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Abstract Variational models provide reliable formulation for segmentation of features and

their boundaries in an image, following the seminal work of Mumford-Shah (1989, Commun.

Pure Appl.Math.) on dividing a general surface into piecewise smooth sub-surfaces. A cen-

tral idea of models based on this work is to minimize the length of feature’s boundaries (i.e.,

H1 Hausdorff measure). However there exist problems with irregular and oscillatory object

boundaries, where minimizing such a length is not appropriate, as noted by Barchiesi et al.

(2010, SIAM J. Multiscale Model. Simu.) who proposed to miminize L2 Lebesgue measure of

the γ-neighborhood of the boundaries. This paper presents a dual level set selective segmen-

tation model based on Barchiesi et al. (2010) to automatically select a local feature instead of

all global features. Our model uses two level set functions: a global level set which segments

all boundaries, and the local level set which evolves and finds the boundary of the object

closest to the geometric constraints. Using real life images with oscillatory boundaries, we

show qualitative results demonstrating the effectiveness of the proposed method.
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1. Introduction

In the literature, a large variety of models and algorithms has been extensively proposed

and successfully applied to image segmentation, which is a process of extracting the boundaries

from a given image. Variational techniques [8, 27, 30] prove to be very efficient for extracting

homogenous areas and segmenting a given image compared with other models such as statistical

methods [12, 13, 42] or wavelet techniques [16, 24, 35].

The idea of boundary detection by minimizing a functional of a piecewise smooth repre-

sentation of the image, introduced by Mumford and Shah [27], is widely adopted and used in

different variational frameworks such as [1, 4, 6–8, 10, 11, 14, 20]. Among the variety of techniques

including region growing [1, 44], edge detection and active contours [9, 17], image thresholding

[22, 33] etc., the active contour has several advantages in that it is very easy and straightfor-

ward to implement, implicitly includes the computation of curvatures, and has a parameter that

controls the smoothness of the results. Active contour methods can be classified as edge-based
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[6, 17, 23, 31, 36, 43] and region based models [9, 19, 20, 34]. Edge-based models are helped by the

image gradient to stop the contour on the boundaries of the desired object while region-based

methods utilize the image statistical information to construct constrains. Region-based meth-

ods are successful in cases of weak boundaries or even without boundaries. Variational level-set

based segmentation methods distinguish all objects in an image foreground from its background.

Such tasks, still remaining challenging for multiphases [37], have been deeply investigated by

many researchers. In operational applications requiring selection such as medical imaging of a

particular organ or CCTV monitoring of a subject, the commonly known models are not capable

of doing such a selection task. The main challenge in a selective image segmentation problem

is how to differentiate one feature from another similar (or nearby) feature or to avoid selecting

spurious features. This challenging task of selecting one feature/object among the others leads

to a new and challenging task of selective segmentation, which will be extracting a single object.

Recently several works have been proposed for the 2D selective segmentation based on

active contours method [3, 15, 25, 32], which for a proper incorporation of some geometric priors

information (markers) into the image processing by the user and edge detection technique, could

lead to a good convergence to the target object. However, these models do not work in cases where

the image has oscillatory boundaries since all techniques based on the weighted penalization term

of the length, can give rise to some difficulties.

In this paper, we make use of L2 Lebesgue measure of the γ-neighborhood of the contour

[5] as penalization term instead of the H1 Hausdorff measure and propose a local selective

segmentation model, enabling to extract features with irregular and oscillatory boundaries.

The remainder of this paper is organized as follows. In Section 2, we describe some methods

such as the classic Chan-Vese model [8], Barchiesi et al. [5] model, and the Dual Level-set Selective

Segmentation (DLSS) model by Rada-Chen [32]. A new dual level-set selective model, which uses

the L2 Lebesgue measure of the γ-neighborhood of the contour as penalization term, is presented

in Section 3. A time marching and additive operator splitting (AOS) technique is developed for

the numerical solution. In Section 4 the experimental results are presented based on artificial

and real images. Conclusions are drawn in Section 5.

2. Review of some global active contours models and the local selection
model of Rada-Chen [32]

The segmentation model by Mumford-Shah [26, 27] solves, given an image u0 = u0(x, y),

min
u,Γ

FMS(u,Γ) = α

∫
Ω\Γ

|∇u|2dxdy +Hn−1(Γ) + λ

∫
Ω

(u− u0)
2dxdy (1)

for the reconstruction u and the feature boundary set Γ, where Ω is a bounded subset of Rn

with Lipschitz boundary, the ideal image u(x, y) belonging to the space BV (Ω) the functions

of bounded variation on (Ω), ∇u is the approximate gradient of u(x, y), Γ ∈ Ω denotes the edge

set of the image u(x, y) which is the set of essential discontinuity points of u(x, y), Hn−1 is the

n− 1 dimensional Hausdorff measure, which in the 2-dimensional case H1 denotes the length of

the curve.
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2.1 The Chan-Vese model [8]

Since the main difficulty in the study of the Mumford-Shah functional FMS(u,Γ) is the

presence of the term Hn−1, a natural way to approximate FMS(u,Γ) was introduced by Chan-

Vese [8], which implemented the piecewise segmentation

F 2D
cv (Γ, c1, c2)

= H1(Γ) + λ1cv

∫
inside(Γ)

|u0(x, y)− c1|2dxdy + λ2cv

∫
outside(Γ)

|u0(x, y)− c2|2dxdy (2)

where c1 and c2 are the average of u0(x, y) inside and outside (Γ), respectively. The unknown

curve Γ can be represented by the zero level set of Lipschitz function ϕ : Ω → R
Γ = ∂Ω1 = {(x, y) ∈ Ω

∣∣∣ ϕ(x, y) = 0},

inside(Γ) = Ω1 = {(x, y) ∈ Ω
∣∣∣ ϕ(x, y) > 0},

outside(Γ) = Ω2 = {(x, y) ∈ Ω
∣∣∣ ϕ(x, y) < 0},

and we rewrite the energy function in the form:

F (ϕ, c1, c2) =µcv

∫
Ω

|∇H(ϕ)|dxdy + λ1cv

∫
Ω

|u0(x, y)− c1|2H(ϕ(x, y))dxdy+

λ2cv

∫
Ω

|u0(x, y)− c2|2(1−H(ϕ(x, y)))dxdy, (3)

where H defines the Heaviside function

H(x) =

{
1 if x ≥ 0

0 if x < 0.

2.2 The Barchiesi et al. model [5]

Following a variational framework, attempting to segment an object with irregular bound-

aries, Barchiesi et al. [5] proposed a variational segmentation model replacing the length term

H1(Γ) with the area of the γ-neighborhood of the edge set Γ

γ − Γ :=
∪
x∈Γ

Bγ(x). (4)

The aim is to capture rough boundaries of the main objects in the image u0 while at the same

time achieving the denoising effect. For a given bounded Lipschitz open set Ω ⊂ R2 representing

the image domain, the energy proposed is

FL2(Γ, c1, c2) := L2(γ−Γ)+λ

∫
inside(Γ)

|u0(x, y)−c1|2dxdy+λ

∫
outside(Γ)

|u0(x, y)−c2|2dxdy (5)

where L2 is the 2-dimensional Lebesgue measure, and c1 and c2 are defined as with the Chan-Vese

model (2)

c1 =

∫
Ω
H(ϕ)u0dx∫
Ω
H(ϕ)dx

and c2 =

∫
Ω
(1−H(ϕ))u0dx∫
Ω
(1−H(ϕ))dx

. (6)

In this way the L2 measure will help preserving the finely oscillating boundaries of the main

objects in the image and at the same time the model will allow for infinite perimeter segmentation.
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Considering f0 := χ[0,1], and a smooth version of it f , a positive decreasing function such

as f(t) = e−tk or f(t) = 1
1+tk

for k ≥ 1, the L2(γ − Γ) term can be rewritten as:

L2(γ − Γ) :=

∫
Ω

f0(
dist(x,Γ)

γ
)dx ≈

∫
Ω

f(
dist(x,Γ)

γ
)dx. (7)

The level set approach consists of working with level set functions ϕ that are signed distance

functions from their zero level set Γ, so that f(dist(·,Γ)γ ) = f( |ϕ|γ ). To force ϕ to look like

a signed distance function, a penalization term P (ϕ) can be added which forces |∇ϕ| ≤ 1.

Different ways of forcing ϕ to look like a signed distance function can be found in the literature,

such as adding the term P (ϕ) =
∫
Ω
(|∇ϕ| − 1)2dx (see [18]) or 1

p

∫
Ω
|∇ϕ|pdx (for large p) or

∆∞ϕ = 1
|∇ϕ|2

∑m
i,j=1 ϕxixjϕxiϕxj (suggested in Barchiesi et al. [5, 29]), or a local image fitting

energy functional, which can be viewed as a constraint of the differences between the fitting

image and the original image [41].

Remark It is known that if for a Γ regular curve (e.g., a smooth curve) the Minkowski content

lim
γ−→0

L2(γ−Γ)
2γ exists and coincides with the usual 1-dimensional measure H1(Γ). This means that

the first term of the energy function will be an approximation of classical perimeter, and on the

other hand for fixed γ the L2(γ − Γ) is smaller than 2γH1(Γ).

Thus by adding the signed distance function penalization term, the revised functional to be

minimized is the following

FL2f (ϕ) =

∫
Ω

f(
|ϕ|
γ
) + P (ϕ) + λ1L2

∫
Ω

|u0 − c1|2H(ϕ)dx+ λ2L2

∫
Ω

|u0 − c2|2(1−H(ϕ)). (8)

The above problem (8) can be solved by a gradient descent method by solving

∂ϕ

∂t
=

k

γ
ϕk−1e−

ϕ
γ

k

+DP (ϕ)− δ(ϕ)
[
λ1L2(u0 − c1)

2 − λ2L2(u0 − c2)
2
]
, (9)

where DP (ϕ) is the term derived from P (ϕ), δ(ϕ) the approximation of the Dirac delta function,

k is a large even number. Through tests, Barchiesi et al. [5] has shown that their model has

the capability of removing the noise, the cornering effect, resolution and capability of keeping

oscillatory parts of the boundaries by including λ1L2 and λ2L2 as well as the additional parameter

γ, performs better in comparison with the Chan-Vese model [9].

2.3 The Rada-Chen model [32]

Though all commonly used and global models may be initialized to localize an object, none

can be robust especially for images with nearby feature of similar intensities. To address the need

of local models, an edge-based technique first proposed by Caselles at al. [6], utilizes the image

gradient as an additional constraint to stop the contours on the boundaries of desired objects.

Following this idea by including a priori knowledge (such as manually selecting a few starting

points) of the object/feature to be segmented, semi-automatic methods have been introduced

such as [3, 14, 32]. A dual level set selective segmentation model [32] has been proposed recently

for the selective segmentation model, where ϕG and ϕL are respectively used to carry out global

and local segmentation (the aimed selected object) of the ΓG = ∂ΩG global curve which locates

all features of image u0 and ΓL = ∂ΩL the local curve which will evolve and find the target
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object’s boundary. The two initial level set functions which help in the boundary extraction

process ϕL(x, y) and ϕG(x, y) are Lipschitz level sets [8, 30]. Written in level set notation, the

minimization energy of this model is:

FDLSS(ϕL(x, y), ϕG(x, y), c1, c2)

= µ1

∫
Ω

d(x, y)g(|∇u0(x, y)|)|∇H(ϕL(x, y))|H(ϕG(x, y))dxdy+

µL

2

∫
Ω

(|∇ϕL(x, y)| − 1)2dxdy+

µ2

∫
Ω

g(|∇u0(x, y)|)|∇H(ϕG(x, y))|dxdy+

µG

2

∫
Ω

(|∇ϕG(x, y)| − 1)2dxdy+

λ1G

∫
Ω

|u0(x, y)− c1|2H(ϕG(x, y)dxdy+

λ2G

∫
Ω

|u0(x, y)− c2|2(1−H(ϕG(x, y))dxdy+

λ1

∫
Ω

|u0(x, y)− c1|2H(ϕL(x, y)dxdy+

λ2

∫
Ω

|u0(x, y)− c1|2(1−H(ϕL(x, y))H(ϕG(x, y)dxdy+

λ3

∫
Ω

|u0(x, y)− c2|2(1−H(ϕL(x, y))(1−H(ϕG(x, y))dxdy, (10)

where the two quantities, an edge detector g(u0(x, y)) and a distance function d(x, y), have the

property that they approach zero when (x, y) are near Γ, and is large when away from it. The

distance and the edge detector function similar to [3, 6, 14] idea, are defined as follows:

d(x, y) = dist((x, y),A) =

n1∏
i=1

(
1− e

−
(x− x∗

i )
2

2τ2 e
−
(y − y∗i )

2

2τ2
)
, ∀(x, y) ∈ Ω (11)

where dist = distance, A is the given geometric markers set, τ is a positive constant and

g(|∇u0(x, y)|) =
1

1 + |∇Gσ(x, y) ∗ u0(x, y)|2
, (12)

is a stoping function which controls curve evolution on arrival to the boundary. Parameters

µ1 , µ2 , λ1G, λ2G, µL, µG, λ1, λ2, λ3 are all positive, H(ϕL(x, y)) and H(ϕG(x, y)) are the

respective Heaviside functions corresponding to the local and global level set functions. Here

Gσ(x, y) ∗ u0(x, y) is a smooth version of u0(x, y) with Gaussian Gσ(x, y) = σ−1/2e−|x
2+y2|/4σ

dealing with the cases of possible noise. The term P (ϕ) =
∫
Ω
(|∇ϕ(x, y)| − 1)2 has been used

to avoid re-initialization of both level set functions ϕL(x, y), ϕG(x, y) by automatically scaling

them. Treating the non-differentiable H function by replacing it with Hϵ a regularized Heaviside

function as in [2, 8] and applying Green’s identity we get two equations for the global and local
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level set:

µ2δϵ(ϕG)∇ ·
(
g(x, y)

∇ϕG

|∇ϕG|

)
+ µG∇ ·

(
(1− 1

|∇ϕG|
)∇ϕG

)
+

δϵ(ϕG)

(
− µ1W (x, y)∇Hϵ(ϕL)− λ1G(z(x, y)− c1)

2 + λ2G(z(x, y)− c2)
2

−λ2(z(x, y)− c1)
2(1−H(ϕL)) + λ3(z(x, y)− c2)

2(1−H(ϕL)

)
= 0, in Ω

(13)

and 

µ1δϵ(ϕL)∇ ·
(
dg(|∇u0|Hϵ(ϕG)

∇ϕL

|∇ϕL|

)
+ µL∇ ·

(
(1− 1

|∇ϕL|
)∇ϕL

)
+

δϵ(ϕL)

(
− λ1(u0(x, y)− c1)

2 + λ2(u0(x, y)− c1)
2Hϵ(ϕG)+

λ3(u0(x, y)− c2)
2(1−Hϵ(ϕG))

)
= 0, in Ω

(14)

with ∂ϕG

∂n⃗ = ∂ϕL

∂n⃗ = 0 on ∂Ω, c1 and c2 computed as:

c1 =
λ1G

∫
Ω
zHϵ(ϕG)dxdy + λ1

∫
Ω
zHϵ(ϕL)dxdy + λ2

∫
Ω
z(1−Hϵ(ϕL))Hϵ(ϕG)dxdy

λ1G

∫
Ω
Hϵ(ϕG)dxdy + λ1

∫
Ω
Hϵ(ϕL)dxdy + λ2

∫
Ω
(1−Hϵ(ϕL))Hϵ(ϕG)dxdy

, (15)

c2 =
λ2G

∫
Ω
z(1−Hϵ(ϕG))dxdy + λ3

∫
Ω
z(1−Hϵ(ϕL))(1−Hϵ(ϕG))dxdy

λ2G

∫
Ω
(1−Hϵ(ϕG))dxdy + λ3

∫
Ω
(1−Hϵ(ϕL))(1−Hϵ(ϕG))dxdy

(16)

with the assumption that ϕG(x, y), ϕL(x, y) have neither empty interior nor empty exterior.

A balloon term, which controls the contours to shrink or extend, has been incorporated in

order to enlarge the capture range of the force. In this way, equations (15)-(16) are written as

µ2δϵ(ϕG)∇ ·
(
g(x, y)

∇ϕG

|∇ϕG|

)
+ µG∇ ·

(
(1− 1

|∇ϕG|
)∇ϕG

)
+

δϵ(ϕG)

(
− µ1W (x, y) |∇Hϵ(ϕL)| − λ1G(z(x, y)− c1)

2 + λ2G(z(x, y)− c2)
2−

λ2(z(x, y)− c1)
2(1−H(ϕL)) + λ3(z(x, y)− c2)

2(1−H(ϕL))

)
+ αg(x, y)|∇ϕG| = 0, in Ω

(17)

and 

µ1δϵ(ϕL)∇ ·
(
d(x, y)g(|∇u0|Hϵ(ϕG)

∇ϕL

|∇ϕL|

)
+ µL∇ ·

(
(1− 1

|∇ϕL|
)∇ϕL

)
+

δϵ(ϕL)

(
− λ1(u0(x, y)− c1)

2 + λ2(u0(x, y)− c1)
2Hϵ(ϕG)+

λ3(u0(x, y)− c2)
2(1−Hϵ(ϕG))

)
+ αd(x, y)g(|∇u0||∇ϕL| = 0, in Ω

(18)

where ∂ϕG

∂n⃗ = ∂ϕL

∂n⃗ = 0 on ∂Ω.

We remark that there exist other ways of defining geometric constraints and corresponding

selective models; see [28] and the references therein for details. However it remains to generalize

such methods to model infinite perimeter problems.

3. A new dual level set model for infinite perimeter

To obtain satisfactory segmentation results for image features with oscillatory boundaries,
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we now equip our variational model with a new length term for regularization using H1 with

the γ-neighborhood area of the contour Γ. For this reason, replacement of the weighted length

term in the equation (10) with the area of the γ-neighborhood area of the edge set Γ is the key.

In our model we consider L2(γ − Γ) ≈
∫
Ω
e
−ϕ(h)k

γk , for a large and even number k, which is an

approximation of the γ-neighborhood area in a given image u0(x, y). Similar to the level set

selective segmentation models [3, 14, 15, 32, 40] as dipicted in Figure 1, for defining geometrical

points in a set A = {w∗
i = (x∗

i , y
∗
i ) ∈ Ω, 1 ≤ i ≤ n1} ⊂ Ω, consisting of n1 distinct points near

the object, we hope to detect the features that are defined in a closed domain and to be closest

to A. The quantities d(x, y) and g(x, y), respectively the distance and edge detection functions,

and their property of approaching zero when we are near the Γ boundary and big when away

from it, can be used as a stoping function for the curve evolution.

Figure 1 The numerical solution of (15) with n = 4,m = 2

3.1 The new model

In this work, we are particularly interested in the case of separating a feature of u0 that has

similar or identical image intensities (near some value c1) to neighbouring features. Where an

interested feature has distinctly different intensities from all neighbouring objects, past models

[3, 14] are already satisfactory. As mentioned, we also assume that our image u0 has features

with irregular and oscillatory boundaries.

Using the Lipschitz level set function the energy function of our new model can be written:

min
ϕL(x,y),ϕG(x,y),c1,c2

FIDLSS(ϕL, ϕG, c1, c2)

= µ1

∫
Ω

d(x, y)g(∇u0)e
−(

ϕL
γ )kH(ϕG) +

µL

2

∫
Ω

(|∇ϕL| − 1)2dxdy+

µ2

∫
Ω

g(∇u0)e
−(

ϕG
γ )k +

µG

2

∫
Ω

(|∇ϕG(x, y)| − 1)2dxdy+

λ1G

∫
Ω

|u0(x, y)− c1|2H(ϕG(x, y)dxdy+

λ2G

∫
Ω

|u0(x, y)− c2|2(1−H(ϕG(x, y))dxdy+

λ1

∫
Ω

|u0(x, y)− c1|2H(ϕL(x, y)dxdy+
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λ2

∫
Ω

|u0(x, y)− c1|2(1−H)(ϕL(x, y))H(ϕG(x, y)dxdy+

λ3

∫
Ω

|u0(x, y)− c2|2(1−H)(ϕL(x, y))(1−H(ϕG(x, y))dxdy (19)

where ϕL, ϕG, c1, c2, µ1, µ2, λ1G, λ2G, µL, µG, λ1, λ2, λ3, H(ϕL), H(ϕG) are defined as for (10).

Here the terms λ1, λ1G, λ2 allow the total freedom of the level set functions so that ϕL will not

pick up spurious features nearby.

Different regularized Heaviside functions can be used e.g.

HI
ϵ =


0, z < −ϵ
1
2

[
1 + z

ϵ + 1
π sin(πzϵ )

]
, |z| ≤ϵ,

1, z > ϵ,

HII
ϵ =

1

2
(1 + erf(

ϵ

z
)), HIII

ϵ =
1

2
(1 +

2

π
arctan(

z

ϵ
)),

where erf(x) is twice the integral of the Gaussian distribution with 0 mean and variance of 1
2 in

the form erf(x) = 2√
π

∫ x

0
e−t2dt. HI

ϵ and HII
ϵ and their corresponding delta function δIϵ and δIIϵ

have a smaller support in the interval [−ϵ, ϵ], while HIII
ϵ and its corresponding δIIIϵ are different

from zero everywhere. This observation suggests that HIII
ϵ may be suitable for global feature

extraction, while HI
ϵ , or H

II
ϵ are to be used for the selective segmentation. In this way the model

can be written:

min
ϕL(x,y),ϕG(x,y),c1,c2

FIDLSS(ϕL, ϕG, c1, c2)

= µ1

∫
Ω

d(x, y)g(∇u0)e
−(

ϕL
γ )kHϵ(ϕG) +

µL

2

∫
Ω

(|∇ϕL| − 1)2dxdy+

µ2

∫
Ω

g(∇u0)e
−(

ϕG
γ )k +

µG

2

∫
Ω

(|∇ϕG(x, y)| − 1)2dxdy+

λ1G

∫
Ω

|u0(x, y)− c1|2Hϵ(ϕG(x, y)dxdy+

λ2G

∫
Ω

|u0(x, y)− c2|2(1−Hϵ(ϕG(x, y))dxdy+

λ1

∫
Ω

|u0(x, y)− c1|2Hϵ(ϕL(x, y)dxdy+

λ2

∫
Ω

|u0(x, y)− c1|2(1−Hϵ(ϕL(x, y))H(ϕG(x, y)dxdy+

λ3

∫
Ω

|u0(x, y)− c2|2(1−Hϵ(ϕL(x, y))(1−Hϵ(ϕG(x, y))dxdy. (20)

By keeping ϕL and ϕG fixed and deriving with respect to c1 and c2, we get equations for

computing c1 and c2:

c1 =
λ1G

∫
Ω
u0Hϵ(ϕG)dxdy + λ1

∫
Ω
u0Hϵ(ϕL)dxdy + λ2

∫
Ω
u0(1−Hϵ(ϕL))Hϵ(ϕG)dxdy

λ1G

∫
Ω
Hϵ(ϕG)dxdy + λ1

∫
Ω
Hϵ(ϕL)dxdy + λ2

∫
Ω
(1−Hϵ(ϕL))Hϵ(ϕG)dxdy

, (21)

c2 =
λ2G

∫
Ω
u0(1−Hϵ(ϕG))dxdy + λ3

∫
Ω
u0(1−Hϵ(ϕL))(1−Hϵ(ϕG))dxdy

λ2G

∫
Ω
(1−Hϵ(ϕG))dxdy + λ3

∫
Ω
(1−Hϵ(ϕL))(1−Hϵ(ϕG))dxdy

, (22)
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and by keeping c1 and c2 fixed we get the equations for ϕG and ϕL

µ2g(∇u0)
k

γk
ϕk−1
G e−(

ϕG
γ )k + µG∇ ·

(
(1− 1

|∇ϕG|
)∇ϕG

)
+

δϵ(ϕG)

(
− µ1d(x, y)g(∇u0)e

−(
ϕL
γ )k − λ1G(u0(x, y)− c1)

2 + λ2G(u0(x, y)− c2)
2−

λ2(u0(x, y)− c1)
2(1−H(ϕL)) + λ3(u0(x, y)− c2)

2(1−H(ϕL))

)
+ αg(x, y)|∇ϕG| = 0, in Ω

(23)

and 

µ1d(x, y)g(∇u0)
k

γk
ϕk−1
L e−(

ϕL
γ )kHϵ(ϕG) + µL∇ ·

(
(1− 1

|∇ϕL|
)∇ϕL

)
+

δϵ(ϕL)

(
− λ1(u0(x, y)− c1)

2 + λ2(u0(x, y)− c1)
2Hϵ(ϕG)+

λ3(zu0(x, y)− c2)
2(1−Hϵ(ϕG))

)
+ αd(x, y)g(∇u0)|∇ϕL| = 0, in Ω

(24)

with ∂ϕG

∂n⃗ = ∂ϕL

∂n⃗ = 0 on ∂Ω. The terms αd(x, y)g(∇u0)|∇ϕL| and αg(x, y)|∇ϕG| are the balloon
term force. The approximation can be done by introducing an artificial time step t and getting

the gradient descent method. Thus for c1 and c2, which will be updated at each step according

to the above formula and solving

∂ϕG

∂t
=µ2g(∇u0)

k

γk
ϕk−1
G e−(

ϕG
γ )k + µG∇ ·

(
(1− 1

|∇ϕG|
)∇ϕG

)
+

δϵ(ϕG)

(
− µ1d(x, y)g(∇u0)e

−(
ϕL
γ )k − λ1G(u0(x, y)− c1)

2 + λ2G(u0(x, y)− c2)
2−

λ2(u0(x, y)− c1)
2(1−H(ϕL)) + λ3(u0(x, y)− c2)

2(1−H(ϕL))

)
+ αg(x, y)|∇ϕG| = 0

(25)

and 

∂ϕL

∂t
=µ1d(x, y)g(∇u0)

k

γk
ϕk−1
L e−(

ϕL
γ )kHϵ(ϕG) + µL∇ ·

(
(1− 1

|∇ϕL|
)∇ϕL

)
+

δϵ(ϕL)

(
− λ1(u0(x, y)− c1)

2 + λ2(u0(x, y)− c1)
2Hϵ(ϕG)+

λ3(zu0(x, y)− c2)
2(1−Hϵ(ϕG))

)
+ αd(x, y)g(∇u0)|∇ϕL| = 0.

(26)

After solving these equations, the local level set ϕL ≤ 0 will define the selected object.

3.2 An additive operator splitting algorithm

To develop a fast and a low computational cost method for solving equations (25) and (26),

we can use the idea of the additive operator splitting (AOS) method (similar to the classical

operator splitting methods), proposed by Tai et al. [21] and Weickert [39] and widely applied to a

diffusion equation, such as [3, 15, 38]. The main idea of the method is to transfer a semi-implicit

linear system into an additive solvable linear system. To implement this method in our algorithm

we first make the discretization of the diffusion equation, form a semi-implicit linear system and

develop the iterative approximation scheme which solves a diagonally dominant tridiagonal linear

system.
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In order to develop an additive operator splitting (AOS) method for (25) and (26), we

consider the following related parabolic equations with ∂ϕL

∂n⃗

∣∣
∂Ω

= ∂ϕG

∂n⃗

∣∣
∂Ω

= 0:
∂ϕL

∂t
= µL∇ · (EL∇ϕL) + fL = µL(∂x(EL∂xϕL) + ∂y(EL∂yϕL)) + fL,

∂ϕG

∂t
= µG∇ · (EG∇ϕG) + fG = µG(∂x(EG∂xϕG) + ∂y(EG∂yϕG)) + fG,

(27)

where

fL =d(x, y)g(∇u0)
k

γk
ϕk−1
L e−(

ϕL
γ )kHϵ(ϕG) + δϵ(ϕL)

(
− λ1(u0(x, y)− c1)

2+

λ2(u0(x, y)− c1)
2Hϵ(ϕG) + λ3(u0(x, y)− c2)

2(1−Hϵ(ϕG))
)
+ d(x, y)g(∇u0)|∇ϕL|,

fG =µg(∇u0)
k

γk
ϕk−1
G e−(

ϕG
γ )k + δϵ(ϕG)

(
− µ1d(x, y)g(∇u0)e

−(
ϕL
γ )k − λ1G(u0(x, y)− c1)

2+

λ2G(u0(x, y)− c2)
2 − λ2(u0(x, y)− c1)

2(1−H(ϕL)) + λ3(u0(x, y)− c2)
2(1−H(ϕL))

)
+

αg(x, y)|∇ϕG|,

W =d(x, y)g(∇u0), EL = 1− 1

|∇ϕL|
, EG = 1− 1

|∇ϕG|
.

It suffices to consider how to solve a general equation:

∂ϕ

∂t
= µ(∂x(E∂xϕ) + ∂y(E∂yϕ)) + f. (28)

The equation can be rewritten in the matrix-vector form:

ϕn+1 − ϕn

∆t
=

m∑
l=1

Al(ϕ
n)ϕn+1 + f(x, y),

where ∆t is the time step size, m is 2 since we are dealing with two dimensions, n denotes the

nth iteration and Al is diffusion quantity in l direction (l = 1 and l = 2, respectively, for x and y

direction for the two dimensional case). We can rewrite the above equation in the semi-implicit

form:

ϕn+1 = ( I −∆t
m∑
l=1

Al(ϕ
n))−1 ϕ̂n for l = 1, 2 and ϕ̂n = ϕn +∆tf(x, y)

which by employing the AOS scheme can be split additively as shown below to define the AOS

solution

ϕn+1 =
1

m

m∑
l=1

(I −m∆tAl(ϕ
n))−1 ϕ̂n. (29)

Here for equation (28), Al for l = 1, 2 are tridiagonal matrices derived using finite differences:

(A1(ϕ
n)ϕn+1)i,j = µ

(
∂x(E∂xϕ

n+1)

)
i,j

= µ
En

i+1/2,j(∂xϕ
n+1)i+1/2,j − En

i−1/2,j(∂xϕ
n+1)i−1/2,j

hx

= µ

En
i+1,j+En

i,j

2 (
ϕn+1
i+1,j−ϕn+1

i,j

hx
)− En

i,j+En
i−1,j

2 (
ϕn+1
i,j −ϕn+1

i−1,j

hx
)

hx
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= µ
En

i+1,j + En
i,j

2h2
x

(ϕn+1
i+1,j − ϕn+1

i,j )−
En

i,j + En
i−1,j

2h2
x

(ϕn+1
i,j − ϕn+1

i−1,j),

(A2(ϕ
n)ϕn+1)i,j = µ

(
∂y(E∂yϕ

n+1)

)
i,j

= µ
En

i,j+1/2(∂yϕ
n+1)i,j+1/2 − En

i,j−1/2(∂yϕ
n+1)i,j−1/2

hy

= µ

En
i,j+1+En

i,j

2 (
ϕn+1
i,j+1−ϕn+1

i,j

hx
)− En

i,j+En
i,j−1

2 (
ϕn+1
i,j −ϕn+1

i,j−1

hy
)

hy

= µ
En

i,j+1 + En
i,j

2h2
y

(ϕn+1
i,j+1 − ϕn+1

i,j )−
En

i,j + En
i,j−1

2h2
y

(ϕn+1
i,j − ϕn+1

i,j−1).

The following iteration procedure has been designed for the model:

Step 1. Define the markers and associated parameters based on the image being considered;

Step 2. Calculate the edge based and distance function;

Step 3. Design the initial level sets ϕL and ϕG;

Step 4. Compute ϕL and ϕG according to (29);

Step 5. Check convergence
∥ϕn+1

L −ϕn
L∥

∥ϕn
L∥ < ε. If satisfied, stop. Otherwise, go back to Step 3.

4. Experimental results

To verify the performance of our new method, experiments were carried out on images with

oscillating boundaries. First we present experimental results demonstrating our segmentation

method results for segmenting a selective object. Next, we present the comparison of the new

model with the DLSS model in some experimental results. Lastly, we present experimental

results of a more challenging problem, where the object shapes have oscillatory boundaries.

Our method is based on the same user defined information, such as the markers, and some

parameters which need to be adjusted according to the given image, such as a smoothing factor

and the balloon force coefficient. In our numerical experiments, for the AOS algorithm, h = 1 (the

step space), △t = 1 (the time step), α = −0.01, τ = 4, µL = µG = 10−3. Different image sizes

have been tested n = 128, 180, 256, 512. Different values for λs = λ1G = λ2G = λ1 = λ2 = λ3

have been chosen and show that the method performs well and gets similar results. For the

following experiment we will show results of choice for µs and λs such that:

λs = λ1G = λ2G = λ1 = λ2 = λ3 = 300, µs = µ1 = µ2 = 1 or

λs = λ1G = λ2G = λ1 = λ2 = λ3 = 300, µs = µ1 = µ2 = 200 or

λs = λ1G = λ2G = λ1 = λ2 = λ3 = 80, µs = µ1 = µ2 = 1 or

λs = λ1G = λ2G = λ1 = λ2 = λ3 = 300, µs = µ1 = µ2 = n2/10.

Other different µs and λs have also been chosen and we found that the results are similar. The

initial global level set, placed as a circle, has the form

ϕ0
G =

√
(x− x0

G)
2 + (y − y0G)

2 − r0G

(where (x0
G, y

0
G) is the center of the circle), and the initial local level set is placed similarly to the

time marching algorithm, previously mentioned in Section 3. Since H3ϵ has a bigger support in
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the interval [−ϵ, ϵ], which means that with it a moderately large ϵ may lead to spurious results,

in our experiments for the local level set, as approximations for the heaviside function we use

H1ϵ or H2ϵ with ϵ = h = 1, and for the global level set H3ϵ with ϵ = h = 1.

4.1 Test Set 1–robustness of the new model

In this section, we demonstrate the ability of recognizing specific objects by our infinite

perimeter segmentation algorithm on some synthetic and real life images.

First, in Test Set 1, Figures 2 and 3 present experimental results using the time marching

algorithm for the new dual level set model. The algorithm is based on contracting or expanding

the initial curve, therefore the initial curve has to be nearby (inside or outside) the given object.

As prior information is given (markers) they can be used in the construction of the local level set.

The initial local contour can be a circle such that the center and the radius are w0 = (x0, y0) =

( 1
n1

∑n1

i=1 x
∗
i ,

1
n1

∑n1

i=1 y
∗
i ) and r = mini |w∗

i −w0|, respectively, where w∗
i = (x∗

i , y
∗
i ). In cases the

objects are near (which happens often in such processes), the shape is irregular or we want to start

with a better nearby level-set, a distant function level-set constructed with the polygon of the

given markers can be used. This initialization has been found as more proper in our experiments.

Figure 3 shows the local and global level-set initialization. The images chosen for the experiments

have different sizes such as n = 128 (i.e., 128× 128), n = 180 (i.e., 180× 180), and n = 256 (i.e.,

256 × 256), and the parameters tested are k = 8, γ = 10, λ1 = λ2 = λ3 = λ1G = λ2G = 100,

τ = 4, h = 1, µ1 = µ2 = 1, µL = µG = 0.0001, γ = 5, ϵ = 1 and ∆t = 0.01. Other parameters

for λs = λ1 = λ2 = λ3 = λ1G = λ2G, and µs = µ1 = µ2 can be chosen and it can be shown that

the results of the method are similar. To speed up convergence, the AOS algorithm has been

used as a faster solver compared with time marching. In this case comparing with explicit time

marching, ∆t (the time step) is not required to be particularly small.
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(a) Initial local (yellow) and global (cyan) (b) Real life image successfully selected (n = 180)

level sets (n = 180);

Figure 2 Successful segmentation with the time marching algorithm for infinite selective segmentation

model of the vase with markers set in the boundary of second vase (aimed object).

Next, we are showing here the numerical results of our new method for segmenting 7 different

images applying time marching or the AOS method. In Figure 2(b), we show that the model

works satisfactorily with the time marching algorithm for a real life image. Similar to Figure 2,

Figure 3 has been processed with the time marching algorithm in four different test results, from
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which the first two images show that the model works satisfactorily for cases where the features

are nearby, meanwhile Figures 3(c) and (d) show the successful segmentation of biological and

medical images. The images of Figure 3 give similar results when processed with the AOS

method, and for the sake of brevity we do not show them again. Images in Figure 4 show the

results obtained using the AOS method. Figure 4(b) shows results obtained from segmentation of

images with strong additive noise of the trees image. Figures 4 (c) and (d) show the segmentation

of a leaf collection picture with different shapes and close to each other. All of these figures show

that by giving some points in the object the model does not get attracted to the other object

with the same intensity.
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(a) Geometric image with the markers set (b) Successful segmentation of the spirals with

in the corner of the rectangle (n = 256) the time marching (n = 126)
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(c) Cells embryo successfully selected (d) Successful selective segmentation of blood

(n = 256) vessel in an repeated image (n = 180)

Figure 3 Successful segmentation with the new algorithm for infinite selective segmentation model

4.2 Test Set 2–comparison with the previous Rada-Chen model [32]

We now compare our model with the DLSS method [32] for 4 easier problems, as shown in

Figures 5–8. In the case of Figures 5 and 6, we can see that for the testing examples, both models

give almost the same result. For the test results in Figures 7 and 8 both models give almost the

same result except for the fact that the new model is showing the empty place between the leafs

much more accurately.

4.3 Test Set 3–improvement of the new model over Rada-Chen [32]

Test problems 3 are more challenging due to the oscillatory boundaries of the objects.

In particular, we consider the problem of segmenting brush-like pine trees which clearly have
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oscillatory boundaries; here the cornering effect of the model can be observed. The results of

our new segmentation method are shown in Figures 9, 11, 13, 15, 17 and 19, which appear to be

quite accurate despite the low-quality data. In these cases, the previous models from [32] will

lose some details. Figures 9, 11, 13, 15, 17 and 19 and the respective cropping Figures 10, 12, 14,

16, 18 and 20, show better results when oscillatory boundaries are present. In each case, the left

row image shows the results of [32] and the right image shows the correctly segmented results

by our new model.

5. Conclusions

In this paper we presented a new variational model with two level set functions (one for

global segmentation and the other for local and selective segmentation) for reliable and localized

segmentation, improving on previous work. A Lebesgue measure which leads to no limitation

of the perimeter segmentation has been incorporated. The selective segmentation is based on

optimization of a distance function, an edge detection function, and the region information.

We derived the curve evolution equations for the problem posed in the variational framework

and demonstrated the effectiveness of the resulting algorithm in segmenting a variety of images.

Numerical experiments show that the new model delivers similar results for general problems to

old models and improved results for the problems where the boundary has oscillation.
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(a) Real life image (n = 180) (b) Real life image with 10% additive noise (n = 180)
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(c) Real life image (n = 250) (d) Real life image (n = 250)

Figure 4 Successful segmentation with the AOS infinite selective segmentation model, with dt = 1,

µs = 1, λs = 300
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Figure 5 First row old model with H1 Hausdorff measurement, dt = 1, µs = 1, λs = 80; second row

new model with L2 measurement, dt = 1, µs = 1 λs = 80
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Figure 6 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = mn/10 λs = 300;

second picture: new model with L2 measurement
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Figure 7 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = mn/10 λs = 300;

second picture: new model with L2 measurement
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Figure 8 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = mn/10 λs = 300;

second picture: new model with L2 measurement
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Figure 9 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = 1 λs = 300; second

picture: new model with L2 measurement

Figure 10 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = 200 λs = 300; second

picture: new model with L2 measurement (cropping)
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Figure 11 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = 1 λs = 300; second

picture: new model with L2 measurement

Figure 12 First picture: old model with H1 Hausdorff measurement, dt = 1, µ = mn/10 λ = 300;

second picture: new model with L2 measurement (cropping)
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Figure 13 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = 1 λs = 300; second

picture: new model with L2 measurement

Figure 14 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = mn/10 λ = 300;

second picture: new model with L2 measurement (cropping)
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Figure 15 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = 1 λs = 300; second

picture: new model with L2 measurement

Figure 16 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = mn/10 λs = 300;

second picture: new model with L2 measurement (cropping)
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Figure 17 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = nm/10 λs = 300;

second picture: new model with L2 measurement

Figure 18 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = mn/10 λs = 300;

second picture: new model with L2 measurement (cropping)
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Figure 19 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = mn/10 λs = 300;

second picture: new model with L2 measurement

Figure 20 First picture: old model with H1 Hausdorff measurement, dt = 1, µs = mn/10 λs = 300;

second picture: new model with L2 measurement cropping



On a varational model for selective image segmentation of features with infinite perimeter 271

References

[1] R. ADAMS, L. BISCHOF. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1994, 16(6): 641–647.

[2] G. AUBERT, P. KORNPROBST. Mathematical Problems in Image Processing: Partial Differential Equa-

tions and the Calculus of Variations. Springer, 2001.

[3] Noor BADSHAH, Ke CHEN. Image selective segmentation under geometrical constraints using an acftive

contour approach. Commun. Comput. Phys., 2009, 7(4): 759–778.

[4] E. BAE, X. C. TAI. Graph cuts for the multiphase Mumford-Shah model using piecewise constant level

set methods. In K. Jun, C. Keem, H. Lee and J. Choi, editors, Proceedings of the National Institute for

Mathematical Sciences, 127–135, NIMS, Korea, 2008.

[5] Marco BARCHIESI, Sung H. KANG, Triet LE, et al. A variational model for infinite perimeter segmentations

based on Lipschitz level set functions: denoising while keeping finely oscillatory boundaries. Multiscale Model.

Simul., 2010, 8(5): 1715–1741.

[6] V. CASELLES, R. KIMMEL, G. SAPIRO. Geodesic active contours. International Journal of Computer

Vision, 1997, 22(1): 61–79.

[7] Tony F. CHAN, J. H. SHEN. Image Processing and Analysis-Variational, PDE, Wavelet, and Stochastic

Methods. SIAM Publications, Philadelphia, USA, 2005.

[8] Tony F. CHAN, L. A. VESE. An active contour model without edges. In Lecture Notes in Computer Science,

Volume 1682, 141–151, 1999.

[9] Tony F. CHAN, L. A. VESE. Active contours without edges. IEEE Transactions on Image Processing, 2001,

10(2): 266–277.

[10] Ginmo CHUNG, L. A. VESE. Image segmentation using a multilayer level-set approach. Computing and

Visualization in Science, 2009, 12: 267–285.

[11] L. COHEN. On active contour models and balloons. Comp. Vision, Graphics and Image Proc: Image

Understanding, 1991, 53(2): 211–218.

[12] Dorin COMANICIU, Peter MEER. Mean shift: A robust approach toward feature space analysis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603–619.

[13] Stuart GEMAN, Donald GEMAN. Stochastic relaxation, Gibbs distributions and the Bayesian restoration

of images. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721–741.

[14] C. GOUT, C. LE GUYADER, L. A. VESE. Segmentation under geometrical conditions with geodesic active

contour and interpolation using level set methods. Numerical Algorithms, 2005, 39: 155–173.

[15] C. LE GUYADER, C. GOUT. Geodesic active contour under geometrical conditions theory and 3D appli-

cations. Numerical Algorithms, 2008, 48: 105–133.

[16] S. HANOV.Wavelets and edge detection. University of Waterloo, Project report, 2006, http://stevehanov.ca/.

[17] Michael KASS, Andrew WITKIN, Demetri TERZOPOULOS. Snakes: Active contour models. International

Journal of Computer Vision, 1988, 1(4): 321–331.

[18] C. LI, C. XU, C. CUI, et al. Level set evolution without re-initialization: A new variational formulation. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), volume1, page

430–436, Washington, DC, USA, 2005. IEEE Computer Society.

[19] Chunming LI, Chiu-Yen KAO, J. C. GORE, et al. Implicit active contours driven by local binary fitting

energy. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07), 2007, 1–7.

[20] J. LIE, M. LYSAKER, X. C. TAI. A binary level set model and some applications to Mumford-Shah image

segmentation. IEEE Transactions on Image Processing, 2006, 15(5): 1171–1181.

[21] T. LU, P. NEITTAANMAKI, X. C. TAI. A parallel splitting-up method for partial differential equations and

its application to Navier-Stokes equations. RAIRO Mathematical Modeling and Numerical Analysis, 1992,

26(6): 673–708.

[22] J. MALIK, S. BELONGIE, T. LEUNG, et al. Contour and texture analysis for image segmentation. Inter-

national Journal of Computer Vision, 2001, 43: 7–27.

[23] R. MALLADI, J. A. SETHIAN. A real-time algorithm for medical shape recovery. In Proceedings of Inter-

national Conference on Computer Vision, pages 304–310, Mumbai, India, 1998.

[24] Stephane MALLAT. A Wavelet Tour of Signal Processing. Academic Press, USA, 1998.

[25] P. MORROW, S. MCCLEAN, K. SAETZLE. Contour detection of labelled cellular structures from serial

ultrathin electron microscopy sections using GAC and prior analysis. IEEE Proceedings of IPTA, 2008, 1–7.

[26] D. MUMFORD, J. SHAH. Boundary detection by minimizing functionals. In IEEE Conference on Computer

Vision and Pattern Recognition, 1985.

[27] D. MUMFORD, J. SHAH. Optimal approximations by piecewise smooth functions and associated variational

problems. Communications on Pure and Applied Mathematics, 1989, 42: 577–685.



272 Lavdie RADA and Ke CHEN

[28] Thi N. A. NGUYEN, Jianfei CAI, Juyong ZHANG, et al. Robust interactive image segmentation using

convex active contours. IEEE Transactions on Image Processing, 2012, 21(8), 3734-3743.

[29] Adam M. OBERMAN. A convergent difference scheme for the infinity Laplacian: construction of absolutely

minimizing Lipschitz extensions. Math. Comp., 2005, 74(251): 1217–1230.

[30] S. OSHER, J. A. SETHIAN. Fronts propagating with curvature-dependent speed: algorithms based on

Hamilton-Jacobi formulations. J. Comput. Phys., 1988, 79(1): 12–49.

[31] N. PARAGIOS, R. DERICHE. Geodesic active contours and level sets for the detection and tracking of

moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266–280.

[32] L. RADA, Ke CHEN. A new variational model with dual level set functions for selective segmentation.

Commun. Comput. Phys., 2012, 12(1): 261–283.

[33] D. SEN, S. K. PAL. Histogram thresholding using fuzzy and rough measures of association error. IEEE

Transactions on Image Processing, 2009, 18(4): 879–888.

[34] A. TSAI, A. J. YEZZI, A. S. WILLSKY. Curve evolution implementation of the Mumford-Shah functional for

image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing,

2001, 10: 1169–1186.

[35] N. VALIAMMAL, S. N. GEETHALAKSHMI. Performance analysis of various leaf boundary edge detection

algorithms. In Proceedings of the 1st Amrita ACM-W Celebration on Women in Computing in India,

A2CWIC’10, pages 34:1–34:6, New York, USA, 2010, ACM.

[36] A. VASILEVSKIY, K. SIDDIQI. Flux-maximizing geometric flows. IEEE Transaction on Pattern Analysis

and Machine Intelligence, 2002, 24: 1565–1578.

[37] L. A. VESE, Tony F. CHAN. A multiphase level set framework for image segmentation using the Mumford

and Shah model. International Journal of Computer Vision, 2002, 50(3): 271–293.

[38] J. WEICKERT, G. KÜHNE. Fast methods for implicit active contour. In S. Osher and N. Paragios, editors,

Geometric Level Set Methods in Imaging, Vision, and Graphics, pages 43–57, Springer, New York, 1995.

[39] J. WEICKERT, B. M. ROMENY, M. A. VIERGEVER. Efficient and reliable schemes for nonlinear diffusion

filtering. IEEE Transactions on Image Processing, 1998, 7(3): 398–410.

[40] J. P. ZHANG, Ke CHEN, Bo YU. Local information based image selection segmentation model and fast

robust algorithm. Submitted, 2012.

[41] Kaihua ZHANG, Huihui SONG, Lei ZHANG. Active contours driven by local image fitting energy. Pattern

Recognition, 2010, 43(4): 1199–1206.

[42] Xiangrong ZHANG, Feng DONG, G. CLAPWORTHY, et al. Semisupervised tissue segmentation of 3D

brain MR images. In 14th International Conference on Information Visualisation, 2010, 623–628.

[43] Guopu ZHU, Shuqun ZHANG, Qingshuang ZENG, et al. Boundary-based image segmentation using binary

level set method. Opt. Engng., 2007, 46(5): 050501 1–13.

[44] S. W. ZUCKER. Region growing: childhood and adolescence. Computer Graphics and Image Processing,

1976, 5: 382–399.


