) with
random noise are now shown in Figures 5 and 6 and Figures 7 and 8, respectively.
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Figure 3. Original ‘Pepper’ image (left) and noisy image (right).
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Figure 4. Original ‘Barbara’ image (left) and noisy image (right).
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Figure 5. Image denoised by Algorithm the TV model (left) and the difference image (right).

As seen from the recovered images, both methods are able to maintain edges in the images,
and at the same time to filter out noise. Algorithm 3 is good at reducing staircasing effect of the
TV model. As far as the difference images are concerned, one observes that Algorithm 3 contains
less structures in the difference images than TV method and the maximum of the difference for
our Algorithm 3 decreases.
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Figure 6. Image denoised by Algorithm 3 (left) and the difference image (right).
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Figure 7. Image denoised by Algorithm the TV model (left) and the difference image (right).
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Figure 8. Image denoised by Algorithm 3 (left) and the difference image (right).

6. Conclusions

Curvature-based variational denoising models can restore effectively both blocky images (of
piecewise constant intensities) and smooth images (with no clear jumps). For the former case,
the restored quality is similar to that from a TV model and for the latter it is much better than the
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TV. However, the resulting fourth-order PDE of a curvature model is much more complicated,
presenting difficulties for many numerical techniques. Firstly, no simple FP methods can be con-
structed, a working FP method from [3] requires stabilization and a relatively large regularization
parameter β. Secondly, reformulation methods such as from [6,24] can provide an elegant solution
approach only by solving an approximated problem. This paper first gave an FP curvature method
(directly) for solving the fourth-order PDE, and then proposed a relaxed FP method and a homo-
topy method with curve tracking to choose the regularizing parameter β adaptively. The resulting
method turns out to be able to drive the Newton type method (as a corrector) to convergence for
a range of test images and for any small parameter β. Numerical experiments can demonstrate
advantages of our methods over the TV model. Future work will consider how to make use of our
methods in a multigrid context as well as for other applications where curvature is used.
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