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Abstract Image restoration is an inverse problem that has been widely studied in
recent years. The total variation based model by Rudin-Osher-Fatemi (1992) is one
of the most effective and well known due to its ability to preserve sharp features
in restoration. This paper addresses an important and yet outstanding issue for this
model in selection of an optimal regularization parameter, for the case of image
deblurring. We propose to compute the optimal regularization parameter along with
the restored image in the same variational setting, by considering a Karush Kuhn
Tucker (KKT) system. Through establishing analytically the monotonicity result, we
can compute this parameter by an iterative algorithm for the KKT system. Such an
approach corresponds to solving an equation using discrepancy principle, rather than
using discrepancy principle only as a stopping criterion. Numerical experiments show
that the algorithm is efficient and effective for image deblurring problems and yet is
competitive.
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1 Introduction

Image denoising and deblurring are two fundamental and widely studied problems in
image processing. Image restoration can be modelled by the linear equation [12, 19,
28, 31]:

yδ(z, w) = (Hx)(z, w)+ δ(z, w) =
∫

�

κ(u− z, v −w)x(u, v)dudv + δ(z, w) (1)

where κ is the blurring kernel representing the data acquisition process, yδ(z, w) :
� → R

+ is the given data function, δ(z, w) is the unknown noise and x(u, v) : � →
R

+ is the image function to be recovered. Here � ⊂ R
2. The kernel κ defines a

spatially invariant operator H as a convolution. There exist other works that assume
κ to be also unknown and attempt to restore it in the so-called blind deconvolution. A
more general framework than (1) would assume H to be spatially variant which leads
to a large scale and non-structured matrix problem. When the convolution operator
H = I , the problem becomes the denoising case which is easier to deal with. Here
we focus on the deblurring case of H �= I .

For simplicity of notation, in the following we use x instead of x(u, v) when it is
not necessary to express the dependence from u,v. The problem (1) is ill-posed for
finding x and regularization methods are necessary.

A common formulation of the regularization is the following unconstrained
minimization:

min
x

F(x) + λJ (x) (2)

where F(x) is a data fit function, J (x) is a regularization function and λ is a positive
parameter. The choice of a suitable value of the regularization parameter λ is still a
challenge. Moreover, if we consider in (2) λ as a variable, the function

L(x, λ) = F(x) + λJ (x)

is the Lagrangian function of the constrained regularized problem:

min
x

F(x), s. t. R(x) ≤ γ (3)

with J (x) = R(x)−γ and γ is an estimate of the value of the regularization function
in the exact solution x∗, R(x∗). Using the dual equivalent formulation of (3):

max
λ

min
x

L(x, λ), (4)

we propose an algorithm for the estimate of both the exact multiplier λ∗ and the exact
solution x∗ of (3).

In this paper, we focus our attention on the particular case where F(x) is the least
squares function

F(x) = 1

2
‖Hx − yδ‖2

2. (5)

For what concerns the regularization function, in recent years a number of effective
regularization functions have been proposed in the literature. Among them is the total
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variation based function by Rudin-Osher-Fatemi (ROF) [28]. The Total Variation
(TV) seminorm function is:

T V (x) =
∫

�

|∇x(u, v))|dudv. (6)

With a fixed λ, the well-known ROF TV equation can be derived from (2)

H ∗(Hx − yδ
)

− λ∇ · ∇x

|∇x|β = 0, (7)

where |∇x|β = √|∇x|2 + β and β is a small and positive parameter to deal with the
case |∇x| = 0; an alternative to using |∇x|β is provided by the Huber function as in
[17].

The TV function (6) is probably the most popular and widely used for regular-
ization in deblurring [5, 30], denoising [11, 31], and reconstruction [4, 13] imaging
applications. The reason is that it allows to recover the edges of the image. Nowa-
days, the literature on this topic is really huge and many methods have been proposed
for the solution of problem (2) with TV regularization. See for example [10, 21,
28, 31] and the references therein. However, while capable of capturing sharp edges
using piecewise constant approximations, the TV function (6) can produce undesir-
able staircasing and is thus unsuitable for restoring smooth images where there are no
sharp edges. In the last few years, various efforts were made to use alternative (and
often higher order) regularization; see [6–8] and the references therein.

Here we focus on the ROF model. Despite its success when equipped with suitably
chosen λ in many applications, it is yet a challenge how to automatically determine
this regularization parameter λ. As with other formulations from inverse problems,
the generic methods of discrepancy principle (DP) and L-curve may be considered;
these lead to practical but non-optimal parameters. Indeed, in almost all works on
TV regularization, λ is chosen from DP, L-curves or heuristically fixed. See [27] for
the most recent results on these methods. A proposal for choosing λ can be found in
[32], where the constrained regularization problem is solved by a primal-dual method
and λ is chosen on a discrepancy-principle basis in the update of the dual variables.
Another proposal is in [17], where the update of the regularization parameter is made,
at each iteration of the solution method, based on the estimate of noise variance and
on a hierarchial image decomposition, as proposed in [29]. A different approach is
taken in [9, 25, 26, 34] computing λ as the Lagrange multiplier to solve the KKT
conditions of the constrained problem (8). In this way, the regularization parameter
ensures the constrained and unconstrained problems are equivalent. In particular, [9,
34] solve the constrained problem (3), where the noise information on the data is
assumed to be known or estimated first. This work does find the optimal λ but it is
only for image denoising (i.e. not applicable to H �= I ). In [25, 26], the Tikhonov
regularization problem (which is less challenging than the ROF model) is solved but
tested only on 1D discretized Fredholm integral equations. The recent study for (2)
by [23] addressed the choice of λ for the Tikhonov regularization through DP.

Motivation The aim of this paper is to extend to the more general case of deblurring,
where H �= I in (5), the idea proposed in [9, 34] of computing the regularization
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parameter λ via the KKT conditions. We formulate the deblurring problem as in (3)
and we solve the equivalent unconstrained form (4). In this case, it is required an
estimate of T V (x∗), where x∗ is the exact solution.

In literature, an equivalent constrained regularized formulation of (3) is also used
[2, 3]:

min
x

R(x), s. t. F (x) ≤ σ (8)

where σ is an estimate of the noise norm. Although (8) and (3) are equivalent, in some
applications where we know the possible content in the true image, it can be easier to
estimate T V (x∗) in (3) than to estimate the noise level in (8). For example in medical
applications, if we know which organs are being restored, this priori knowledge can
help us estimate T V (x∗) quite accurately regardless of what the noise level is.

Contribution The main contribution of the paper is a new algorithm to automatically
compute the optimal parameter λ and the solution x of (2) by solving problem (4) and
we propose an automatic procedure for the computation of a suitable value of γ . The
algorithm requires, for each iteration, the solution of a problem of the form (2) with
λ fixed. We use and compare two different existing algorithms at this aim, hence we
test two different versions of our method.

We tested the proposed algorithm on image deblurring applications where the
Point Spread Function (PSF) H is applied to an image function supposed to be
periodic outside the image domain �. In this case, the matrix obtained from the dis-
cretization of H has a Block Toeplitz with Toeplitz Blocks (BCCB) structure and it
can be diagonalized by Fast Fourier Transforms (FFT). Numerical results obtained
on large test problems show that the proposed algorithm converges fast to a good
restored image even when γ is unknown.

The rest of the paper is organized as follows. In Section 2 we present the math-
ematical theory motivating the proposed method; in Section 3 we describe the
algorithm and finally in Section 4 some numerical results show the method perfor-
mance on image deblurring applications. The results obtained are compared with
Hintermuller’s algorithm in [17]. Finally, Section 5 contains the conclusions.

2 Some mathematical background

In this section, we present some mathematical results concerning the solution of the
problem (2), in the general case H �= I . Here, we underline the dependence of the
solution of (2) on λ by the notation x(λ).

Lemma 1 ([1, 9]) For λ > 0, the minimization problem (2) has a minimizer x(λ).

Proof For the existence of a solution in Lp space (with 1 ≤ p < 2), refer to [1]. For
the existence of a solution in the BV space, refer to [9], especially when H is a linear
but non-compact operator. When H = I, see [34].

Lemma 2 For λ > 0, the solution x(λ) to the minimization problem (2) is unique up
to H. It is unique when H is injective.
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Proof We first remark that when H �= I and κ from (1) is continuous, H is compact
with most of its eigenvalues clustered at zero so H does not have an inverse and it is
not injective.

To show the uniqueness, let x̄, x̃ be two solutions of (2) satisfying min ‖Hx −
y‖2

2 ≡ 2σ 2, and R(x̄) ≤ γ,R(x̃) ≤ γ . Then (x̄ + x̃)/2 is also a solution. In fact:
∥∥∥∥H

x̄ + x̃

2
− y

∥∥∥∥
2

≤ 1

2
(‖H x̄ − y‖2 + ‖H x̃ − y‖2) = √

2σ,

and

R
(

x̄ + x̃

2

)
≤ 1

2
(R(x̄) + R(x̃)) ≤ γ.

Because
∥∥∥H x̄+x̃

2 − y
∥∥∥

2
≥ √

2σ , we must have
∥∥∥H x̄+x̃

2 − y
∥∥∥

2
= √

2σ . Thus from

‖H x̄ − x̃‖2 = ‖H x̃ − y‖2 =
∥∥∥∥1

2
(H x̄ − y) + 1

2
(H x̃ − y)

∥∥∥∥
2

= √
2σ,

we have that
∥∥∥H x̄−x̃

2

∥∥∥
2

= 0 or H x̄ = H x̃. That is, the uniqueness is up to Hx. When

H is injective (or invertible in the discrete case), then H x̄ = H x̃ implies x̄ = x̃ or the
uniqueness is true.

Once the existence and uniqueness of (2) are known, below is the most impor-
tant result for designing our computational algorithm. We note that the monotonicity
property established in [9, 34] is for the quantity F(x(λ)) of problem (8), not yet for
J (x(λ)) of problem (2).

Theorem 1 For λ > 0, the function J (x(λ)) in (2)) is monotonically decreasing in a
feasible region and there exist two distinct parameters λ1, λ2 such that J (x(λ1)) > 0
and J (x(λ2)) < 0. Hence J (x(λ)) has a unique root λ∗ such that J (x(λ∗)) = 0
which will be the optimal parameter.

Proof To prove the result, we only need the existence of a minimizer (by Lemma
1). For two given parameters λ, μ such that λ > μ ≥ 0, denote the respective mini-
mizers for minx L(x, λ) and minx L(x, μ) by x(λ), x(μ). Then clearly L(x(λ), λ) <

L(x(μ), λ) and L(x(μ), μ) < L(x(λ), μ). That is,

F(x(λ)) + λJ (x(λ)) < F (x(μ)) + λJ (x(μ)),

F (x(μ)) + μJ(x(μ)) < F(x(λ)) + μJ(x(λ)).

Adding the two inequalities gives the desired result

(λ − μ) (J (x(λ)) − J (x(μ))) < 0 i.e. J (x(λ)) < J (x(μ)).

For the interval, we may use λ1 = 0 as a lower bound because at λ = 0 we have
to solve

x(λ1) = arg min
x

1

2
‖Hx − y‖2

2
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which admits at least one least squares solution (where x is non-unique); let a =
R(x(λ1)) and, by the choice of γ (i.e. a < γ ), we see that J (x(λ1)) = a − γ > 0.
For the upper bound, we note that

x
(
λ+) = lim

λ→∞ arg min
x

{
1

2
‖Hx − y‖2

2 + λ (R(x) − γ )

}

= arg min
x

(R(x) − γ )

= arg min
x

R(x)

which leads to R (
x

(
λ+)) = 0 since R is non-negative i.e. J

(
x

(
λ+)) =

R (
x

(
λ+)) − γ = −γ < 0. Clearly from J (x (λ1)) > 0, J

(
x

(
λ+))

< 0, there
exists a large and positive number λ2 = M

(
lying between λ1 and λ+)

at which
J (x(λ2)) = 0. Hence the stated results hold.

3 The CLSTV algorithm

To proceed, we consider the discretization of the above continuous formulation. The
images of size n × n are assumed lexicographically ordered in vectors of size N =
n × n and denoted with bold characters. Using a finite difference method [31], let
H denote the discretized blurring matrix stemming from H after imposing a periodic
boundary condition on the image function at ∂�.

Below we define our iterative algorithm: Constrained Least Squares Total Vari-
ation (CLSTV), for solving problem (3), when R(x) = T V (x), in its equivalent
form:

max
λ

min
x

L(x, λ), L(x, λ) ≡ 1

2

∥∥Hx − yδ
∥∥2

2 + λ(T V (x) − γ ).

The algorithm computes two sequences, {λk} and {xk}, converging to the regular-
ization parameter λ∗ and to the solution x∗ respectively. By imposing the first order
conditions: ∇λL(x, λ) = 0, we can state the problem as:

find λ s.t. T V (x) − γ = 0 where x solves the following minimization problem :
(9)

min
x

1

2

∥∥Hx − yδ
∥∥2

2 + λ (T V (x) − γ ) , (10)

that is exactly the discrete form of problem (2). Using the result of Theorem 1 with
J (x) ≡ T V (x) − γ with x given by (10), we can solve the nonlinear equation

J (x) = T V (x) − γ = 0 (11)

by computing a sequence {λk} that converges to the root λ∗ and, solving (10) with
λ = λk , we can compute the sequence {xk} that converges to x∗.

In particular, given a starting value λ0 s.t. T V (x0) − γ < 0, we can compute the
sequence λk using the bisection method as follows:

λk = Fb(λk−1), Fb(λk−1) = λk−1 + sign(T V (xk−1)−γ )
λ0

2k
, k = 1, 2 . . . (12)
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Or, given two suitable values λk−1 and λk−2, we can compute λk using the secant
method:

λk = Fs (λk−1), Fs (λk−1) = λk−1 − T V (xk−1) − γ

T V (xk−1) − T V (xk−2)
(λk−1 − λk−2) , k = 1, 2 . . .

(13)

In this case the values λk−1 and λk−2 must be within the convergence region of the
secant method. In this paper, for the solution of (11) we use a hybrid method obtained
by starting the secant iterations after a few (ks) iterations of the bisection method.

The whole algorithm is outlined in Table 1. It has two main steps: feasibility check
and solution computation.

Computation of the input value λ0 In order to compute the required input parame-
ter λ0 we define a low pass filtered approximate solution x̃ by a fast and efficient
method. Exploiting the properties of the discrete convolution kernel H it is possible
to compute x̃ by means of a Tikhonov low pass filter. By imposing periodic boundary
conditions we obtain that H is a BCCB matrix and we can diagonalize it by a uni-
tary Fourier matrix F such that H = F∗SF where S = diag(si), i = 1, 2 . . . [20].
Defining

α = min
i

∣∣∣∣ (F · y)i

si

∣∣∣∣ ,

Table 1 Algorithm CLSTV
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we can compute

x̃ = F∗�(α)F with �(α) = diag

( |si |2
|si |2 + α2

)
. (14)

The starting value λ0 is obtained by imposing that:

λ0 = α
‖Hx̃ − y‖2

T V (x̃)
(15)

where α is a suitable scale parameter.

Computation of the input value γ The parameter γ should be given as close as pos-
sible to T V (x∗) where x∗ is the exact image. In order to obtain a suitable estimate
the following heuristic procedure can be used.

The value γ is defined as an intermediate value in the interval [γL, γH ]
γ = (1 − θ)γL + θγH , θ ∈ [0, 1]. (16)

The bounds of the interval are obtained as follows:

γL = 0.225 T V (xδ), γH = 1.995 T V (xδ), where xδ = x̃ − y

where y is the acquired image to be restored and x̃ is the Tikhonov low pass filtered
image (14). Using this procedure we obtained a data dependent range such that γL ≤
T V (xt rue) ≤ γH for a very large database of gray levels images.

Feasibility check step In the feasibility step the condition T V (x0) − γ < 0 is
checked. If it is not satisfied we define a new starting value λ0 by defining an increas-
ing sequence μ = ξμ−1, μ0 = λ0, ξ > 1, and by computing x as the solution of
(10) with λ = μ. Since J (x) is non increasing w.r. to λ (see Theorem 1) we can find
a suitable value μ > λ0 s.t. J (x) − γ < 0.

Solution computation step The solution computation step calculates the values
(λk, xk). The multipliers sequence {λk} is obtained by applying the hybrid update
method (12) and (13) for solving equation (11).

Different algorithms exist in literature for solving problem (10), such as the iter-
ative splitting algorithm SP proposed in [22, 24, 33], the fixed point (FP) iteration
method [30] or the multilevel algorithm proposed in [14].

In this paper, we use the SP and FP methods and compare their results in terms
of time and accuracy. We remind, however, that the novelty of the proposed CLSTV
algorithm lies in the method for computing a suitable value of λ and a fair solution
of the inner problem (10) is only functional to the execution of the external iterations
of the CLSTV algorithm.

By using the FP method we solve the nonlinear system G(x) = 0 where:

G(x) ≡ HT Hx + λ∇xT V (x) − HT y

by means of quasi Newton iterations outlined in Table 2 where ∇xT V (x(λ)) ≡
Lβ(x)x and

Lβ(x) = −∇ · ∇x√|∇x| + β2
, β > 0.
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Table 2 Fixed point algorithm for computing xk (10)

Provided that dj is a descent direction, global convergence can be guaranteed by
appropriate control of the stepsize ρ. In our experiments we did not use any stepsize
control (i.e. ρ = 1) and if dj is not a descent direction then the FP iterations are
stopped.

The linear system arising from the Newton iterations applied to the equation
G(x) = 0: (

HT H + λkLβ

(
uj

))
dj = HT y (17)

is solved by means of Truncated Conjugate Gradients (TCG) iterations of Steihaug
[16, 18]. The iterations are stopped when:

‖rj‖ < ζ‖r0‖ or j > maxiterCG (18)

where rj is the CG residual at step j and ζ is a given tolerance less than one.
The FP iterations are stopped when the following conditions are satisfied:

L
(

uj+1, λk

)
≥ L

(
uj , λk

)
or

‖∇G(uj )‖
‖∇G

(
u0

)
‖

< ε1 or ‖dj‖2 < ε2 or j >= maxitFP ,

(19)
where ε1 and ε2 are two given tolerances and maxitFP is the maximum number of
FP iterations.

Using the splitting method SP [33] for the solution of (10), we compute xk by
decoupling problem (10) as a sequence of problems of the form:

min
ũ

‖Hũ − y‖2
2 + α1

∥∥∥ũ − uj−1
∥∥∥2

2
(20)

min
u

‖u − ũ‖2
2 + α2(T V (u) − γ ) (21)

where u0 = xk and the new iterate uj is obtained by solving (21). We underline that
(20) is a deblurring problem, while (21) is a denoising problem.

The parameter α2 is assigned by the CLSTV iterations as the current λk while the
parameter α1 can be constant (as proposed in [33]) or can change its value as α2, as
shown in the numerical results in Section 4.

Problem (20) requires the solution of the linear system:(
HT H + α1I

)
ũ = HT y + α1uj−1 (22)
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Table 3 Splitting method SP for computing xk (10)

provided a suitable parameter α1 is given, an efficient and accurate solution is easily
computed when H can be diagonalized by discrete Fourier transforms.

Problem (21) is a denoising problem which can be efficiently solved by several
methods such as [10, 15]. In Table 3 the steps of the SP iterative algorithm for solving
(10) are reported.

The iterations are stopped when the relative distance between two successive
iterates is small or when a maximum number of iterations is reached:

‖uj − uj−1‖
‖uj−1‖ ≤ τr or j > maxitSP (23)

Exit conditions of CLSTV The exit condition used to stop the iterations of CLSTV is
the following:

|T V (xk) − γ | < τr |T V (x0) − γ | + τa or |λk − λk−1| < τa or k > maxitCLSTV .

(24)
where τa, τr are relative and absolute tolerance parameters.

4 Numerical results

In this section we present some numerical results to show the effectiveness of the
proposed CLSTV method in image deblurring problems. All the tests have been per-
formed in Matlab, R2010a, on 8 Intel i7 processors with 24 GB Ram. In the experi-
ments the blurred noisy image yδ is obtained by discrete convolution of the original
image x∗ with the kernel H representing the PSF:

yδ = H ∗ x∗ + e.

We define the noise level NL as:

NL = ‖e‖F

‖yδ‖F

(25)

where ‖ · ‖F is the Frobenius norm.
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In our tests the parameter β in (7) has been fixed equal to 10−2. The following
blurring kernels are used [20]:

• Gaussian Blur (GB): normalized gaussian kernel H of size 9 × 9 and variance 1.
• Motion Blur (MB): approximation of the linear motion of a camera by 10 pixels,

with a 45 degrees angle.

We report the results obtained with two test images (I1 and I2) having different
characteristics:

I1 Cameraman test image (Fig. 1a), with 256 × 256 pixels in range [0, 1].
I2 Test image with 500 × 500 pixels in range [0,1], (Fig. 1b).

The accuracy obtained by the restoration algorithm is measured by comparing the

Signal to Noise Ratio (SNR) of the noisy image
(
SNR

(
yδ

))
and of the reconstructed

image (SNR(xk)), where the SNR is defined as:

SNR(z) = 20 log

( ‖x∗‖F

‖z − x∗‖F

)
.

The following parameters have been used in the algorithm implementation.
The iterations of the CLSTV algorithm (Table 1) are stopped using the conver-

gence rule (24) with tolerances τr = 10−4 and τa = 10−5 and maxitCGLS = 20.
The number of bisection iterations before starting the secant iterations in the hybrid
method is ks = 2.

The FP iterations (Table 2) are stopped using the convergence rule (19) with tol-
erances ε1 = ε2 = 10−2 and maxitFP = 2. The parameters for the TCG stooping
criteria (18) are: ζ = 10−4 and maxitCG = 15.

4.1 Algorithm accuracy

Aim of this paragraph is to show the results that can be obtained by CLSTV when
γ is estimated by the formula (16). We report the results obtained with the two test
images I1 and I2, blurred with both the GB and the MB kernels with different values
of NL, by using the FP algorithm.

(a) (b)

Fig. 1 Test images. a I1 : 256 × 256 test Image. b I2 : 500 × 500 test image
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Table 4 Restoration results

Test Blur SNR
(
yδ

)
SNR(xk) γ λk k(itFP )

I1 GB 18.8 25.7 3.337e+3 1.956e−4 5(12)

17.6 21.2 2.879e+3 5.876e−3 6(10)

MB 14.6 23.6 3.571e+3 1.379e−4 7(12)

14.1 18.1 2.535e+3 4.943e−3 10(18)

I2 GB 17.4 21.4 1.8953e+4 1.2340e−4 13(24)

16.4 18.7 1.2164e+4 1.2307e−2 8(14)

MB 14.6 23.2 2.3007e+4 1.5010e−4 14(26)

14.0 17.3 1.4429e+04 6.4490e−3 8(14)

The results obtained by adding noise with NL=0.01 and NL= 0.07 are reported in
Table 4. By comparing the columns SNR

(
yδ

)
and SNR(xk) it is possible to evaluate

the improvement in the restored images (see Figs. 2, 3, 4 and 5 for GB and MB
examples). The computational efficiency can be measured by the data in column
k(itCLST V ) reporting the CLSTV iterations (k) and the total number of FP iterations
required by FP algorithm (itFP ). We observe that for the two different types of blur
it is possible to efficiently obtain accurate solutions performing a low number of
iterations in all the considered cases.

More insight in the algorithm convergence can be given by observing the behavior
of the relative error at each iteration k:

‖xk − x∗‖F /‖x∗‖F . (26)

In Fig. 6 we observe that the relative error obtained at the exit iteration k (black dot)
is very close to the optimal (red star). This confirms the effectiveness of the stopping
criteria (24) with the chosen values of the parameters τr and τa . In Fig. 7 we plot
the λk sequence as a function of the iteration k. We observe that the value of the
regularization parameter λk obtained at the exit iteration (black dot in Fig. 7) is close
to that of minimum error (red star in Fig. 7). The plot of R(xk) vs. k is reported in
Fig. 8 for the two blurring kernels. It shows that the starting value λ0 together with
(9) allows us to obtain a fast non monotone convergence of the {λk} sequence.

Fig. 2 Test image I1: Gaussian
blur. a Noisy blurred Image
SNR = 17.6. b Restored Image
SNR = 21.2

(a) (b)
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(a) (b)

Fig. 3 Test image I1: motion blur. a Noisy blurred Image SNR = 14.6. b Restored Image SNR = 23.6

(a) (b)

Fig. 4 Test image I2: Gaussian blur. a Noisy blurred Image SNR = 17.4. b Restored Image SNR = 21.4

(a) (b)

Fig. 5 Test image I2: motion blur. a Noisy blurred Image SNR = 14.0. b Restored Image SNR = 17.3
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(a () b)

Fig. 6 I1 test image: relative error vs iterations k. a Gaussian blur SNR = 17.6. b Motion blur
SNR = 14.6

4.2 Robustness of γ estimate

In this section we examine the effectiveness of the heuristic rule proposed for esti-
mating γ , by comparing the results presented in the previous paragraph, where γ is
computed with formula (16), with those obtained by using an optimal parameter γ

(γopt ). We heuristically found γopt as the value of γ minimizing the relative error
(26).

For the sake of brevity we only show the results for the test image I1. In Table 5
are reported the parameters SNRopt and λopt relative to the reconstructed images
obtained from γopt . Comparing the columns SNRopt and λopt , obtained with the
optimal γopt , with the corresponding columns SNR(xk), and λ in Table 4, obtained

(a () b)

Fig. 7 I1 test image: regularization parameter λk vs iterations k. a Gaussian blur SNR = 17.6. b Motion
blur SNR = 14.6
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(a () b)

Fig. 8 I1 test image: values of γ and R(xk) at each iteration. a Gaussian blur SNR = 17.6. b Motion
blur SNR = 14.6

with the computed γ , we can observe that the solutions computed with γopt and with
the computed γ are very close.

In Fig. 9 we plot the SNR values of the reconstructions obtained with the different
values of γ for the two blurring kernels, in the case of low noise. The red dots rep-
resent the SNR values of the solutions computed using the values of γ estimated by
(16). The dots are in both cases very close to the optimal SNR values, i.e. the max-
ima of the plotted curves; hence our estimates of γ are accurate. In order to validate
the formula (16) for the estimation of γ , we report in Table 6 the values of γL and
γH and the parameter θ used to obtain the results in Table 4. Finally we observe that
the interval [γL, γH ] always includes the optimal value γopt reported in Table 5 and
that larger values of the noise in the data require smaller values of the weight θ . We
remind that we computed the values γL and γH by estimating an interval containing
the value γopt for a data base of grayscale images.

4.3 Estimate of the regularization parameter γ

In this test, we solve the problem

min
x

F (x) + λJ (x) (27)

Table 5 Test image I1, restoration with optimal parameters

Blur SNRyδ SNRopt γopt λopt

GB 18.8 25.7 3.4182e+3 1.6681e−4

17.6 21.3 2.8852e+3 5.8570e−3

MB 14.6 23.7 3.6299e+03 1.3219e−04

14.1 18.2 2.8043e+03 3.5112e−03
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(a () b)

Fig. 9 Test image I1: SNR vs γ (red dots: CLSTV algorithm). a Gaussian Blur (SNR = 18.8). b Motion
blur (SNR = 14.6)

for several given values of the regularization parameter λ and choose the solution
that minimizes the relative error (26). By solving (27) with 50 values in the interval
[10−4, 10−1] for illustration purpose we obtain a SNR curve that reaches its maxi-
mum value very close to the value obtained by CLSTV method (see Fig. 10a and b).
The value of the regularization parameters computed by the CLSTV algorithm are
λ = 0.0139 with SNR = 17.3 and λ = 0.0383 with SNR = 13.3. The values of
the regularization parameters that minimize the relative error are λopt = 0.0121 and
λopt = 0.0429 respectively.

4.4 Comparison with other algorithms

In this paragraph we compare some aspects of the CLSTV algorithm with different
deblurring algorithms given in the literature.

In the first test we compare the performance of our algorithm with the method
proposed in [17] called SATV. It is a sophisticated method that produces very good
quality deblurred images by automatically computing spatially adapted regulariza-
tion parameter. For this reason, we use the code available at http://www.uni-graz.at/
imawww/ifb/sa-tv/index.html implementing the SATV method, and we use the same

Table 6 Parameters used in (16) for estimating γ in the I1 test problem

SNR
(
yδ

)
γL γH θ

18.8 2.021093e+2 7.168144e+3 0.45

17.6 5.252854e+2 1.863012e+4 0.13

14.6 3.149450e+2 1.117005e+4 0.3

14.1 5.704799e+2 2.023302e+4 0.1

http://www.uni-graz.at/imawww/ifb/sa-tv/index.html
http://www.uni-graz.at/imawww/ifb/sa-tv/index.html
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(a () b)

Fig. 10 Test image I1: SNR curve for fixed regularization parameters in the interval
[
10−4, 10−1

]
. a

SNR blurred = 17.6. b SNR blurred = 14.6

test problem implemented there. The test image is I1, previously described in Fig. 1,
while the blurring kernel is a Gaussian function, generated by SATV code. The noise
is added with absolute perturbation δ = ‖y − yδ‖F = 0.05, 0.1, obtaining severely
blurred noisy images with SNR = 17.3 and SNR = 13.3 respectively.

In Table 7 we report the results obtained with different noise levels. We observe
that SATV and CLSTV algorithms give close qualitative results in terms of SNR
(columns 4 and 6 in Table 7). Although the images Fig. 11a and b are very close
together, by observing the error images in Fig. 12a and b we can see a smoother
behavior of CLSTV. The great difference between the two algorithms is given by the
computation time. In Table 7 (columns 5 and 7) we report the elapsed time. The ratio
between the elapsed time of algorithm CLSTV and SATV is less than 2 %.

In the second test we wish to compare the effectiveness of the CLSTV
procedure for determining the regularization parameter when different methods
are used to solve the inner problem (10). In particular we compare the Fixed
Point method of Table 2 (CLSTV + FP) with the splitting method given in
Table 3 (CLSTV + SP). In the reported experiments the denoising step (21)

Table 7 Comparison between CLSTV (algorithm 1) and SATV (Dong et al. [17]) algorithms. Results
computed with test image I1 blurred with gaussian kernel and different noise values. Times obtained on 8
intel i7 processor and 24 GB Ram

Test Noise CLSTV SATV

δ SNR
(
yδ

)
SNR(xk ) sec SNR(xk) sec.

I1 0.05 17.3 20.3 11 20.2 828

0.1 13.3 18.6 12 18.5 745
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(a () b)

Fig. 11 Test image I1: restored images. a CLSTV. b SATV

is performed by the Chambolle’s algorithm [10]. The computed results are
obtained using the function tvdenoise.m of the TVreg code available
at http://www.mathworks.com/matlabcentral/fileexchange/29743-tvreg-variational-
image-restoration-and-segmentation.

In Table 8 we report the qualitative (SNR) and performance (computation times)
results obtained with test image I1 blurred with gaussian and motion blur as in
Table 4 (column 3). The estimated parameter γ is not affected by the solution of (10)
as shown in Table 8 (columns 3 and 6). In the (CLSTV + SP) experiment the maxi-
mum number of iterations maxitSP = 10 is used. We noticed that a larger value of
maxitSP would give better SNR values and increase the computation times. From the
results reported in Table 8 we can conclude that good quality restorations (columns 2
and 6) can be achieved by both methods at comparable computation times (columns
5 and 9). Therefore CLSTV can be considered a suitable general framework for com-
puting the regularization parameter of different deblurring algorithms. We observe
that the number of inner iterations of the denoising algorithm itj (column 8) cannot
be compared with the number of FP inner iterations (column 4) since the latter have
a much higher computational cost.

(a () b)

Fig. 12 Test image I1: negative error images. a CLSTV. b SATV

http://www.mathworks.com/matlabcentral/fileexchange/29743-tvreg-variational-image-restoration-and-segmentation
http://www.mathworks.com/matlabcentral/fileexchange/29743-tvreg-variational-image-restoration-and-segmentation
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Table 8 Comparison between CLSTV+ FP and CLSTV+ SP. Results computed with test image I1
blurred with gaussian and motion kernels and different noise values. Times obtained on intel i5 processor
and 6 GB Ram

CLSTV+ FP CLSTV+ SP

Blur SNR(xk ) γ k(itFP ) sec. SNR(xk ) γ k(itj ) sec.

GB 25.7 3.337e+3 5(12) 30.01 25.44 3.337e+3 7(4273) 47.14

21.2 2.879e+3 6(10) 20.85 21.09 2.879e+3 10(2277) 28.58

MB 23.6 3.571e+3 7(12) 36.38 22.14 3.571e+3 10(3099) 35.23

17.3 2.535e+3 10(18) 25.80 18.14 2.535e+3 10(3099) 29.66

5 Conclusions

The paper presents the CLSTV algorithm in image deblurring applications to compute
both the restored image and an optimal regularization parameter simultaneously. The
method is based on the solution of a constrained optimization problem, where the TV
function is the smoothing constraint. The algorithm estimates the smoothness level γ

from the given data.
The numerical experiments show the effectiveness of CLSTV: good quality

restored images are obtained with different blurring kernels and noise levels. These
images are comparable with those obtained by more sophisticated algorithms but
the CLSTV algorithm is much faster (saving up to 98 % of the computational time
with respect to SATV), as shown in Section 4.4. The computational efficiency of the
algorithm makes it suitable to large scale problems such as large size multichannel
images.

We observe that CLSTV defines a general for computing a good regularization
parameter for deblurring images using different methods for solving (10).

In future works, the method could be extended to the other types of linear inverse
problems, such as the reconstruction of tomographic data and blind deconvolution as
well as to nonquadratic discrepancy functionals such as, for example, the Kullback-
Leibler (or Csiszàr I-divergence).
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