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Abstract The total variation semi-norm based model by Rudin-Osher-Fatemi (in
Physica D 60, 259–268, 1992) has been widely used for image denoising due to
its ability to preserve sharp edges. One drawback of this model is the so-called stair-
casing effect that is seen in restoration of smooth images. Recently several models
have been proposed to overcome the problem. The mean curvature-based model by
Zhu and Chan (in SIAM J. Imaging Sci. 5(1), 1–32, 2012) is one such model which
is known to be effective for restoring both smooth and nonsmooth images. It is, how-
ever, extremely challenging to solve efficiently, and the existing methods are slow
or become efficient only with strong assumptions on the formulation; the latter in-
cludes Brito-Chen (SIAM J. Imaging Sci. 3(3), 363–389, 2010) and Tai et al. (SIAM
J. Imaging Sci. 4(1), 313–344, 2011).

Here we propose a new and general numerical algorithm for solving the mean
curvature model which is based on an augmented Lagrangian formulation with a spe-
cial linearised fixed point iteration and a nonlinear multigrid method. The algorithm
improves on Brito-Chen (SIAM J. Imaging Sci. 3(3), 363–389, 2010) and Tai et al.
(SIAM J. Imaging Sci. 4(1), 313–344, 2011). Although the idea of an augmented
Lagrange method has been used in other contexts, both the treatment of the bound-
ary conditions and the subsequent algorithms require careful analysis as standard
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approaches do not work well. After constructing two fixed point methods, we ana-
lyze their smoothing properties and use them for developing a converging multigrid
method. Finally numerical experiments are conducted to illustrate the advantages by
comparing with other related algorithms and to test the effectiveness of the proposed
algorithms.

Keywords Staircasing effect · Denoising · Mean curvature-based model · Fixed
point iteration method · Nonlinear multigrid

Mathematics Subject Classification (2010) 68U10 · 65F10 · 65K10

1 Introduction

The presence of noise in an image is common, often arising from the image formation
process such as image recording or transmission. Denoising is perhaps the most fun-
damental image processing task which has been deeply investigated for many years.
In this paper, we mainly consider a model for removing additive, zero-mean Gaussian
type noise and focus on effective numerical algorithms. Let Ω be a bounded and open
domain in R

2 (without loss of generality we assume Ω is a square), f the observed
image and u the true image. The degradation model can be expressed as:

f (x, y) = u(x, y) + n(x, y), (x, y) ∈ Ω (1.1)

which n is the unknown additive noise (see [8] for an example of other noise models).
It is well-known that u cannot be obtained uniquely from f . Rather, regularisation is
required in order to find an approximation to u, yielding the model

min
u

{
J (u) = 1

2

∫
Ω

(u − f )2dxdy + λR(u)

}
, (1.2)

where the first fitting term ensures that u is close to f , the second term R(u) is a
regularizer designed based on a priori information about u, and λ > 0 is a regularisa-
tion parameter. The Total Variation (TV) regularizer R(u) = ∫

Ω
|∇u|dxdy proposed

by Rudin, Osher and Fatemi [18] leads to the TV model. The Euler-Lagrange (EL)
equation for (1.2) is

−λ∇ · ∇u

|∇u| + (u − f ) = 0, (1.3)

where the Neumann boundary condition ∇u · ν = 0 is imposed with ν the unit out-
ward normal vector. In practice the term |∇u| is replaced by |∇u|β =√|∇u|2 + β to
avoid division by zero, where β > 0 is a small parameter. This model can preserve
shape edges and contours; for smooth images, however, the TV model produces unde-
sirable staircasing effects in transforming a smooth function into a piecewise constant
function.

In order to remedy this drawback, Blomgren et al. proposed to use a different reg-
ularizer R(u) = ∫

Ω
|∇u|P(|∇u|) dxdy [1] (with 1 ≤ P ≤ 2) instead of the TV semi-

norm where P = 1. The split Bregman (SB) iteration has attracted a lot of attention in
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image denoising and deblurring [12, 17]. The fundamental idea is to transform a con-
strained optimization problem to a series of unconstrained problems by introducing
auxiliary variables. In each unconstrained problem, the objective function is defined
by the Bregman distance for a convex functional. This method converges rapidly and
visually reduces the effects of staircasing. The non-local means model by [11, 15]
also provides effective staircase reduction by defining a non-local TV (involving all
first order variations) in a neighborhood of each pixel. Recently many researchers
have turned to higher order models. The total generalized variation (TGV) model [2]
uses a semi-norm defined by a nontrivial mixing of first and second order varia-
tions to improve on the TV model. Here we are concerned with the particular model
using mean curvature as a regularizer, shown to be effective for denoising by Zhu
and Chan [28] and Brito and Chen [4]. The resulting EL partial differential equation
(PDE) is highly nonlinear and of fourth order. The method uses a gradient descent
algorithm and is consequently slow to converge. The stabilization method adopted by
[4] was a major improvement but it has severe limitation in regularising the nonlinear-
ity. Below we first review the mean curvature-based model and the existing numerical
algorithms. Then we present our new algorithm.

The contributions of the paper include the following: (i) our work improves on
Brito-Chen [4] in better treatment of the nonlinearity; (ii) it improves on the staircas-
ing effect of the TV model; (iii) it provides a fast realisation of the mean curvature-
based model; and (iv) it improves on the augmented Lagrangian implementation (AL)
following Tai et al. [20] in restoration quality. Although SB, AL and TGV all outper-
form the TV, the improvements by AL and TGV are more than by the SB while the
TGV is the best of the three methods. The proposed algorithm will perform similarly
to the TGV and slightly better than it in some cases.

Mean curvature-based model The mean curvature-based model of Zhu and Chan
[28] and Lysaker-Osher-Tai [16]

min
u

{
J (u) = 1

2

∫
Ω

(u − f )2 dxdy + λ

∫
Ω

Φ(κ)dxdy

}
, (1.4)

is known to be better than the TV model in image denoising [4, 16, 28], where κ(u) is
the mean curvature of the image defined as κ(u) = ∇ · (∇u/|∇u|). Here Φ(κ) = κ2

or Φ(κ) = |κ| or is a combination of both. Below we take Φ(κ) = κ2, so Φ ′(κ) = 2κ .
Note that in [28] an image is understood as a surface represented by (x, y, z) where
z = u(x, y). In that case κ(u) = ∇ · (∇u/

√|∇u|2 + 1). Here the more common form
κ(u) = κβ(u) = ∇ · (∇u/

√|∇u|2 + β) is adopted [16]. β is a small parameter intro-
duced to mitigate potential instability as |∇u| becomes small. In fact smaller β corre-
sponds to stronger nonlinearity and slows down the convergence of many numerical
methods. We are interested in obtaining a numerical algorithm that converges even
for small β; note that previous methods simply do not work for small β .

The EL equation for (1.4) is the following

λ∇ ·
(∇Φ ′(κ)

|∇u| − ∇u · ∇Φ ′(κ)

(|∇u|)3
∇u

)
+ u − f = 0 in Ω (1.5)
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with boundary conditions ∇u · ν = 0, κ = 0 on ∂Ω and ν is the unit outward normal
vector. Model (1.4) is equivalent to finding a piecewise smooth surface to approxi-
mate the image surface [28]. It can remove noise efficiently and, at the same time,
maintains corners, edges and grey scale intensity contrast. A time marching (gradient
descent) method [28] can be applied to the parabolic form of (1.5):

∂u

∂t
= λ∇ ·

(∇Φ ′(κ)

|∇u| − ∇u · ∇Φ ′(κ)

(|∇u|)3
∇u

)
+ u − f (1.6)

with initial condition u(x, y,0) = f (x, y). This method converges very slowly due to
the stability restrictions on the time step, �t ∼ O((�x)4). An alternative Augmented
Lagrangian method for (1.4) with β = 1 was suggested in [29].

Brito-Chen [4] developed two new algorithms for solving (1.5): a stabilized fixed
point method and, based upon this, an efficient nonlinear multigrid (MG) method. In
developing their fixed point method, they found that various fixed point schemes do
not converge. However after a stabilizing term γN is added to both sides of (1.5),
they obtained a converging fixed point method

−γN
(k+1)
i,j − λ∇ · (D2(u)

(k+1)
i,j (∇u)

(k+1)
i,j

)+ u
(k+1)
i,j = g

(k)
i,j , (1.7)

where

D1 = 1

|∇u|β , D2 = ∇u · ∇Φ ′

|∇u|3β
,

g
(k)
i,j = fi,j − λ∇ · (D1(u)

(k)
i,j

(∇Φ ′)(k)

i,j

)− γN
(k)
i,j ,

and N = TV(u) = ∇ · (∇u/|∇u|) provided that β is large enough (e.g. β ≥ 10−2).
This method is called the stabilized fixed point (SFP) method. It has been proven to
be very efficient as a smoother for a nonlinear MG by local Fourier analysis, as long
as β is not too small. It is our intention to develop a new algorithm that does not
impose such a strong assumption on β .

The rest of the paper is organised as follows. Section 2 introduces our iterative
method for solving (1.4) on a single grid. Section 3 uses the developed iterative
method as a smoother for a nonlinear multigrid method. Since previous methods do
not converge for small β , our tests will focus on cases of small β . Section 4 gives
numerical experiments, contrasting the performance of the proposed algorithms as
compared to other approaches in the literature. As expected, our method does con-
verge for the mean curvature model with small parameter β and it shows some degree
of robustness with respect to the choice of β .

2 A new iterative method for a mean curvature model

In this section, we present a new augmented Lagrangian method related to the mean
curvature-based model (1.4). As we shall see, though simple and efficient, our new al-
gorithm will be as accurate as [4, 28] and more importantly more robust with respect
to β than [4]. In order to solve (1.4), we change it into a constrained minimization
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problem by introducing a new auxiliary variable ω = (ω1,ω2) and by using an oper-
ator splitting technique. The auxiliary variable permits the derivation of a system of
second order PDEs in contrast to the fourth order PDE obtained without the auxiliary
variable.

Then with ω, the constrained minimization problem can be expressed as:

min
u,ω

{
E(u,ω) =

∫
Ω

(u − f )2dxdy + λ

∫
Ω

(∇ · ω)2dxdy

}

s.t., ω = ∇u

|∇u|β . (2.1)

The constraint condition can be reformulated as ∇u − ω|∇u|β = 0, yielding the
quadratic penalty method for (1.4)

min
u,ω

{
E(u,ω) =

∫
Ω

(u − f )2dxdy + λ

∫
Ω

(∇ · ω)2dxdy

+ γ

∫
Ω

∥∥∇u − ω|∇u|β
∥∥2

dxdy

}
, (2.2)

where ‖ · ‖ denotes L2 norm, and λ and γ are positive regularisation parameters. We
first derive the formal EL equations for (2.2).

2.1 The EL equations

We shall assume the image to be reconstructed is smooth enough, such that u, ω ∈
W 1,1(Ω) = {u ∈ L1(Ω) : D1u ∈ L1(Ω)}, and ∇ · ω and ∇u are well defined.

Lemma 1 The Euler-Lagrange equations for the functional (2.2) are:
⎧⎪⎨
⎪⎩

u − f − γ∇ ·
(

∇u − |∇u|βω − ∇u · ω
|∇u|β ∇u + (ω · ω)∇u

)
= 0

−γ |∇u|β∇u − λ∇(∇ · ω) + γ |∇u|2βω = 0,

(2.3)

where the boundary conditions are ∇ · ω = 0, ∇u · ν = 0, and ω · ν = 0.

Proof Let v,φ1, φ2 : R2 −→ R ∈ C1
c(Ω) (first-order continuous functions). Taking

φ = (φ1, φ2), from (2.2), we have

δE(u,ω) = d

dε
E(u + εv,ω + εφ)

∣∣∣∣
ε=0

= d

dε

(∫
Ω

(u + εv − f )2dxdy + λ

∫
Ω

(∇ · ω + ε∇ · φ)2dxdy

)
︸ ︷︷ ︸

I1

∣∣∣∣
ε=0

+ d

dε
γ

∫
Ω

∥∥(∇u + ε∇v) − (ω + εφ)|(∇u + ε∇v)|β
∥∥2

dxdy

︸ ︷︷ ︸
I2

∣∣∣∣
ε=0

= 0.
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We now simplify I1, I2 respectively as

I1 = 2
∫

Ω

(u − f )vdxdy + 2λ

∫
Ω

∇ · ω∇ · φ dxdy

= 2
∫

Ω

(u − f )vdxdy − 2λ

∫
Ω

∇(∇ · ω) · φ dxdy + 2λ

∫
Γ

(∇ · ω)(ν · φ)dS

= 2
∫

Ω

(u − f )vdxdy − 2λ

∫
Ω

∇(∇ · ω) · φ dxdy

(after we impose the first boundary condition ∇ · ω = 0) and

I2 = 2γ

∫
Ω

(∇u∇v − |∇u|βω · ∇v − |∇u|β∇u · φ)dxdy

+ 2γ

∫
Ω

(
|∇u|2βω · φ − (∇u · ω)

∇u · ∇v

|∇u|β + (ω · ω)∇u · ∇v

)
dxdy.

Imposing boundary conditions ∇u · ν = 0 and ω · ν = 0, Green’s first formula simpli-
fies I2 as

I2 = −2γ

∫
Ω

∇ ·
(

∇u − |∇u|βω − ∇u · ω
|∇u|β ∇u + (ω · ω)∇u

)
vdxdy

+ 2γ

∫
Ω

(|∇u|2βω − |∇u|β∇u
) · φdxdy.

Then from I1 + I2 = 0, we obtain the EL equations (2.3). �

Since ω = (ω1,ω2), we can rewrite (2.3) as three coupled partial differential equa-
tions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u − f − γ∇ ·
(

∇u − |∇u|βω − ∇u · ω
|∇u|β ∇u + (ω · ω)∇u

)
= 0,

−γ |∇u|βux − λ∂x(∇ · ω) + γ |∇u|2βω1 = 0,

−γ |∇u|βuy − λ∂y(∇ · ω) + γ |∇u|2βω2 = 0.

(2.4)

Next we briefly discuss the discretisation of (2.4) and then present an efficient
solver.

2.2 Numerical discretization

Without loss of generality, we assume Ω is approximated by a discrete domain Ωh =
{(xi, yj ) ∈ Ω |xi = ihx − 1/2, yj = jhy − 1/2, i = 1,2, . . . ,m, j = 1,2, . . . , n},
where hx, hy are the mesh sizes in x, y directions respectively, and uh = uh

i,j =
uh(xi, yj ) is the discrete form of u defined on Ωh. For simplicity we will take m = n,
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hx = hy = h. To approximate the term ∇ · V = (V1)x + (V2)y at pixel (i, j) for any
V = (V1,V2), central differences can be used as follows:

(∇ · V )i,j =
(V1)i+ 1

2 ,j
− (V1)i− 1

2 ,j

h
+

(V2)i,j+ 1
2
− (V2)i,j− 1

2

h
. (2.5)

Partial derivatives in x are given by the central differencing of two adjacent whole
pixels as

(ux)i+ 1
2 ,j

= (ui+1,j − ui,j )/h,

(ux)i− 1
2 ,j

= (ui,j − ui−1,j )/h,

∂x(∇ · ω)
i+ 1

2 ,j
=

(ω1)i− 1
2 ,j

+ (ω1)i+ 1
2 +1,j

− 2(ω1)i+ 1
2 ,j

h2

+
(ω2)i+1,j+ 1

2
+ (ω2)i,j− 1

2
− (ω2)i,j+ 1

2
− (ω2)i+1,j− 1

2

h2
.

Partial derivatives in y are given by the min-mod at two adjacent whole pixels defined
by

(uy)i+ 1
2 ,j

= min-mod

(
1

2h
(ui+1,j+1 − ui+1,j−1),

1

2h
(ui,j+1 − ui,j−1)

)
,

(uy)i− 1
2 ,j

= min-mod

(
1

2h
(ui,j+1 − ui,j−1),

1

2h
(ui−1,j+1 − ui−1,j−1)

)
.

Here, as noted in [18], the min-mod functions defined as follows help with recovery
of sharp edges

min-mod(a, b) = sgn(a) + sgn(b)

2
min

(|a|, |b|), sgn(x) =

⎧⎪⎨
⎪⎩

−1 x < 0,

0 x = 0,

1 x > 0.

(2.6)

The values for (uy)i,j+1/2, (uy)i,j+1/2 are obtained similarly and

∂y(∇ · ω)
i,j+ 1

2
=

(ω2)i,j− 1
2
+ (ω2)i,j+ 1

2 +1 − 2(ω2)i,j+ 1
2

h2

+
(ω1)i+ 1

2 ,j+1 + (ω1)i− 1
2 ,j

− (ω1)i+ 1
2 ,j

− (ω1)i− 1
2 ,j+1

h2
.

Then

|∇u|
i+ 1

2 ,j
=
√

(ux)
2
i+ 1

2 ,j
+ (uy)

2
i+ 1

2 ,j
+ β,

|∇u|
i,j+ 1

2
=
√

(ux)
2
i,j+ 1

2
+ (uy)

2
i,j+ 1

2
+ β,
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Fig. 1 This is a staggered grid,
ui,j are defined on •-nodes,
(ω1)

i+ 1
2 ,j

are defined on

✕-nodes and (ω2)
i,j+ 1

2
are

defined on �-nodes

and the Neumann boundary condition on ∂Ω leads to

ui,0 = ui,1, ui,n+1 = ui,n, u0,j = u1,j , um+1,j = um,j .

Finally, the discretization of (2.4) is obtained as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui,j − γ (∇ · V )i,j + γ∇ · (|∇u|βω
)
i,j

= fi,j , (2.7a)

−γ
(|∇u|βux

)
i+ 1

2 ,j
− λ∂x(∇ · ω)

i+ 1
2 ,j

+ γ
(|∇u|2βω1

)
i+ 1

2 ,j
= 0, (2.7b)

−γ
(|∇u|βuy

)
i,j+ 1

2
− λ∂y(∇ · ω)

i,j+ 1
2
+ γ

(|∇u|2βω2
)
i,j+ 1

2
= 0, (2.7c)

where V = ∇u − (∇u · ω/|∇u|β)∇u + (ω · ω)∇u.
In the above equations, we note that at each pixel (i, j), not all of the three un-

knowns are available. In particular, as depicted in Fig. 1, unknowns ui,j are defined
on •-nodes, but (ω1)i+1/2,j and (ω2)i,j+1/2 are defined on ✕-nodes and �-nodes,
respectively. Although average operators can be used to calculate values of ω1 at
�-nodes and ω2 at ✕-nodes, that is:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ω�
1 )

i,j+ 1
2

=
(ω1)i+ 1

2 ,j
+ (ω1)i+ 1

2 ,j+1 + (ω1)i− 1
2 ,j

+ (ω1)i− 1
2 ,j+1

4
, (2.8a)

(ω×
2 )

i+ 1
2 ,j

=
(ω2)i,j+ 1

2
+ (ω2)i,j− 1

2
+ (ω2)i+1,j+ 1

2
+ (ω2)i+1,j− 1

2

4
, (2.8b)

these will introduce additional errors and more importantly satisfying the boundary
conditions will be less straightforward. An alternative is to use a staggered grid.

2.3 Discretization on a staggered grid

To maintain coupling between u and ω, it is convenient to use a staggered grid system
as shown in Fig. 1. Then in (2.7a)–(2.7c), all three unknown quantities in a compu-
tational box are directly available. Now we consider how to handle the boundary
conditions on the staggered grid.

On the boundaries we have (ω1)1−1/2,j = (ω1)m+1/2,j = 0, j = 1,2, . . . , n

and (ω2)i,1−1/2 = (ω2)i,n+1/2 = 0, i = 1,2, . . . ,m. The values of (ω2)1−1/2,j and
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(ω2)m+1/2,j can be obtained from (2.7c) discretised on points (1 − 1/2, j) and
(m + 1/2, j), that is

(ω2)i+ 1
2 ,j

=
(

uy

|∇u|
)

i+ 1
2 ,j

=
(

uy

|uy |
)

i+ 1
2 ,j

= ±1

from

−γ
(|∇u|uy

)
i+ 1

2 ,j
− λ

(
∂y(∇ · ω)

)
i+ 1

2 ,j
+ γ

(|∇u|2ω2
)
i+ 1

2 ,j

= −γ
(|∇u|uy

)
i+ 1

2 ,j
+ γ

(|∇u|2ω2
)
i+ 1

2 ,j
= 0, i = 0,m

(when |∇u| = 0, |∇u|β 
= 0, so (ω2)i+1/2,j = 0). Similarly,

(ω1)i,1− 1
2

= (ω1)i,n+ 1
2

= ±1.

To find points near the boundaries we apply the exact boundary condition ∇ · ω =
0. At the top boundary (i = 1) and bottom boundary (i = m), (ω)i,j+1/2 is obtained
from (2.7c) using i = 1,m, respectively, instead of from (2.8a). Likewise at the left
and right boundaries, j = 1, n, respectively, (ω)i+1/2,j is obtained from (2.7b) in-
stead of from (2.8b).

Therefore, the staggered grid system provides us a convenient way of satisfying
the boundary conditions for u,ω.

2.4 Numerical algorithms on a single grid

We now present two algorithms for solving (2.7a)–(2.7c) on a single grid before de-
scribing their use in the context of a nonlinear multigrid method.

Newton’s method is a natural algorithm to solve nonlinear equations such as
(2.7a)–(2.7c), but convergence is not assured if starting from the initial guess
u(0) = f . Unfortunately, experiments demonstrate that a simple fixed point scheme
such as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(k+1)
i,j − γ

(∇ · V (k+1)
)
i,j

+ γ
(∇ · ∣∣∇u(k+1)

∣∣
β
ω(k+1)

)
i,j

= fi,j ,

−γ
(∣∣∇u(k+1)

∣∣
β
u(k+1)

x

)
i+ 1

2 ,j
− λ∂x

(∇ · ω(k+1)
)
i+ 1

2 ,j

+ γ
(|∇u(k+1)|2βω

(k+1)
1

)
i+ 1

2 ,j
= 0,

−γ
(∣∣∇u(k+1)

∣∣
β
u(k+1)

y

)
i,j+ 1

2
− λ∂y

(∇ · ω(k+1)
)
i,j+ 1

2

+ γ
(∣∣∇u(k+1)

∣∣2
β
ω

(k+1)
2

)
i,j+ 1

2
= 0,

(2.9)

is neither stable nor convergent (unless β is set large to reduce singularities). Based
on a convexity-splitting idea by Yuille and Rangarajan [26] and Eyre [9, 10], we



532 L. Sun, K. Chen

propose instead a stable numerical method for (2.7a)–(2.7c) given by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui,j − γ
(∇ · D(ω)∇u

)
i,j

= (f1)i,j ,

−γ
(|∇u|βux

)
i+ 1

2 ,j
− λ∂x(∇ · ω)

i+ 1
2 ,j

+ γ
(|∇u|2βω1

)
i+ 1

2 ,j
= 0,

−γ
(|∇u|βuy

)
i,j+ 1

2
− λ∂y(∇ · ω)

i,j+ 1
2
+ γ

(|∇u|2βω2
)
i,j+ 1

2
= 0,

(2.10)

where D(ω) = 1+(ω ·ω), and (f1)i,j = fi,j −γ (∇ ·(∇u ·ω/|∇u|β)∇u+|∇u|βω)i,j .
In order to address linearisation in the nonlinear system (2.10), we consider the fol-
lowing two methods:

(1) The global Gauss-Seidel. By ‘global’, we mean to linearise (2.10) by freezing
all coefficients and right hand side terms at all pixels for outer iteration k, yielding
the linear equations for update k + 1 given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(k+1)
i,j − γ

(∇ · D(ω(k)
)∇u(k+1)

)
i,j

= (f k
1

)
i,j

,

−γ
(∣∣∇u(k)

∣∣
β
u(k+1)

x

)
i+ 1

2 ,j
− λ∂x

(∇ · ω(k+1)
)
i+ 1

2 ,j

+ γ
(∣∣∇u(k)

∣∣2
β
ω

(k+1)
1

)
i+ 1

2 ,j
= 0,

−γ
(∣∣∇u(k)

∣∣
β
u(k+1)

y

)
i,j+ 1

2
− λ∂y

(∇ · ω(k+1)
)
i,j+ 1

2

+ γ
(∣∣∇u(k)

∣∣2
β
ω

(k+1)
2

)
i,j+ 1

2
= 0.

(2.11)

The linear equations (2.11) can be solved efficiently by a wide range of linear iterative
methods, such as the Jacobi or Gauss-Seidel methods. Here we use the Gauss-Seidel
(GS) iteration, hence our terminology that this is a ‘global GS’ (GGS) method. Let
p denote the inner iteration of the GS solver, then superscript (k,p) denotes outer
iteration k and inner iteration p. The inner iteration update to level p + 1 is given in
matrix form as

⎛
⎜⎜⎝

S
(k)
i,j 0 0

γ
h
(|∇u(k)|β)

i+ 1
2 ,j

2λ

h2 + γ (|∇u(k)|2β)
i+ 1

2 ,j
λ

h2

γ
h
(|∇u(k)|β)

i,j+ 1
2

λ

h2
2λ

h2 + γ (|∇u(k)|2β)
i,j+ 1

2

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

u
(k,p+1)
i,j

(ω1)
(k,p+1)

i+ 1
2 ,j

(ω2)
(k,p+1)

i,j+ 1
2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎝

(g1)i,j
(g2)i+ 1

2 ,j

(g3)i,j+ 1
2

⎞
⎟⎠ (2.12)
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where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(g1)i,j = (f k
1

)
i,j

+ C
(k)

i+ 1
2 ,j

u
(k,p)

i+1,j + C
(k)

i− 1
2 ,j

u
(k,p+1)

i−1,j + C
(k)

i,j+ 1
2
u

(k,p)

i,j+1

+ C
(k)

i,j− 1
2
u

(k,p+1)

i,j−1

(g2)i+ 1
2 ,j

= γ

h
|∇u(k)|

i+ 1
2 ,j

u
(k,p)

i+1,j + λ

h2

(
(ω1)

(k,p+1)

i− 1
2 ,j

+ (ω1)
(k,p)

i+1+ 1
2 ,j

+ (ω2)
(k,p)

i+1,j+ 1
2
+ (ω2)

(k,p+1)

i,j− 1
2

− (ω2)
(k,p+1)

i+1,j− 1
2

)

(g3)i,j+ 1
2

= γ

h
|∇u(k)|

i,j+ 1
2
u

(k,p)

i,j+1 + λ

h2

(
(ω2)

(k,p+1)

i,j− 1
2

+ (ω2)
(k,p)

i,j+1+ 1
2

+ (ω1)
(k,p)

i+ 1
2 ,j+1

+ (ω1)
(k,p+1)

i− 1
2 ,j

− (ω1)
(k,p)

i− 1
2 ,j+1

)
.

(2.13)

Here S
(k)
i,j = 1+C

(k)
i+1/2,j +C

(k)
i−1/2,j +C

(k)
i,j+1/2 +C

(k)
i,j−1/2, C(k)

i+1/2,j = D(ω(k))i+1/2,j /

h2, and C
(k)
i−1/2,j , C

(k)
i,j+1/2 and C

(k)
i,j−1/2 are defined similarly. Note that when calcu-

lating u
(k,p+1)
i,j , (ω1)

(k,p+1)

i+1/2,j , (ω2)
(k,p+1)

i,j+1/2 , the updated u
(k,p+1)

i−1,j , u
(k,p+1)

i,j−1 , (ω1)
(k,p+1)

i−1/2,j ,

(ω2)
(k,p+1)

i,j−1/2 and (ω2)
(k,p+1)

i+1,j−1/2 are used, hence the use of GS instead of the Jacobi to
describe the process. Algorithm 1 describes the overall GGS solver.

Remark An alternative approach could be to use a global Jacobi method where
the nonlinear coefficients are frozen globally followed by local Jacobi iterations.
Our tests have shown that while this method works equally well for large β (e.g.
β ≥ 10−2), it fails to converge for β < 10−2. Therefore if one is content with large
β and parallel implementation is necessary, this global Jacobi method is feasible.
Since our purpose in this paper is to demonstrate the advantages of being able to

Algorithm 1 zh ← GGS (u,ω,λ, γ,β, ξ and ζ ), where u and ω are initial values, λ

and γ are regularisation parameters, β is the stabilizing parameter, ξ is the number
of outer iterations and ζ is the number of inner iterations

1: Initialization: u0, ω0, λ, γ , β , ξ and ζ .
2: For k = 1 to ξ

3: compute C
(k)

i+ 1
2 ,j

, C
(k)

i− 1
2 ,j

,C(k)

i,j+ 1
2
, C

(k)

i,j− 1
2

and (f k
1 )i,j ,

4: For p = 1 to ζ

5: For i = 1, . . .m, j = 1, . . . n

6: compute u
(k,p+1)
i,j , (ω1)

(k,p+1)

i+ 1
2 ,j

and (ω2)
(k,p+1)

i,j+ 1
2

from (2.11).

7: end, end
8: u

(k+1)
i,j = u

(k,ζ )
i,j , (ω1)

(k+1)

i+ 1
2 ,j

= (ω1)
(k,ζ )

i+ 1
2 ,j

, (ω2)
(k+1)

i,j+ 1
2

= (ω2)
(k,ζ )

i,j+ 1
2

9: end
10: end
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solve the mean curvature model with a small β , we shall not discuss this method
further.

(2) Local Gauss-Seidel method. As an alternative to the above GGS, we now con-
sider linearising the nonlinear system (2.10) only locally at each pixel. So the frozen
coefficients will be updated in a Gauss-Seidel fashion. We can rewrite (2.7a)–(2.7c)
as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1
(
. . . , u

(k+1)
i−1,j , (ω1)

(k+1)

i− 1
2 ,j

, (ω2)
(k+1)

i−1,j+ 1
2
, u

(k+1)
i,j , (ω1)

(k+1)

i+ 1
2 ,j

,

(ω2)
(k+1)

i,j+ 1
2
, u

(k)
i+1,j , (ω1)

(k)

i+1+ 1
2 ,j

, (ω2)
(k)

i+1,j+ 1
2
, . . .

)= 0,

N2
(
. . . , u

(k+1)
i−1,j , (ω1)

(k+1)

i− 1
2 ,j

, (ω2)
(k+1)

i−1,j+ 1
2
, u

(k+1)
i,j , (ω1)

(k+1)

i+ 1
2 ,j

,

(ω2)
(k+1)

i,j+ 1
2
, u

(k)
i+1,j , (ω1)

(k)

i+1+ 1
2 ,j

, (ω2)
(k)

i+1,j+ 1
2
, . . .

)= 0,

N3
(
. . . , u

(k+1)
i−1,j , (ω1)

(k+1)

i− 1
2 ,j

, (ω2)
(k+1)

i−1,j+ 1
2
, u

(k+1)
i,j , (ω1)

(k+1)

i+ 1
2 ,j

,

(ω2)
(k+1)

i,j+ 1
2
, u

(k)
i+1,j , (ω1)

(k)

i+1+ 1
2 ,j

, (ω2)
(k)

i+1,j+ 1
2
, . . .

)= 0.

(2.14)

Then to obtain the three local quantities u
(k+1)
i,j , (ω

(k+1)
1 )i+1/2,j and (ω

(k+1)
2 )i,j+1/2

in the above nonlinear system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N1
(
. . . , u

(k+1,l+1)
i,j , (ω1)

(k+1,l+1)

i+ 1
2 ,j

, (ω2)
(k+1,l+1)

i,j+ 1
2

, . . .
)= 0,

N2
(
. . . , u

(k+1,l+1)
i,j , (ω1)

(k+1,l+1)

i+ 1
2 ,j

, (ω2)
(k+1,l+1)

i,j+ 1
2

, . . .
)= 0,

N3
(
. . . , u

(k+1,l+1)
i,j , (ω1)

(k+1,l+1)

i+ 1
2 ,j

, (ω2)
(k+1,l+1)

i,j+ 1
2

, . . .
)= 0,

(2.15)

we use a local fixed point method (after a local linearisation), yielding

⎛
⎜⎜⎝

Si,j 0 0
γ
h
(|∇u(k,l,p)|β)

i+ 1
2 ,j

d2
λ

h2

γ
h
(|∇u(k,l,p)|β)

i,j+ 1
2

λ

h2 d3

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u
(k,l,p+1)
i,j

(ω1)
(k,l,p+1)

i+ 1
2 ,j

(ω2)
(k,l,p+1)

i,j+ 1
2

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎝

(g1)i,j
(g2)i+ 1

2 ,j

(g3)i,j+ 1
2

⎞
⎟⎠ (2.16)

where d2 = 2λ

h2 + γ (|∇u(k,l,p)|2β)
i+ 1

2 ,j
, d3 = 2λ

h2 + γ (|∇u(k,l,p)|2β)
i,j+ 1

2
,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(g1)i,j = (f (k,l)
1

)
i,j

+ C
(k,l,p)

i+ 1
2 ,j

u
(k)
i+1,j + C

(k,l,p)

i− 1
2 ,j

u
(k+1)
i−1,j + C

(k,l,p)

i,j+ 1
2

u
(k)
i,j+1

+ C
(k,l,p)

i,j− 1
2

u
(k+1)
i,j−1 ,

(g2)i+ 1
2 ,j

= γ

h

∣∣∇u(k,l,p)
∣∣
i+ 1

2 ,j
u

(k+1)
i+1,j + λ

h2

(
(ω1)

(k+1)

i− 1
2 ,j

+ (ω1)
(k)

i+1+ 1
2 ,j

+ (ω2)
(k)

i+1,j+ 1
2
+ (ω2)

(k+1)

i,j− 1
2
− (ω2)

(k)

i+1,j− 1
2

)
,

(g3)i,j+ 1
2

= γ

h

∣∣∇u(k,l,p)
∣∣
i,j+ 1

2
u

(k)
i,j+1 + λ

h2

(
(ω2)

(k)

i,j− 1
2
+ (ω2)

(k)

i,j+1+ 1
2

+ (ω1)
(k)

i+ 1
2 ,j+1

+ (ω1)
(k+1)

i− 1
2 ,j

− (ω1)
(k+1)

i− 1
2 ,j+1

)
,

(2.17)

and Si,j = 1 + C
(k,l,p)

i+1/2,j + C
(k+1)
i−1/2,j + C

(k,l,p)

i,j+1/2 + C
(k+1)
i,j−1/2. This Local Gauss-Seidel

(LGS) method is described in Algorithm 2.
It is shown later that LGS and GGS are convergent on a single grid. We now

consider accelerating the solution of (2.7a)–(2.7c) by using a nonlinear multigrid
method with GGS and LGS as smoothers.

Algorithm 2 zh ← LGS (u,ω,λ, γ,β, ξ, ζ and η), where u and ω are initial values,
λ and γ are regularisation parameters, β is the stabilizing parameter, ξ is the number
of outer iterations, ζ is the number of middle iterations (for operator splitting) and η

is the number of inner iterations
1: Initialization: u0, ω0, λ, γ , β , ξ , ξ and η.
2: For k = 1 to ξ

3: For i = 1, . . .m, j = 1, . . . n

4: For l = 1 to ζ

5: compute (f
(k,l)
1 )i,j ,

6: For p = 1 to η

7: compute all coefficients,

8: compute (u
(k,l,p+1)
i,j , (ω1)

(k,l,p+1)

i+ 1
2 ,j

and (ω2)
(k,l,p+1)

i,j+ 1
2

from (2.16).

9: end
10: u

(k,l+1)
i,j = u

(k,l,η)
i,j , (ω

(k,l+1)
1 )

i+ 1
2 ,j

= (ω(k,l,η))
i+ 1

2 ,j
, (ω2)

(k,l+1)

i,j+ 1
2

=
(ω(k,l,η))

i,j+ 1
2

11: end
12: u

(k+1)
i,j = u

(k,ζ )
i,j , (ω1)

(k+1)

i+ 1
2 ,j

= (ω1)
(k,ζ )

i+ 1
2 ,j

, (ω2)
(k+1)

i,j+ 1
2

= (ω2)
(k,ζ )

i,j+ 1
2

13: end, end
14: end.



536 L. Sun, K. Chen

3 Solution by a nonlinear multigrid algorithm

The aim of this section is to develop a nonlinear multigrid (NMG) algorithm for the
solution of (2.7a)–(2.7c). Multigrid (MG) methods [3, 5, 21, 22] have been applied
to many fields of image processing such as restoration, segmentation and registra-
tion. These include high order models [4, 7, 13]. However for a nonlinear problem,
convergence is not automatic and it is essential to construct a suitable smoother.

3.1 The nonlinear multigrid algorithm

A nonlinear multigrid (NMG) algorithm [3, 6, 21, 22] contains three ingredients: an
iterative relaxation method as the smoother, a restriction operator to transfer solu-
tions and residuals from a fine grid to a coarse grid, and an interpolation operator to
interpolate the correction vectors back to a finer grid.

Here denote our coupled system of three nonlinear PDEs from (2.7a)–(2.7c) by
Nh(Zh) = gh on a fine grid Ωh with size h, that is,

N1
(
Zh
)= gh

1 , N2
(
Zh
)= gh

2 , N3
(
Zh
)= gh

3 , (3.1)

where Zh = (uh,ωh
1 ,ωh

2 ) and on the finest grid gh = (f h
1 ,0,0). Assume Zh is an

iteration obtained from applying a suitable smoother. The basic idea is to design an
effective smoother (technique) which efficiently reduces the high frequency compo-
nents of the fine grid errors. Then the coarse grid equation is N2h(Z2h) = g2h. A two-
grid full approximation algorithm is shown below in Algorithm 3 (repeated use of the
idea leads to the full NMG). Here R2h

h and Ih
2h [19] are to be discussed below. The

relationship between the fine grid and the coarse grid is shown as in Fig. 2. There are
three equations u,ω1,ω2 that are applied with R2h

h and Ih
2h as transfer operations.

Here we consider GGS and LGS as smoothers. Transfer operations for u on a
standard coarsening of grids are straightforward [3, 4, 21] as shown below.

The restriction operator for a grid function (uh)i,j = uh(xi, yj ) at a coarse grid
point (i, j) = (xi, yj ) ∈ Ω2h is expressed as:

⎛
⎜⎝

u2h

ω2h
1

ω2h
2

⎞
⎟⎠= R2h

h

⎛
⎜⎝

uh

ωh
1

ωh
2

⎞
⎟⎠ ,

Fig. 2 Relationship of the fine
grid and coarser grid
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Algorithm 3 (FAS cycle). Zh ← NMG(Zh, gh,λ, γ,β, ξ0, ξ1, ξ2), where Zh and gh

are initial values at the hth level, λ and γ are regularisation parameters, β is the
stabilizing parameter, ξ0 is the number of steps of the coarsest grid, ξ1 is the number
of steps of presmoothing on the coarser grid and ξ2 is the number of steps of the
postsmoothing on the coarser grid

1: If Ωh = is the coarsest grid, solve (2.10) accurately by using Algorithm 1 or
Algorithm 2 do ξ0 steps and return. Else continue the following step.

2: Presmoothing: Do ξ1 steps of Zh ← LGS or GGS (Zh, gh,λ, γ,β).
3: Restriction to the coarse grid, Z2h ← R2h

h Zh.
4: Set the initial solution for the next level Z̄2h ← Zh.
5: Compute the new right-hand side

g2h ← R2h
h (gh − Nh(Z

h)) + N2h(Z2h),
6: Implement (Z2h) ← NMG(Z2h, g2h, λ, γ,β, ξ0, ξ1, ξ2).
7: Add residual correction, Zh ← Zh + Ih

2h(Z
2h − Z̄2h).

8: Postsmoothing: do ξ2 steps of (Zh) ← LGS or GGS (Zh, gh,λ, γ,β).

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u2h
i,j = [uh

2i−1,2j−1 + uh
2i−1,2j + uh

2i,2j−1 + uh
2i,2j

]
/4,

(
ω2h

1

)
i,j

= [(ωh
1

)
2i−1,2j−1 + (ωh

1

)
2i−1,2j

+ 2
(
ωh

1

)
2i,2j−1

+ 2
(
ωh

1

)
2i,2j

+ (ωh
1

)
2i+1,2j

+ (ωh
1

)
2i+1,2j−1

]
/8,

(
ω2h

2

)
i,j

= [(ωh
2

)
2i−1,2j−1 + (ωh

2

)
2i,2j−1 + 2

(
ωh

2

)
2i−1,2j

+ 2
(
ωh

2

)
2i,2j

+ (ωh
2

)
2i,2j+1 + (ωh

2

)
2i−1,2j+1

]
/8.

Similarly the interpolation operator for the staggered grid discretisation is ex-
pressed as

⎛
⎜⎝

uh

ωh
1

ωh
2

⎞
⎟⎠= Ih

2h

⎛
⎜⎝

u2h

ω2h
1

ω2h
2

⎞
⎟⎠ ,

with

⎧⎪⎪⎪⎪⎪⎪⎨
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uh
2i,2j = [9u2h

i,j + 3
(
u2h

i+1,j + u2h
i,j+1

)+ u2h
i+1,j+1

]
/16,

uh
2i+1,2j = [9u2h

i+1,j + 3
(
u2h

i,j + u2h
i+1,j+1

)+ u2h
i,j+1

]
/16,

uh
2i,2j+1 = [9u2h

i,j+1 + 3
(
u2h

i,j + u2h
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/16;
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3.2 Local Fourier analysis

Although we have decided to use GGS and LGS as smoothers, their smoothing prop-
erties which crucially determine the convergence of the underlying MG algorithm
are as yet unknown. The most useful tool for analyzing the smoothing property of a
smoother is the Local Fourier Analysis (LFA). As remarked in [21, 23, 24], one needs
to freeze the nonlinear coefficients. Define the error functions ek

1 = ū − uk, ek
2 =

ω̄1 − ωk
1, and ek

3 = ω̄2 − ωk
2 where (ū, ω̄1, ω̄2) are the true solutions of (2.10), and

(uk,ωk
1,ω

k
2) are the results at the kth step of the GS iteration. Then the local error

functions can be expanded in a Fourier representation as follows:

[
ek

1

]
i,j

=
n
2∑

φ1,φ2=− n
2

[
ϕk

1

]
φ1,φ2

ei
θ1xi+θ2yj

h ,

[
ek

2

]
i+1/2,j

=
n
2∑

φ1,φ2=− n
2

[
ϕk

2

]
φ1,φ2

ei
θ1xi+1/2+θ2yj

h , (3.2)

[
ek

3

]
i,j+1/2 =

n
2∑

φ1,φ2=− n
2

[
ϕk

3

]
φ1,φ2

ei
θ1xi+θ2yj+1/2

h ,

where θ = (θ1, θ2) ∈ Θ = [−π,π)2, θ1 = 2πφ1/n, θ2 = 2πφ2/n, and i = √−1.
Then the local amplification matrix M(φ1, φ2) is given by:

⎛
⎜⎜⎝

[ϕ(k,p+1)

1 ]φ1,φ2

[ϕ(k,p+1)

2 ]φ1,φ2

[ϕ(k,p+1)

3 ]φ1,φ2

⎞
⎟⎟⎠= M(φ1, φ2)

⎛
⎜⎜⎝

[ϕ(k,p)

1 ]φ1,φ2

[ϕ(k,p)

2 ]φ1,φ2

[ϕ(k,p)

3 ]φ1,φ2

⎞
⎟⎟⎠ , (3.3)
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with the smoothing rate for this nonlinear framework defined as the spectral ra-
dius at (i, j), Wi,j = maxφ1,φ2 ρ(M(φ1, φ2)) in the high frequency range (φ1, φ2) ∈
[−n/2, n/2]\[−n/4, n/4]. The overall rate for one iteration is

ρ = max
i,j

Wi,j . (3.4)

LFA for the GGS method It is useful to rewrite the GGS iteration with respect to a
difference stencil representation. Specifically,

⎡
⎢⎢⎣

0 −C
(k)

i− 1
2 ,j

0

−C
(k)

i,j− 1
2

S
(k)
i,j 0

0 0 0

⎤
⎥⎥⎦u(k,p+1) = (f k

1

)
i,j

+

⎡
⎢⎢⎣

0 0 0
0 0 C

(k)

i,j+ 1
2

0 C
(k)

i+ 1
2 ,j

0

⎤
⎥⎥⎦u(k,p)

for the first equation of (2.11);

⎡
⎣0 0 0

0 γ
h
|∇u(k)|

i+ 1
2 ,j

0

0 0 0

⎤
⎦u(k,p+1) +

⎡
⎢⎣

0 − 2λ

h2 0
0 2λ

h2 + γ |∇u(k)|2
i+ 1

2 ,j
0

0 0 0

⎤
⎥⎦ (ω1)

(k,p+1)

+
⎡
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h2 0 0
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for the second equation of (2.11); and
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+
⎡
⎣0 0 0

0 0 2λ

h2

0 0 0

⎤
⎦ (ω2)

(k,p)

for the third equation of (2.12). To find Mi,j (φ), we substitute these relations into the
local error functions (3.2), yielding

Mi,j (φ1, φ2)

=

⎛
⎜⎜⎜⎝

S
(k)
i,j − C

(k)

i− 1
2 ,j

e−iθ1 − C
(k)

i,j− 1
2
e−iθ2 0 0

γ
h
|∇u(k)|

i+ 1
2 ,j

s2
λ

h2 (1 − e−iθ2 + ei(θ1−θ2))

γ
h
|∇u(k)|

i,j+ 1
2

λ

h2 (1 − e−iθ1 ) s3

⎞
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−1

·
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where s2 = 2λ

h2 + γ |∇u(k)|2
i+ 1

2 ,j
− λ

h2 e−iθ1 , s3 = 2λ

h2 + γ |∇u(k)|2
i,j+ 1

2
− λ

h2 e−iθ2 .

LFA for the LGS method From (2.14)–(2.17), we know that the difference between
LGS and GGS is the updating of the coefficients and the right hand side terms. Thus
Mi,j (φ) for LGS is given by

Mi,j (φ1, φ2)

=

⎛
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h
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where s1 = S
(p)
i,j − C

(p)

i−1/2,j e
−iθ1 − C

(p)

i,j−1/2e
−iθ2 .

To give an indication of the effectiveness of the above GGS and LGS smoothers,
we take the left image in Fig. 3 as an example and compute the smoothing rate ρ for
β = 10−4, where scattered points denote Wi,j > 0.95. From Fig. 3, we note that there
are fewer scattered points for LGS than for GGS, implying that a LGS smoother is
better than the GGS smoother. We also note that all dots appear in plain areas without
edges. In Table 1, we compute rates with different values of β and observe that for
β ≥ 10−3 GGS and LGS are reasonably effective smoothers. However for β ≤ 10−4,
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Fig. 3 Example of the behavior of the smoothing rate ρ when β = 1e − 4. On the left the denoised image
after one MG step, in the middle the smoothing rate using GGS and on the right the smoothing rate using
LGS. The red points indicate the points where Wi,j > 0.96 (Color figure online)

Table 1 The value of ρ from
(3.4) for different β and an
image of size 64 × 64

noise level value of β ρ for GGS ρ for LGS

5 % noise β = 1e − 2 0.4761 0.4772

β = 1e − 3 0.7164 0.7163

β = 1e − 4 0.9629 0.9628

they become less effective, e.g. when β = 10−4 with noise level of 5 %, ρ = 0.9629
which implies that one needs 20 iterations to reduce a high frequency error by 0.4695
since 0.962920 ≈ 0.4695. Although the evidence from the LFA suggests that LGS
is better than GGS, one may see that the smoothing rate indicated by ρ does not
completely describe the overall efficiency of the smoother in this context.

To provide further evidence, we define an accumulated smoothing rate that takes
care of the nonlinearity of the underlying equations. Let the usual rate matrix at itera-
tion � be W(�) and the usual smoothing rate at iteration � be ρ� = maxi,j W

(�)
i,j . Then

the accumulated smoothing rate after k iterations will be

ρ[k] = max
i,j

(
M(k)

accu

)
i,j

(3.5)

where M
(k)
accu = W

(1)
i,j W

(2)
i,j . . .W

(k)
i,j . Here our assumption is that the location of the

maximum of each ρ� problem is not necessarily fixed at the same place. Then
ρ[k] < ρ1ρ2 . . . ρk serves as a better indicator of smoothing efficiency for a nonlin-
ear problem with coefficients depending on (i, j).

From Tables 2, 3, one observes that the accumulated rate ρ by (3.5) is relatively
smaller for all β than the traditional rate ρ by (3.4). This suggests that our new
smoothers will be efficient for solving our model by a NMG.

4 Numerical results

In this section, the primary aim is to illustrate the effectiveness of our new Algo-
rithm 2 and show that it is the best among existing implementations for the mean
curvature based denoising model (1.4). A secondary aim is to compare with other
models that were also proposed to reduce the staircasing effect of the total variation
model [18] and thus to assess the competitiveness of Algorithm 2 in a wider context.



542 L. Sun, K. Chen

Table 2 Comparison of ρ,ρ for GGS with different β for an image of 64 × 64 and noise level of 5 %

β ρ1 ρ[1] ρ2 ρ[2] ρ3 ρ[3] ρ4 ρ[4] ρ5 ρ[5]

10−2 0.4683 0.4683 0.5287 0.2476 0.5226 0.1279 0.5210 0.0665 0.5218 0.0347

10−3 0.6883 0.6883 0.6883 0.4736 0.6883 0.3260 0.6883 0.2244 0.6883 0.1544

10−4 0.9578 0.9578 0.9580 0.9173 0.9580 0.8787 0.9580 0.8418 0.9580 0.8065

Table 3 Comparison of ρ,ρ for LGS with different β for an image of 64 × 64 and noise level of 5 %

β ρ1 ρ[1] ρ2 ρ[2] ρ3 ρ[3] ρ4 ρ[4] ρ5 ρ[5]

10−2 0.4920 0.4920 0.5315 0.2564 0.5492 0.1395 0.5604 0.0782 0.5641 0.0441

10−3 0.6921 0.6921 0.6922 0.4791 0.6922 0.3316 0.6922 0.2295 0.6922 0.1588

10−4 0.9586 0.9586 0.9586 0.9189 0.9586 0.8808 0.9586 0.8443 0.9586 0.8093

However it must be said that comparing different models with varying parameters
cannot be done without using some heuristics for choosing feasible and non-optimal
parameters; such conclusions are for reference only and taken with caution.

To measure the quality of the restored images, the relative residual, Signal-to-
Noise Ratio (SNR) [18] and the peak Signal-to-Noise Ratio (PSNR) [5] are used.
They are respectively defined by:

ReRes = ‖Nz(k) − g‖2

‖Nz0 − g‖2
,

SNR = 10 log10

(‖u − umean‖2
2

‖u − ũ‖2
2

)
and PSNR = 10 log10

(
2552

1
mn

‖ũ − u‖2
2

)
,

where u and ũ are the true image and the restored image respectively, and umean

is the mean value of the original image. Higher SNR/PSNR values indicate a better
restoration. Of course, in a real life situation, the latter measures are not possible
when u is not known. The initial values are set to be the observed image, that is u0 =
f,ω = ∇u0/|∇u0|β . The methods to be tested and compared are listed in Table 4.
The AL method introduced in [20, 25, 29] can be adopted here to solve (1.4)

minL (u,m,n,p;λ1,λ2,λ3) = 1

2

∫
Ω

(u − f )2 + λ

∫
Ω

Φ(∇ · n)

+ γ1

∫
Ω

(|p| − m · p
)+

∫
Ω

λ1
(|p| − m · p

)

+ γ2

2

∫
Ω

|p − ∇u|2 +
∫

Ω

λ2 · (p − ∇u)

+ γ3

2

∫
Ω

|m − n|2 +
∫

Ω

λ3 · (m − n) + δR(m),

(4.1)



A new iterative algorithm for mean curvature-based variational image denoising 543

Table 4 Test methods for numerical experiments

Method full name parameters

AL The AL Method [20] λ, γ1, γ2, γ3

TV Rudin-Osher-Fatemi [18] λ, β

TGV Total Generalized Variation [2] α1, α0

SB Split Bregman [12] μ

MG Stabilized smoother based MG method of Brito-Chen [4] λ,γ , β

NMG1 NMG of Sect. 4 with GGS smoother λ, γ , β

NMG2 NMG of Sect. 4 with LGS smoother λ, γ , β

where δR(m) denotes a characteristic function

δR(m) =
{

0 m ∈ R,

+∞ otherwise,

for other details; see [14].

Parameter settings Table 4 has indicated the parameters involved in each model.
Although it is a challenging or impossible task to obtain the optimal choices (except
for the TV case [27]), numerical tests can be used to establish the operational ranges
for a practical but non-optimal choice. Below are the specific ranges and choices for
our tests (except when stated otherwise):

1. AL: λmax = 1, λmin = 0.001, (γ1)max = 100, (γ1)min = 0.1, γ2 = 0.05, γ3 =
0.05.

2. TV: λmax = 1, λmin = 0.001.
3. SB: μmax = 1, μmin = 0.001.
4. MG: λmax = 1, λmin = 0.001, γmax = 1000, γmax = 100; ξ0 = 300 and ξ1 = ξ2 =

10.
5. TGV: (α0)max = 1, (α0)min = 0.001, (α1) = 1, λmax = 1, λmin = 0.001.
6. NMG1 and NMG2: λmax = 1, λmin = 0.001, γmax = 100, γmax = 0.1; ξ0 = 300

and ξ1 = ξ2 = 10.

These heuristically obtained choices give relatively good results for each model. For
other examples or improvement, fine tuning might be needed. However, since the
primary purpose of this paper is to present a new method for solving model (1.4) for
a small β , further fine tuning of other parameters is a secondary concern. All the tests
are stopped when ReRes < 10−3.

4.1 Comparisons with two previous methods for model (1.4)

No fast solvers existed for (1.4) before the work of [4] i.e. MG. This MG and the
method AL are the two viable methods to be compared with our new algorithms
NMG1 and NGM2. Two specific comparisons are for sensitivity of λ and β . Other
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parameters (shown below) are taken from their feasible ranges as given above. As the
same model is solved, it is natural that we use the regularisation parameter λ in all
tests.

λ- dependence test We first compare the sensitivity of all four methods with respect
to varying the regularisation parameter λ. The test image used is the “triangle” image
of size 256×256. In Table 5, we compare the restoration quality (via SNR and PSNR)
and efficiency (va ‘Iteration steps’ and ‘CPU’) of all methods. There, γ is taken as 100
and β is taken as 10−2 in all cases. For the AL algorithm, γ1 = 100, γ2 = γ3 = 0.005
are taken. Usually, the regularisation parameter λ needs to be increased as the level
of noise gets higher. From this table, one can see that, at the same level of noise, both
our new algorithms NMG1/2 and MG perform similarly, and AL is the worst in λ

sensitivity. Evidently NMG1 performed better than NMG2.

Table 5 λ-sensitivity
comparison using the “triangle”
image of size 256 × 256 with
varying λ and other fixed
parameters, the standard
deviation of noise σ = 10

parameter λ method SNR PSNR iteration CPU time

λ = 0.1 AL 30.31 38.05 133 4

MG 30.39 38.11 2 51

NMG1 32.03 39.78 2 16

NMG2 31.68 39.42 2 49

λ = 0.01 AL 17.48 28.22 236 25

MG 32.68 40.43 2 51

NMG1 32.11 39.85 2 16

NMG2 31.98 39.72 2 49

λ = 0.001 AL 12.47 20.28 130 16

MG 27.16 34.90 2 51

NMG1 29.16 36.90 3 32

NMG2 30.29 38.03 2 49

Table 6 β-sensitivity
comparison using the “peppers”
test image with size 256 × 256,
varying β , other parameters
fixed, and the standard deviation
σ = 10

parameter β method SNR PSNR iteration CPU time

β = 1 MG 22.05 30.32 2 49

NMG1 21.17 29.44 2 16

NMG2 21.16 29.43 1 28

β = 10−2 MG 26.76 35.03 2 49

NMG1 27.24 35.51 2 16

NMG2 27.23 35.50 1 28

β = 10−4 MG ∗ ∗ ∗ ∗
NMG1 27.55 35.81 3 23

NMG2 27.54 35.81 4 137
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Table 7 Performance of
NMG1/2 for a “triangle” image,
λ = 0.01 and γ = 10. Here we
list results of SNR and PSNR
with different β , the standard
deviation σ = 10

method β n × n SNR PSNR MG cycles CPU

NMG1 10−2 128×128 26.14 37.68 3 8

256×256 30.97 38.72 3 23

512×512 31.52 39.27 1 33

1024×1024 31.62 39.36 1 131

NMG1 10−4 128×128 27.85 38.23 6 17

256×256 33.75 41.50 5 38

512×512 36.62 44.36 5 138

1024×1024 38.03 45.78 3 355

NMG2 10−2 128×128 25.21 32.95 2 13

256×256 31.23 38.98 1 27

512×512 31.74 39.48 1 112

1024×1024 31.84 39.59 1 446

NMG2 10−4 128×128 25.33 33.07 3 18

256×256 33.65 41.46 2 49

512×512 35.55 43.29 2 199

1024×1024 38.01 45.73 1 446

Fig. 4 The “hemi-sphere” test image: (a) the original image; (b) the noisy image with the standard devi-
ation σ = 5; (c) surface plot of (a); (d) surface plot of (b)
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β-dependence test We next compare the sensitivity of three methods with respect
to varying the stabilizing parameter β . We do not include the AL algorithm since
it does not involve the parameter β and it is not as good as MG as known from Ta-
ble 5. As mentioned in the introduction, the method MG does not work for β < 10−2.
Hence this set of tests has 2 purposes: (i) comparison of performances of NMG1/2
against MG for β ≥ 10−2; (ii) comparison of convergence of NMG1/2 for β < 10−2.
Therefore, this second test is our top priority and the first β-sensitivity test is a lesser
concern as the main competitor MG dos not even work for β < 10−2.

The test image used is the “peppers” image of size 256 × 256 (as in [4]). The sta-
bilizing parameter β varies from 1 to 10−4. Here λ = 0.01 is fixed in all algorithms,
γ = 100 in the MG and γ = 2 in the NMG1 and NMG2. The numerical results are
shown in Table 6, where ‘*’ means no convergence. From Table 6, evidently, our new
algorithms NMG1/2 perform well for β = 10−4 (and also for even smaller β). From
this table, when the other parameters are fixed, we gets more better quality of recov-
ery as β gets small, but the cost increases due to increased nonlinearity. Thus we can
conclude that our new algorithms still converge for small β .

Table 7 shows some test results with varying the sizes of the “triangle” image,
in order to further compare the efficiency of NMG1 and NMG2 where λ = 0.01
and γ = 10 are fixed for all tests. From the Table 7, one can see although NMG2

Fig. 5 Mesh plots of magnified regions. (a) restoration by TV; (b) by SB; (c) by TGV; (d) by NMG1
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Table 8 Comparison of performance of staircasing reduction methods for three test images

image noise method PSNR parameters

“hemi-sphere” σ = 5 TV 40.44 λ = 0.13, β = 10−5

SB 40.49 μ = 0.13

TGV 45.07 λ = 0.1, α0 = 3.5, α1 = 1

NMG1 45.08 λ = 0.008, γ = 19, β = 10−5

“triangle” σ = 10 TV 37.37 λ = 0.1, β = 10−5

SB 37.40 μ = 0.1

TGV 38.74 λ = 0.06, α0 = 0.8, α1 = 1

NMG1 38.37 λ = 0.002, γ = 5, β = 10−4

“pepper” σ = 15 TV 34.99 λ = 0.06, β = 10−5

SB 35.08 μ = 0.07

TGV 35.32 λ = 0.04, α0 = 0.8, α1 = 1

NMG1 35.55 λ = 0.007, γ = 8, β = 10−4

Fig. 6 Mesh plots of magnified regions. (a) restoration by TV; (b) by SB; (c) by TGV; (d) by NMG1
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Fig. 7 Comparison results plotted along a line: (a) the TV model; (b) higher order models

sometimes achieves better quality than NMG1, the convergence speed is slower as
the size of image gets larger. So here NMG1 is our recommended solver for the mean
curvature- based model (1.4).

4.2 Comparisons of model (1.4) with three other models

We finally compare our recommended NMG1 algorithm with the TV, the SB and the
TGV; the latter two have staircasing reduction capability and they are known to per-
form better than the TV. The test images taken are a synthetic semi-hemisphere image
(Fig. 4), a non-smooth image (Fig. 8) and a natural image (Fig. 11) contaminated with
Gaussian noise of different standard deviations σ .

In Table 8, we show results for the four algorithms for all test images.

– In Fig. 5, we present surface plots of the restored results. For clear visual inspec-
tion, we show in Fig. 6 zoomed plots of one small surface region from Fig. 5. In
Fig. 7, we compare four restored results along a line.
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Fig. 8 The “triangle” test image: (a) the original image; (b) the noisy image with the standard deviation
σ = 10

Fig. 9 Comparison of restoration: (a) by TV; (b) by SB; (c) by TGV; (d) by NMG1

– From Fig. 8 to Fig. 13, we show the performance of the “triangle” image and
“pepper” image. We can see TGV and NMG1 efficiently reduce the staircas-
ing effects both on smooth and non-smooth images, as illustrated in Figs. 10
and 13.
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Fig. 10 Comparison results along a line: (a) the TV model; (b) the higher order models

From Table 8 and Fig. 5–13, one can see that

– TGV/NMG1/SB are better than the TV as expected and NMG1/TGV give much
better quality restorations than SB;

– both NMG1 and TGV can avoid undesirable staircasing effects and remove noise
effectively;

– Our NMG1 produces a restoration quality comparable to that of the TGV.

4.3 Conclusions

In this paper we proposed a new solution method for solving the mean curvature-
based model for image denoising using an AL formulation. Two stabilized fixed
points algorithms (global GS and local GS) are developed and analyzed as suitable
smoothers for a nonlinear multigrid method. Instead of using the usual Neumann
boundary conditions, we derived and implemented the precise boundary conditions
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Fig. 11 The “pepper” test images: (a) the original image; (b) the noisy image with the standard deviation
σ = 15

Fig. 12 Comparison of restoration: (a) by TV; (b) by SB; (c) by TGV; (d) by NMG1

using staggered grids and locally coupled iterative solvers. Numerical results have
shown that the new algorithm can deliver better quality of restoration than the previ-
ously fast method [4], use less regularisation of the nonlinearity and obtain a compa-
rable restoration quality to the TGV model [2].
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Fig. 13 Comparison results along a line: (a) the TV model; (b) higher order models

References

1. Blomgren, P., Mulet, P., Chan, T.F., Wong, C.K.: Total variation image restoration: numerical methods
and extensions. In: Proceedings of the 1997 IEEE International Conference on Image Processing,
Santa Barbara, CA, vol. 3, pp. 384–387 (1997)

2. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526
(2010)

3. Briggs, W.: A Multigrid Tutorial. SIAM, Philadelphia (1987)
4. Brito-Loeza, C., Chen, K.: Multigrid algorithm for high order denoising. SIAM J. Imaging Sci. 3(3),

363–389 (2010)
5. Brito-Loeza, C., Chen, K.: On high-order denoising models and fast algorithms for vector-valued

images. IEEE Trans. Image Process. 19(6), 1518–1527 (2010)
6. Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cam-

bridge (2005)
7. Chumchobn, N., Chen, K., Brito-Loeza, C.: Fourth order variational image registration on model and

its fast multigrid algorithm. SIAM Multiscale Model. Simul. 9(1), 89–128 (2011)
8. Chumchobn, N., Chen, K., Brito-Loeza, C.: Variational model for removal of combined additive and

multiplicative noise. Int. J. Comput. Math. 90(1), 140–161 (2013)



A new iterative algorithm for mean curvature-based variational image denoising 553

9. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard,
J.W., et al. (eds.) Computational and Mathematical Models of Microstructural Evolution, pp. 39–46.
Materials Research Society, Warrendale (1998)

10. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. See www.math.utah.
edu/~eyre/research/methods/stable.ps. Unpublished article (1998)

11. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM Multiscale
Model. Simul. 7(3), 1005–1028 (2008)

12. Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging
Sci. 2(2), 323–343 (2009)

13. Henn, S.: A multigrid method for a fourth-order diffusion equation with application to image process-
ing. SIAM J. Sci. Comput. 27(3), 831–849 (2005)

14. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer.
Anal. 16(6), 964–979 (1979)

15. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput.
42(2), 185–197 (2010)

16. Lysaker, M., Osher, S., Tai, X.-C.: Noise removal using smoothed normals and surface fitting. IEEE
Trans. Image Process. 13(10), 1345–1357 (2004)

17. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total
variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

18. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D
60, 259–268 (1992)

19. Shyy, W., Sue, C.-S.: Development of a pressure-correction/staggered-grid based multigrid solver for
incompressible recirculating flows. Comput. Fluids 22(1), 51–76 (1993)

20. Tai, X.-C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastic method using augmented La-
grangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011)

21. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic Press, London (2001)
22. Wesseling, P.: An Introduction to Multigrid Methods. Wiley, Chichester (1992)
23. Wienands, R., Joppich, W.: Practical Fourier Analysis for Multigrid Methods. Chapman and Hall/CRC

Press, Boca Raton (2005)
24. Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn-Hilliard equation

by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)
25. Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for

ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)
26. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Comput. 15, 915–936 (2003)
27. Zhang, J.P., Chen, K., Yu, B.: An iterative Lagrange multiplier method for constrained total-variation-

based image denoising. SIAM J. Numer. Anal. 50(3), 983–1003 (2012)
28. Zhu, W., Chan, T.F.: Image denoising using mean curvature. SIAM J. Imaging Sci. 5(1), 1–32 (2012)
29. Zhu, W., Tai, X.-C., Chan, T.F.: Augmented Lagrangian method for a mean curvature based image

denoising model. UCLA CAM report 12-02 (2012)

http://www.math.utah.edu/~eyre/research/methods/stable.ps
http://www.math.utah.edu/~eyre/research/methods/stable.ps

	A new iterative algorithm for mean curvature-based variational image denoising
	Abstract
	Introduction
	Mean curvature-based model

	A new iterative method for a mean curvature model
	The EL equations
	Numerical discretization
	Discretization on a staggered grid
	Numerical algorithms on a single grid

	Solution by a nonlinear multigrid algorithm
	The nonlinear multigrid algorithm
	Local Fourier analysis
	LFA for the GGS method
	LFA for the LGS method


	Numerical results
	Parameter settings
	Comparisons with two previous methods for model (1.4)
	lambda- dependence test
	beta-dependence test

	Comparisons of model (1.4) with three other models
	Conclusions

	References


