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In a multimodal image registration scenario, where two given images have similar features, but noncom-
parable intensity variations, the sum of squared differences is not suitable for inferring image similarities.
In this article, we first propose a new variational model based on combining intensity and geometric trans-
formations, as an alternative to use mutual information and an improvement to the work by Modersitzki
and Wirtz (Modersitzki and Wirtz, Lect Notes Comput Sci 4057 (2006), 257–263), and then develop a fast
multigrid (MG) algorithm for solving the underlying system of fourth-order and nonlinear partial differential
equations. We can demonstrate the effective smoothing property of the adopted primal-dual smoother by a
local Fourier analysis. Numerical tests will be presented to show both the improvements achieved in image
registration quality and MG efficiency. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28:
1966–1995, 2012
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I. INTRODUCTION

Under many real-world conditions, even intensity variations of two given images taken from the
same object on the same scanner within the same protocol can be locally or globally different, for
example, clinical magnetic resonance (MR) images affected by the signal intensity inhomogene-
ity (bias field) due to imperfections in the radiofrequency coils and object-dependent interactions
[1–5]. In general, registration of different image modalities is a common, but demanding task. The
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FIG. 1. Comparison of numerical results by SSD and MI with our new model. Top row: a registration
problem consisting a pair of MR images of a human head shown in (a) reference R and (b) template T .
Middle row: two registered images (c) T SSD(u) by SSD (poor) and (d) the improved result T SSD

I (u, c) by
our proposed variational model (14). Bottom row: two registered images (e) T MI(u) by MI (poor) and (f)
the improved result T MI−SSD

I (c) by our proposed variational model (17) as a standardization between R
and T MI(u). Notice that first our new model (14) accurately registers the images without any additional
preprocessing steps, and secondly the model (17) is effective in normalizing (postprocessing) the intensity
variations between the images.
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FIG. 2. Composite views between the images before and after registration for the problem shown in Fig.
1(a, b). (a) Drastically different composite view between R and T before registration; (b) indistinguishable
composite view between R and T SSD

I (u) after registration based on our new variational model (14). The
intensity variations in (b) between the images are well-matched.

sum of squared differences (SSDs) without any preprocessing steps (e.g., the intensity normaliza-
tion or standardization methods) is not suitable for determining image similarities of multimodality
as it reduces accuracy and efficiency of an expected registration, as illustrated in Figs. 1 and 2.
Conversely, mutual information (MI) as a similarity measure is more appropriate and invariant to
overall intensity scale differences. MI is often adopted to deal with the lack of a model of intensity
transformations. However, it has a number of well-known drawbacks. First, MI is known to be
highly nonconvex as well as nonlinear and has typically many local minima. Therefore, nonlinear-
ity of the registration problem is enhanced by the use of MI. Second, the computation of MI and
its first variation require approximations of the joint density, which summarizes the co-occurrence
of events from the image intensities obtained from the given images. Such approximations are
usually expensive and sensitive to some parameters, such as the width of the Parzen-window
kernel and the set of local intensity samples. Finally, because of the above difficulties, there is
not a unique or even common implementation for estimating MI and its first variation; see more
discussions in Refs. [6–12] and references therein.

Several related methods are proposed in the literature to improve the SSD model. This article
follows closely and improves on the particular work by Ref. [13], which uses a nonparamet-
ric intensity transformation for the elastic registration of monomodal images and applies the
total variation (TV) energy to constraint the intensity transformations. Our improvements are
three-fold. First, instead of an multiplicative correction framework, we consider a new additive
correction framework. Second, for both frameworks, we propose a new curvature regularizer for
the displacement field as well as the correction field. Finally, we develop a fast nonlinear multigrid
(NMG) algorithm using the primal-dual fixed-point (PDFP) smoother.

Some registration models related to Ref. [13] and the current work can be found in Refs.
[14–17]. In Ref. [14], the polynomial-based intensity transformation is used for elastic registration,
with an iterative scheme that alternates between estimating the coefficients of the polynomial and
searching the nonparametric transformation minimizing the energy functional using the demons
method [18]. These coefficients have the purpose of estimating the intensity changes that match
the intensity values between the images. In Ref. [15], a locally linear intensity transformation with
a smoothness constraint on the contrast/brightness parameters is used to model the elastic regis-
tration of multimodal images based on a locally affine transformation with a global smoothness
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constraint in a differential multiscale framework. In Ref. [16], the registration of multimodal
images is modeled by a low-order polynomial intensity transformation and a global affine trans-
formation. In Ref. [17], the registration of multimodal images is modeled using a probabilistic
formulation in a multiscale framework. The main aim is to simultaneously determine the local
parameters of the geometric transformation using the B-spline models by Ref. [19] and the local
coefficients of the polynomial intensity transformation that lead to successful registration. These
parameters and coefficients are represented as Markov random fields giving a priori information
about the homogeneity of the intensity and geometric changes.

For variational models, fast methods are necessary for high-resolution digital images. For a
nonlinear system like (19; see Section III), the use of a NMG method is a natural choice but its con-
vergence is not automatic. For examples of successful developments in various image processing
applications, refer to Refs. [20–33] where the Euler–Lagrange systems of partial differential equa-
tions (PDEs) can be of second- or fourth-order. Previous work on NMG techniques for deformable
image registration using free-form or nonrigid deformations in Refs. [25,27,28,31,33] considers
different deformation models or different multigrid (MG) components. In Ref. [25], the efficient
NMG methods based on the typical FP iteration method for overcoming the singular Neumann
boundary problems of discrete systems are presented for the diffusion- and modified TV-based
image registration, respectively. In Ref. [27], a special treatment for singular systems due to the
Neumann boundary conditions before and during the NMG method for TV-based image regis-
tration is introduced in solving the minimization problem of the SSD functional. In Ref. [28],
a full-multigrid (FMG) method based on the Newton–Gauss–Seidel smoother and an adaptive
smoothing approach for the deformation field are developed in the context of diffusion image reg-
istration. In Ref. [31], a NMG method based on the discretized optimality conditions for elastic
image registration is presented. In Ref. [33], a FMG method based on the FP type of smoothers
is developed for diffusion image registration subject to Dirichlet boundary conditions. Although
the above reviewed NMG techniques have been used for other models of nonrigid image regis-
tration, to the best of our knowledge, these past methods do not work for the more challenging
system of nonlinear and high-order PDEs like (19) for simultaneously determining the intensity
and geometric transformations, and our proposed method is new.

The rest of this article is organized as follows. The variational image registration model of Ref.
[13] and our new model combining the intensity and geometric transformations are introduced
in Section II, followed by discussion of solving the resulting fourth-order PDEs by a primal-
dual (PD) formulation in Section III. Section IV discusses the numerical implementation and
the numerical solution for the PD formulation, in particular a multilevel approach based on an
efficient NMG algorithm. The robustness of the proposed registration model and its numerical
approach are illustrated using examples including clinical data in Section V. The last section is
devoted to conclusions.

II. IMPROVED VARIATIONAL IMAGE REGISTRATION MODEL

Below we shall first introduce the image registration problem and the standard variational model,
and then discuss the method of Ref. [13] and our proposed new formulation in the same spirit.

Suppose that two images R (the reference) and T (the template), intended for registration, are
given as the continuous functions mapping from an image domain � ⊂ R

d into V ⊂ R
+
0 and

each component ud of u is the function of the spatial position x = (x1, x2, . . . , xd)
� ∈ �. Without

loss of generality, we assume that the registration problem is described in the two-dimensional
(2D) case (d = 2) throughout this article, but it is readily extendable to the three-dimensional
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case (d = 3). We also assume further that � = [0, 1]2 ⊂ R
2 and V = [0, 1] for 2D gray intensity

images.
A general framework of the registration problem of monomodal images can be formulated

as follows: For the given R and T , we search simultaneously for a vector-valued nonparametric
transformation ϕ defined by

ϕ(u)(·) : R
d → R

d , ϕ(u)(x) : x �→ x + u(x) (1)

that depends on an unknown deformation or displacement field

u : R
d → R

d , u : x �→u(x) = (u1(x), u2(x), . . . , ud(x))� (2)

and an intensity transformation f such that the transformed template

f (T ◦ ϕ(u(x))) = f (T (x + u(x))) = f (T (u))

becomes similar to the reference R in a geometric sense, that is

R(x) = f (T (u)) + η(x). (3)

Here, η(x) is an unknown random function of uncorrelated noise. If the intensity variations of
R and T are comparable, the intensity transformation f can be represented by the identity function
and we search only the deformation field u. Then, the common choice of the SSD functional D
defined by

D(u) = DSSD(u, c) = 1

2

∫
�

(T (x + u(x)) − R(x))2dx

is enough. Finally, the inverse problem of finding u is solved by the Tikhonov variational
formulation

min
u

{Jα(u, c) = D(u) + αR(u)} (4)

where R is a suitable regularizer such as one of (10)–(13). Refer to Ref. [34].
However, in real-life applications (such as MR and CT medical imaging), inhomogeneity of

image intensities and noise are represented in both R, T images or one of them. If so, the above
framework (4) becomes ineffective and we require a more complex intensity function f than
those of parametric intensity transformations (e.g, polynomials). To design a general-purpose
registration model for these cases, we assume that model f is nonparametric and obeys with the
following intensity relationships

Intensity model I: f (T (u)) = T (u) + c(x) (additive intensity correction model) (5)

Intensity model II: f (T (u)) = c(x)T (u) (multiplicative intensity correction model) (6)

where c : � → R is an unknown nonparametric intensity correction. In a previous work [13],
coinciding with intensity model II, the following variational model is proposed

min
u,c

{Jα1,α2(u, c) = D(u, c) + α1R1(u) + α2R2(c)} (7)
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with

D(u, c) = DSSD
II (u, c) = 1

2

∫
�

(c(x)T (x + u(x)) − R(x))2dx,

R1 = Relas(u) =
∫

�

(
(μ/4)

2∑
l,m=1

(∂xl
um + ∂xmul)

2 + (λ/2)(∇ · u)2

)
dx,

R2 = RL2(c) =
∫

�

|∇c|2dx =
∫

�

(
c2

x1
+ c2

x2

)
dx.

Further, the resulting Euler–Lagrange equations take the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(u, c) − α1((λ + 2μ)∂x1x1u1 + μ∂x2x2u1 + (λ + μ)∂x1x2u2) = 0

f2(u, c) − α1((λ + μ)∂x1x2u1 + μ∂x1x1u2 + (λ + 2μ)∂x2x2u2) = 0

f3(u, c) − α2∇ · ∇c

|∇c|β2

= 0

(8)

subject to the boundary conditions

〈μ(∇u + (∇u)�) + λdiag(∇ · u), n〉
R2 = 0 and 〈∇c, n〉

R2 = 0 on ∂�. (9)

Although the above choice of regularizers in (7) that is, Ref. [13] for combining homogenization
and registration is useful to some problems, the regularizer Relas(u) restricts u to be extremely
smooth and to have small displacements, and the regularizer RL2(c) also admits smooth correc-
tion c only so the model (7) does not have generality. There are alternative regularizers one could
consider such as

Rdiff(u) = 1

2

2∑
l=1

∫
�

|∇ul|2dx, (10)

RFMcurv(u) = 1

2

2∑
l=1

(	ul)
2dx, (11)

RHWcurv(u) = 1

2

2∑
l=1

∫
�

(	ul)
2 − 2

(
ulx1x1

ulx2x2
− u2

lx1x2

)
dx, (12)

RβTV(u) =
2∑

l=1

∫
�

|∇ul|β1dx =
2∑

l=1

∫
�

√
u2

lx1
+ u2

lx2
+ β1dx, (13)

for both u and c. These regularizers (10)–(13), similarly having no generality, cannot work well
for both smooth and nonsmooth registration problems.

To fundamentally improve on (7), motivated by Refs. [35–37], we propose to regularize cur-
vatures of both u and c as they are found to be able to cope well with both smooth and nonsmooth
registration problems. Thus, our new registration model is

min
u,c

{
Jα1,α2(u, c) = D(u, c) + α1

2∑
l=1

∫
�


(κ(ul))dx + α2

∫
�


(κ(c))dx

}
(14)
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where α1, α2 > 0 are the regularization parameters. Here, we have chosen

R1(u) = RNewCv(u) =
2∑

l=1

∫
�


(κ(ul))dx, R2(c) = K(c) =
∫

�


(κ(c))dx,

the first SSD term including both intensity models I and II in (5) and (6) that is

D(u, c) =

⎧⎪⎪⎨⎪⎪⎩
DSSD

I (u, c) = 1

2

∫
�

(T (x + u(x)) + c(x) − R(x))2dx, Model (5)

DSSD
II (u, c) = 1

2

∫
�

(c(x)T (x + u(x)) − R(x))2dx, Model (6)
(15)

and 
(s) = 1
2 s

2 using the mean curvature

κ(ul) = ∇ · ∇ul

|∇ul|β1

=
(
β1 + u2

lx1

)
ulx1x1

− 2ulx1
ulx2

ulx1x2
+ (β1 + u2

lx2

)
ulx2x2(

β1 + u2
lx1

+ u2
lx2

)3/2 , β1 > 0. (16)

Our new variational framework aims to achieve two aims: (i) it does not require an affine pre-
registration step and (ii) it is more flexible for both smooth and nonsmooth registration problems
than previous work [13].

Regarding the choice of a regularizer for c in (14), we note the following:

1. For a linear intensity correction ĉ(x) = a1x1 + a2x2 + a3, K(ĉ(x)) = 0, that is, the nontriv-
ial kernel of K consists only of the linear transformations, and consequently this energy is
invariant under globally and locally linear intensity corrections. Now comparing with the
previously tested choices for c in Ref. [13] namely

T V(c) =
∫

�

|∇c|β2dx =
∫

�

√
c2

x1
+ c2

x2
+ β2dx, β2 > 0,

RL2(c) =
∫

�

|∇c|2dx =
∫

�

(
c2

x1
+ c2

x2

)
dx

we see that both T V(ĉ(x)) = 0 and RL2(ĉ(x) = 0 hold if and only if a1 = a2 = a3 = 0.
This means that both T V and RL2 do not allow nontrivial linear intensity corrections; see
Fig. 7.

2. K preserves discontinuities of c because the diffusion coefficients of the Euler–Lagrange
equations resulting from (14) are zero in regions representing large gradient of c, that is,
1/|∇c|β2 → 0 and ∇c · ∇� ′(κ(c))/|∇c|3β2

→ 0 when |∇c|β2 → ∞; see (19) and (22) in
Section III later. As a result, the corrected images by the regularizer K are not blurred and
are different from those by RL2 ; see Figs. 3 and 5.

The above theoretical remarks can be tested through two registration problems with their numer-
ical results shown in Figs. 3–7. Clearly, the combination of DSSD

I and K(c) is more suitable; as
mentioned, in a previous work using DSSD

II [13], only R1(u) = Relas(u) and R2(c) = T V(c) were
tested.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



IMPROVED VARIATIONAL IMAGE REGISTRATION MODEL 1973

FIG. 3. A numerical test using DSSD
I (14) with three regularization techniques for c to show that our tech-

nique K(c) is an improvement over T V(c) and RL2 (c). Top row from left to right: (a) reference R, (b)
template T , and (c) registered image by Ref. [16]. Bottom row from left to right: three registered images
T(u) via T V(c), RL2 (c), and K(c), respectively. Clearly, the registration technique based on the polynomial
intensity functions by Ref. [16] is less efficient. Here, error1 denotes the percentage error.

Finally, we have two additional remarks:

Remark 1.

1. If we set α1 = 0, u = 0 and α2 > 0, the following minimization problem

min
c

{Jα2(0, c) = D(0, c) + α2R2(c)} (17)

gives only the nonparametric intensity correction c for the normalization or standardization
between the images, that is, T (x)+ c(x), c(x)T (x) ≈ R(x); see, for example, the standard-
ization between R and T MI(u) using (17) in Fig. 1(e). That is to say, our reduced model
(17) can be used for standardization purposes, for example, for postprocessing MI results.

2. The new variational model (14) can be adapted to solve problems related to optical flow com-
putation or stereo disparity estimation, for example, by introducing the energy functional
R2 in the variational formulation of optical flow computation.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 4. Surface plots of c for the registration problem in Fig. 3(a, b). (a) the exact surface of c; (b, d) the
results via T V(c), RL2 (c), and K(c), respectively. Here, the error2 denotes the two-norm of the differences
between the exact and approximate solutions. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

III. EULER–LAGRANGE EQUATIONS AND THEIR PD FORMULATIONS

Consider our first and preferred case in (14), that is, D = DSSD
I , R1(u) = RNewCv(u) and

R2(c) = K(c) or

min
u,c

{
Jα1,α2(u, c) = 1

2

∫
�

(T (x + u(x)) + c(x) − R(x))2dx + α1

2∑
l=1

∫
�


(κ(ul))dx

+ α2

∫
�


(κ(c))dx
}

. (18)
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FIG. 5. A numerical test using DSSD
II (15) with three regularization techniques for c to show that our tech-

nique K(c) is an improvement over T V(c) and RL2 (c). Top row from left to right: (a) reference R, (b)
template T , and (c) registered image via Ref. [16]. Bottom row from left to right: three registered images
T(u) via T V(c), RL2 (c), and K(c), respectively. Clearly, the registration technique based on the polynomial
intensity functions by Ref. [16] is less efficient. Here, error1 denotes the percentage error.

The resulting Euler–Lagrange equations of this proposed variational image registration model is
given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T (u) + c − R)∂u1T (u)︸ ︷︷ ︸
f1(u,c)

+ α1∇ ·
(

1

|∇u1|β1

∇
′(κ(u1)) − ∇u1 · ∇
′(κ(u1))

(|∇u1|β1)
3

∇u1

)
= 0

(T (u) + c − R)∂u2T (u)︸ ︷︷ ︸
f2(u,c)

+ α1∇ ·
(

1

|∇u2|β1

∇
′(κ(u2)) − ∇u2 · ∇
′(κ(u2))

(|∇u2|β1)
3

∇u2

)
= 0

(T (u) + c − R)︸ ︷︷ ︸
f3(u,c)

+ α2∇ ·
(

1

|∇c|β2

∇� ′(κ(c)) − ∇c · ∇� ′(κ(c))

(|∇c|β2)
3

∇c

)
= 0

(19)

subject to the boundary conditions

〈∇ul , n〉
R2 = 0, 〈∇
′(κ(ul)), n〉

R2 = 0 for l = 1, 2 on ∂� (20)
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FIG. 6. Surface plots of c for the registration problem in Fig. 5(a, b). (a) The exact surface of c; (b, d) the
results by T V(c), RL2 (c), and K(c), respectively. Here, the error2 denotes the two-norm of the differences
between the exact and approximate solutions. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

and

〈∇c, n〉
R2 = 0, 〈∇� ′(κ(c)), n〉

R2 = 0 on ∂�. (21)

Recall that the first and second terms in (19) are related to the first variations of D and Rl ,
respectively.

As used in Ref. [38], the PD idea is suitable for solving a system of higher order nonlinear
PDEs like (19). The main idea is to reduce the order and nonlinearity of (19) using the new dual

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 7. Plots of the 13th row of c(x1, x2) in Figs. 4(a–d) and 6(a–d) by T V(c), RL2 (c), and K(c), respec-
tively. Clearly, our technique K(c) is an improvement over T V(c) and RL2 (c). [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

variables. Introducing additional unknown variables (dual variables)

v1 = −
′(κ(u1)) = −∇ · ∇u1

|∇u1|β1

, v2 = −
′(κ(u2)) = −∇ · ∇u2

|∇u2|β1

,

v3 = −� ′(κ(c)) = −∇ · ∇c

|∇c|β2

leads (19) to the equivalent system of six second-order nonlinear PDEs given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · ∇u1

|∇u1|β1

− v1 = g1

−∇ · ∇u2

|∇u2|β1

− v2 = g2

−∇ · ∇c

|∇c|β2

− v3 = g3

f1(u, c) − α1∇ ·
(

∇v1

|∇u1|β1

+ ∇u1 · (−∇v1)

|∇u1|3β1

∇u1

)
= g4

f2(u, c) − α1∇ ·
(

∇v2

|∇u2|β1

+ ∇u2 · (−∇v2)

|∇u2|3β1

∇u2

)
= g5

f3(u, c) − α2∇ ·
(

∇v3

|∇c|β2

+ ∇c · (−∇v3)

|∇c|3β2

∇c

)
= g6

(22)

subject to the boundary conditions transferred into

〈∇u1, n〉
R2 = 〈∇u2, n〉

R2 = 〈∇c, n〉
R2 = 〈∇vm, n〉 = 0 for m = 1, 2, 3

where g = (g1, g2, g3, g4, g5, g6)
� = 0 on the finest grid for the MG setting in the coming section.
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Next, we consider our second case in (14), that is, D = DSSD
II , R1(u) = RNewCv(u) and

R2(c) = K(c) or

min
u,c

{
Jα1,α2(u, c) = 1

2

∫
�

(c(x)T (x + u(x)) − R(x))2dx + α1

2∑
l=1

∫
�


(κ(ul))dx

+ α2

∫
�


(κ(c))dx
}

.

Then, it is not difficult to see that similar equations are derived. In fact, only fl(u, c) (l = 1, 2, 3)

in (19) and (22) need modifying and they are to be substituted respectively by

f1(u, c) = c(cT (u) − R)∂u1T (u), (23)

f2(u, c) = c(cT (u) − R)∂u2T (u), (24)

and

f3(u, c) = (cT (u) − R)T (u). (25)

Refer to Ref. [13] for a discussion of the SSD fitting term.
In this work, we shall mainly consider the first new model (19) with D = DSSD

I in our numerical
implementations because it is simpler than the second new model D = DSSD

II .
Finally, we remark that the adoption of curvature regularization substantially complicates

the resulting PDEs. To illustrate this point, later, we consider replacing the second regularizer
R2(c) = K(c) in (18) by

i. R2(c) = T V(c). Then, the last equation in (19) and the boundary conditions in (21) are
replaced respectively by

f3(u, c) − α2∇ · ∇c

|∇c|β2

= 0 (26)

and 〈∇c, n〉
R2 = 0 on ∂�. The resulting PD formulation is then given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · ∇u1

|∇u1|β1

− v1 = g1

−∇ · ∇u2

|∇u2|β1

− v2 = g2

f1(u, c) − α1∇ ·
(

∇v1

|∇u1|β1

+ ∇u1 · (−∇v1)

|∇u1|3β1

∇u1

)
= g3

f2(u, c) − α1∇ ·
(

∇v2

|∇u2|β1

+ ∇u2 · (−∇v2)

|∇u2|3β1

∇u2

)
= g4

f3(u, c) − α2∇ · ∇c

|∇c|β2

= g5

. (27)

ii. R2(c) = RL2(c). Then, the last equation in (19) and the boundary conditions in (21) become

f3(u, c) − α2	c = 0 (28)
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and 〈∇c, n〉
R2 = 0 on ∂�, respectively. Similarly, the resulting PD formulation is given by

replacing the last equation in (27) by an easier equation f3(u, c) − α2	c = g5.

Of course, simpler PDEs lead to an easy choice of solvers but do not lead to good registration
results.

IV. NUMERICAL SOLUTION FOR THE FORMULATION

To obtain a fast numerical solution of the new formulation (22), we first discuss its discretization
and second propose a so-called PDFP iterative method. The unilevel method is further used to
develop our MG algorithm. For other MG work in solving various variational imaging models,
refer to Refs. [20–22, 39–44].

A. Finite Difference Discretization

For sake of clarity, let (zh

l̂
)i,j = zh

l̂
(x1i

, x2j
) denote the grid functions for l̂ = 1, . . . , 6 where

z = (z1, z2, z3, z4, z5, z6)
� = (u1, u2, c, v1, v2, v3)

� (29)

and let

�h = {x ∈ �|x = (x1i
, x2j

)� = ((2i − 1)h/2, (2j − 1)h/2), 1 ≤ i, j ≤ n} (30)

be the discrete domain consisting of N = n2 cells of size h × h with the grid mesh h = 1/n. The
cell-centered finite difference approximations are used with the divergence terms ∇ · V for any
vector V = (V1, V2) in (22) at a grid point (i, j) as follows:(

∂V1

∂x1

)
i,j

+
(

∂V2

∂x2

)
i,j

= (V1)i+1,j − (V1)i,j

h
+ (V2)i,j+1 − (V2)i,j

h
. (31)

Therefore, we need to calculate V1 at the grid points (i + 1, j) and (i, j) and V2 at the grid
points (i, j +1) and (i, j). We list here the approximations used in our numerical implementations
for estimating V1 at the grid point (i, j) as the following [discretization for V1 at the grid point
(i + 1, j) and V2 at the grid points (i, j + 1) and (i, j) can be given similarly]:

κ
(
zh

l̂

)
i,j

=
(

∇ · ∇zh

l̂∣∣∇zh

l̂

∣∣
β∗

)
i,j(

∇ · ∇zh

l̂∣∣∇zh

l̂

∣∣
β∗

)
i,j

=
⎡⎢⎣δ−

x1

h

⎛⎜⎝ δ+
x1

(
zh

l̂

)
i,j

/h√
β∗ + (δ+

x1

(
zh

l̂

)
i,j

/h
)2 + (δ+

x2

(
zh

l̂

)
i,j

/h
)2

⎞⎟⎠

+δ−
x2

h

⎛⎜⎝ δ+
x2

(
zh

l̂

)
i,j

/h√
β∗ + (δ+

x1

(
zh

l̂

)
i,j

/h
)2 + (δ+

x2

(
zh

l̂

)
i,j

/h
)2

⎞⎟⎠
⎤⎥⎦ ,

= (1/h2)
((

�h

l̂

)
i,j

(
zh

l̂

)
i,j

− (�h

l̂

)
i,j

(
zh

l̂

)
i,j

)
,(

�h

l̂

)
i,j

= 2Dl̂3

(
zh

l̂

)
i,j

+ Dl̂1

(
zh

l̂

)
i−1,j

+ Dl̂2

(
zh

l̂

)
i,j−1

,
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�

h

l̂

)
i,j

(
zh

l̂

)
i,j

= (Dl̂3

(
zh

l̂

)
i,j

((
zh

l̂

)
i+1,j

+ (zh

l̂

)
i,j+1

) + Dl̂1

(
zh

l̂

)
i,j

(
zh

l̂

)
i−1,j

+Dl̂2

(
zh

l̂

)
i,j

(
zh

l̂

)
i,j−1

))
,

Dl̂1

(
zh

l̂

)
i,j

= Dl̂

(
zh

l̂

)
i−1,j

, Dl̂2

(
zh

l̂

)
i,j

= Dl̂

(
zh

l̂

)
i,j−1

,

Dl̂3

(
zh

l̂

)
i,j

= Dl̂

(
zh

l̂

)
i+1,j

= Dl̂

(
zh

l̂

)
i,j+1

= Dl̂

(
zh

l̂

)
i,j

,

Dl̂

(
zh

l̂

)
i,j

= ∣∣∇(zh

l̂

)
i,j

∣∣
β∗ ,∣∣∇(zh

l̂

)
i,j

∣∣
β∗ =

√
β∗ + (δ+

x1

(
zh

l̂

)
i,j

/h
)2 + (δ+

x2

(
zh

l̂

)
i,j

/h
)2

, β∗ = β1 or β2,(
zh

l̂x1

)
i,j

= δ+
x1

(
zh

l̂

)
i,j

/h,
(
zh

l̂x2

)
i,j

= δ+
x2

(
zh

l̂

)
i,j

/h,

δ±
x1

(
zh

l̂

)
i,j

= ±((zh

l̂

)
i±1,j

− (zh

l̂

)
i,j

)
, δ±

x2

(
zh

l̂

)
i,j

= ±((zh

l̂

)
i,j±1

− (zh

l̂

)
i,j

)
,

T h∗
i,j = T h

(
i + (uh

1

)
i,j

, j + (uh
2

)
i,j

)
,

f h
1

(
uh

1 , uh
2 , ch

)
i,j

= (T h∗
i,j + ci,j − Rh

i,j

)((
T h∗

i+1,j − T h∗
i−1,j

)
/(2h)

)
,

f h
2

(
uh

1 , uh
2 , ch

)
i,j

= (T h∗
i,j + ci,j − Rh

i,j

)((
T h∗

i,j+1 − T h∗
i,j−1

)
/(2h)

)
,

f h
3

(
uh

1 , uh
2 , ch

)
i,j

= (T h∗
i,j + ci,j − Rh

i,j

)
.

We note that the finite difference approximations for (22) need to be modified at grid points near
the image boundary ∂�h using the homogeneous Neumann boundary conditions approximated
by one-side differences for boundary derivatives:(

zh

l̂

)
i,1

= (zh

l̂

)
i,2

,
(
zh

l̂

)
i,n

= (zh

l̂

)
i,n−1

,
(
zh

l̂

)
1,j

= (zh

l̂

)
2,j

,
(
zh

l̂

)
n,j

= (zh

l̂

)
n−1,j

. (32)

B. PDFP Iterative Method

We now discuss a numerical scheme PDFP to solve the discrete version of (22). This is done in
two steps:

Outer Iteration Step. First, we introduce a new FP or outer iteration to (22). This can be done
as follows; our scheme is semiimplicit in both regularization and data terms. The semiimplicit
scheme for the regularization terms is iterated by freezing some coefficients in a similar way to
the so-called Lagged-diffusivity method [40] or Quasi-Newton scheme [43, 44]. Staring with an
initial guess u[0] (e.g. u[0] = 0) leads to

N[z[ν]]z[ν+1] = G[z[ν]] (33)

where the typical Taylor’s expansion for fl(u
[ν+1]
1 , u[ν+1]

2 , c[ν+1]) of type

fl

(
u

[ν+1]
1 , u[ν+1]

2 , c[ν+1]) ≈ fl

(
c[ν], u[ν]

1 , u[ν]
2

)+ ∂u1fl

(
u

[ν]
1 , u[ν]

2 , c[ν])δu[ν]
1

+ ∂u2fl

(
u

[ν]
1 , u[ν]

2 , c[ν])δu[ν]
2 + ∂cfl

(
u

[ν]
1 , u[ν]

2 , c[ν])δc[ν]

= fl

(
u

[ν]
1 , u[ν]

2 , c[ν])+ σ
[ν]
l1

(
u

[ν+1]
1 − u

[ν]
1

)+ σ
[ν]
l2

(
u

[ν+1]
2 − u

[ν]
2

)
+ σ

[ν]
l3 (c[ν+1] − c[ν]) (34)
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is used in the global linearization scheme. Here,

σ
[ν]
l1 = ∂u1fl

(
c[ν], u[ν]

1 , u[ν]
2

)
= (∂ul

T (u[ν]))(∂u1T (u[ν])) + (T (u[ν]) + c[ν] − R)(∂u1ul
T (u[ν])), (35)

σ
[ν]
l2 = ∂u2fl

(
c[ν], u[ν]

1 , u[ν]
2

)
= (∂ul

T (u[ν]))(∂u2T (u[ν])) + (T (u[ν]) + c[ν] − R)(∂u2ul
T (u[ν])), (36)

σ
[ν]
l3 = ∂cfl

(
c[ν], u[ν]

1 , u[ν]
2

) = (∂ul
T (u[ν])), (37)

for l = 1, 2 and

σ
[ν]
31 = ∂u1f3

(
c[ν], u[ν]

1 , u[ν]
2

) = ∂u1T (u[ν]), (38)

σ
[ν]
32 = ∂u2f3

(
c[ν], u[ν]

1 , u[ν]
2

) = ∂u2T (u[ν]), (39)

σ
[ν]
33 = ∂cf3

(
c[ν], u[ν]

1 , u[ν]
2

) = 1. (40)

N[z[ν]] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−L1

[
u

[ν]
1

]
0 0 −1 0 0

0 −L2

[
u

[ν]
2

]
0 0 −1 0

0 0 −L3[c[ν]] 0 0 −1

σ
[ν]
11 σ

[ν]
12 σ

[ν]
13 −α1L1

[
u

[ν]
1

]
0 0

σ
[ν]
21 σ

[ν]
22 σ

[ν]
23 0 −α1L2

[
u

[ν]
2

]
0

σ
[ν]
31 σ

[ν]
32 σ

[ν]
33 0 0 −α2L3[c[ν]]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(41)

z[ν+1] = (z[ν+1]
1 , z[ν+1]

2 , z[ν+1]
3 , z[ν+1]

4 , z[ν+1]
5 , z[ν+1]

6

)�
,

= (u[ν+1]
1 , u[ν+1]

2 , c[ν+1], v[ν+1]
1 , v[ν+1]

2 , v[ν+1]
3

)�
, (42)

G[z[ν]] = g = (g1, g2, g3, ĝ[ν]
4 , ĝ[ν]

5 , ĝ[ν]
6

)�
, (43)

ĝ
[ν]
4 = g4 − f1

(
u

[ν]
1 , u[ν]

2 , c[ν])+ σ
[ν]
11 u

[ν]
1 + σ

[ν]
12 u

[ν]
2 + σ

[ν]
13 c[ν] + α1∇ ·

⎛⎝∇u
[ν]
1 · (−∇v1)

[ν]∣∣∇u
[ν]
1

∣∣3
β

∇u
[ν]
1

⎞⎠ ,

(44)

ĝ
[ν]
5 = g5 − f2

(
u

[ν]
1 , u[ν]

2 , c[ν])+ σ
[ν]
21 u

[ν]
1 + σ

[ν]
22 u

[ν]
2 + σ

[ν]
23 c[ν] + α1∇ ·

⎛⎝∇u
[ν]
2 · (−∇v2)

[ν]∣∣∇u
[ν]
2

∣∣3
β

∇u
[ν]
2

⎞⎠ ,

(45)

ĝ
[ν]
6 = g6 − f3

(
u

[ν]
1 , u[ν]

2 , c[ν])+ σ
[ν]
31 u

[ν]
1 + σ

[ν]
32 u

[ν]
2 + σ

[ν]
33 c[ν] + α2∇ ·

(
∇c[ν] · (−∇v3)

[ν]

|∇c[ν]|3β
∇c[ν]

)
,

(46)
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and

Lm

[
z[ν]

m

]
z

[ν+1]
l̂

= ∇ ·

⎛⎜⎜⎜⎜⎜⎝
Dm

(
z
[ν]
m

)︷ ︸︸ ︷
1∣∣∇z
[ν]
m

∣∣
β1

∇z
[ν+1]
l̂

⎞⎟⎟⎟⎟⎟⎠ (m = 1, 2, 3 and l̂ = m or l̂ = m + 3). (47)

Inner Iteration Step. After applying the finite difference approximations represented in Sub-
section A of section 4 with (33), the so-called pointwise collective Gauss–Seidel (PCGS) relax-
ation method is used as the inner solver to solve inexactly the associated linear system. Here, the
kth PCGS step is given by

(z[ν+1])[k+1]
i,j = (N[z[ν]]i,j )−1(G[z[ν]])[k+1/2]

i,j , (48)

where the symbol of the mesh parameter h is dropped for simplicity. We note that other choices
of iterative techniques such as the line relaxation techniques or the preconditioned conjugate
gradient method are optional. However, they are computationally more expensive than the PCGS
relaxation method.

Numerical results have shown that the PCGS relaxation method is not suitable as a potential
(MG) smoother, in particular for nonsmooth problems, since high values of the smoothing factors
appear, especially around large local variations in the coefficients Dm(z[ν]

m )i,j . To avoid this situ-
ation, we introduce the so-called relaxation parameter ω ∈ (0, 2), typically ω = 0.7, and iterate
the ω−PCGS steps at those odd points by

(z[ν+1])[k+1]
i,j = (1 − ω)(z[ν+1])[k]

i,j + ω(N[z[ν]]i,j )−1(G[z[ν]])[k+1/2]
i,j︸ ︷︷ ︸

original PCGS result

, (49)

with the following notation

N[z[ν]]i,j = 1

h2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�

[ν]
1

)
i,j

0 0 −1 0 0

0
(
�

[ν]
2

)
i,j

0 0 −1 0

0 0
(
�

[ν]
3

)
i,j

0 0 −1

h2σ
[ν]
11 h2σ

[ν]
12 h2σ

[ν]
13 α1

(
�

[ν]
1

)
i,j

0 0

h2σ
[ν]
21 h2σ

[ν]
22 h2σ

[ν]
23 0 α1(�

[ν]
2 )i,j 0

h2σ
[ν]
31 h2σ

[ν]
32 h2σ

[ν]
33 0 0 α2

(
�

[ν]
3

)
i,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(50)

and

(G[z[ν]])[k+1/2]
i,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(g1)i,j + (1/h2)
(
�

[ν]
1

)
i,j

(
u

[ν+1]
1

)[k+1/2]
i,j

(g2)i,j + (1/h2)
(
�

[ν]
2

)
i,j

(
u

[ν+1]
2

)[k+1/2]
i,j

(g3)i,j + (1/h2)
(
�

[ν]
3

)
i,j

(c[ν+1])[k+1/2]
i,j

(ĝ4)
[ν]
i,j + (α1/h

2)
(
�

[ν]
1

)
i,j

(
v

[ν+1]
1

)[k+1/2]
i,j

(ĝ5)
[ν]
i,j + (α1/h

2)
(
�

[ν]
2

)
i,j

(
v

[ν+1]
2

)[k+1/2]
i,j

(ĝ6)
[ν]
i,j + (α2/h

2)
(
�

[ν]
3

)
i,j

(
v

[ν+1]
3

)[k+1/2]
i,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (51)
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Finally, our proposed solver can be summarized as follows:

Algorithm 1. (our proposed iterative solver: PDFP)

Define:
A regularization parameter, α

A relaxation parameter, ω

K > 0 tolerance (typically K = 0.5/
√

β
∗

where β∗ = min{β1, β2})
PCGSiter the maximum number of PCGS iterations

[zh] ← Solver(zh, gh, Rh, T h, α, ω, K , PCGSiter)

• Use input parameters to compute (σlm)i,j , (Gh[zh])i,j ,
and (Nh[zh]i,j )−1 for l, m = 1, 2, 3 and 1 ≤ i, j ≤ n

• Perform PCGS steps
� for k = 1 : PCGSiter

� for i = 1 : n

� for j= 1 : n

� if Dm(zh
m)i,j ≥ K · min{Dm1(zm)i,j , Dm2(zm)i,j , Dm3(zm)i,j }

for m= 1, 2 or 3
� Set ω = 0.7

else
� Set ω = 1.0

end
� Compute (̃zh)

[k+1]
i,j using (48)

� (z)
[k+1]
i,j = (1 − ω)(z)

[k]
i,j + ω(̃zh)

[k+1]
i,j

� end
� end

� end

C. NMG Algorithm

MG techniques [45–49] have been proved to be very useful in the context of deformable image
registration for solving large systems of linear or nonlinear equations arising from high-resolution
digital images in real-life applications. The basic idea of a MG method is to smooth high-frequency
components of the error of the solution on a fine grid by performing a few steps with a smoother
(an iterative relaxation technique) such that a smooth error term can be well represented and
approximated on a coarser grid. After a residual equation has been solved on the coarse grid, a
coarse-grid correction is interpolated back to the fine grid and used to correct the fine grid approx-
imation. Finally, the smoother is performed again to remove any new high-frequency components
of the error introduced by the interpolation. This is known as a two-grid cycle, and with recur-
sive application it can be extended to a MG method. The NMG method based on Brandt’s full
approximation scheme (FAS-NMG) is widely used for solving nonlinear problems, in particular
image processing applications. For general PDEs, convergence of such a FAS-NMG method is
not assured; often a suitable smoother is hard to construct. Fortunately for our new model (19),
the above PDFP iterative method turns out to be an effective smoother.
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Here, we have to solve (22), a coupled system of six nonlinear PDEs denoted by

N h(zh) = gh, i.e.

⎧⎪⎨⎪⎩
N h

1 (zh) = gh
1

...
N h

6 (zh) = gh
6

(52)

and involving the nonlinear partial differential operator N h

l̂
(uh) given by the left-hand side of

(22), where ĝl = 0 on the finest grid, for l̂ = 1, . . . , 6.
Let zh = (zh

1 , zh
2 , zh

3 , zh
4 , zh

5 , zh
6)

� be the approximation of zh after a few smoothing iterations
in a presmoothing step on a fine-grid problem where we denote by zh the exact solution of (22).
Then, the algebraic error eh of the solution is given by eh = zh −zh. The residual equation system
for the l̂th equation is given by

N h

l̂
(zh + eh) − N h

l̂
(zh) = gh

l̂
− N h

l̂
(zh) = rh

l̂
.

To correct the approximated solution zh on the fine grid, one needs to compute the error eh.
However, the computation of eh is prohibitively expensive and cannot be computed directly on
the fine grid. As high-frequency components of the error in the presmoothing step have already
been removed by the smoother, we can transfer the following nonlinear system to the coarse grid
as follows:

N h

l̂
(zh + eh)︸ ︷︷ ︸
Nh

l̂
(zh)

= rh

l̂
+ N h

l̂
(zh)︸ ︷︷ ︸

gh
l̂

→ N H

l̂
(zH + eH )︸ ︷︷ ︸
NH

l̂
(zH )

= rH

l̂
+ N H

l̂
(zH )︸ ︷︷ ︸

gH
l̂

(53)

where H = 2h is the new cell size H × H and gH

l̂
�= 0 on the coarse grid. After the nonlinear

residual equation on the coarse grid (53) has been solved with a method of our choice, the coarse-
grid correction eH = zH − zH is then interpolated back to the fine grid eh that can now be used
for updating the approximated solution zh of the original system on the fine grid zh

new = zh + eh

(coarse-grid correction step). The last step for a FAS-NMG method is to perform the smoother
again to remove high-frequency parts of the interpolated error (post-smoothing step).

We now define our MG components as follows. The PDFP method represented in Subsection
B of section 4 is applied as the MG smoother. Standard coarsening is used in computing the
coarse-grid domain �H by doubling the grid size in each space direction, that is, h → 2h = H .
For intergrid transfer operators between �h and �H , the averaging and bilinear interpolation
techniques are used for the restriction and interpolation operators denoted respectively by IH

h

and I h
H ; see the details in Refs. [45–49]. To compute the coarse-grid operator of N h

l̂
(zh) given

by the left-hand side of (22), a so-called discretization coarse grid approximation is performed
[45, 47, 49]. The idea is to rediscretize the Euler–Lagrange system directly.

Finally, the pseudo-code implementation of our FAS-NMG method can be summarized in the
following algorithm:

Algorithm 2. (FAS-NMG Algorithm)

Denote the FAS-NMG parameters as follows:
ν1 presmoothing steps on each level
ν2 postsmoothing steps on each level
μ the number of MG cycles on each level (μ = 1 for V-cycling and μ = 2 for W-cycling)
[Here, we present the V-cycle with μ = 1]
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α a regularization parameter
ω a relaxation parameter
K > 0 tolerance
PCGSiter the maximum number of iterations using a smoother

zh ← FASMG(zh, α, −→ε )

• Select α, −→ε = (ε1, ε2, ε3, ε4) and initial guess solutions z̃h
initial on the finest grid

• Set K = 0, (zh)[K] = z̃h
initial, ε̃2 = ε2 + 1, ε̃3 = ε3 + 1, and ε̃4 = ε4 + 1

• While (K < ε1 AND ε̃2 ≥ ε2 AND ε̃3 ≥ ε3 AND ε̃4 ≥ ε4)

� (zh)[K+1] ← FASCYC((zh)[K], gh, Rh, T h, ν1, ν2, α, ω, K , PCGSiter)
� ε̃2 = mean{‖gh

l̂
− N h

l̂
((zh)[K+1])‖2/‖gh

l̂
− N h

l̂
(̃zh

initial)‖2 |̂l = 1, . . . , 6}
� ε̃3 = Dh

(Rh, T h
 (uh)[K+1])/Dh

(Rh, T h
 (uh)[0]),

[Recall that Dh
(Rh, T h

 (·)) ∼ h2

2 ‖Rh, T h
 (·)‖2

2]
� ε̃4 = |Dh

(Rh, T h
 (uh)[K+1]) − Dh

(Rh, T h
 (uh)[K])|

� K = K + 1
• end

where

[zh] ← FASCYC(zh, gh, Rh, T h, ν1, ν2, α, ω, K , PCGSiter)

• If �h = coarset grid (|�h| = 8 × 8), solve (22) using Algorithm 1
and then stop. Else continue with the following steps.

• Presmoothing:
For k = 1 to ν1, [zh] ← Solver(zh, gh, Rh, T h, α, ω, K , PCGSiter)

• Restriction to the coarse grid:
zH

l̂
← IH

h zh

l̂
(for l̂ = 1, . . . , 6), RH ← IH

h Rh, T H ← IH
h T h

• Set the initial solution for the coarse-grid problem:
z̃H

l̂
← zH

l̂• Compute the new right-hand side for the coarse-grid problem:
gH

l̂
← IH

h (gh

l̂
− N h

l̂
(zh)) + N H

l̂
(zH ) (for l̂ = 1, . . . , 6)

• Implement the FAS-NMG method on the coarse-grid problem:
For k = 1 to μ, [zH ] ← FASCYC(zH , gH , RH , T H , ν1, ν2, α, ω, K , PCGSiter)

• Add the coarse-grid corrections:
zh

l̂
← zh

l̂
+ I h

H (zH

l̂
− z̃H

l̂
), (for l̂ = 1, . . . , 6)

• Postsmoothing:
For k = 1 to ν2, [zh] ← Solver(zh, gh, Rh, T h, α, ω, K , PCGSiter)

For practical applications our FAS-NMG approach is stopped if the maximum number of V-
or W-cycles ε1 is reached (usually ε1 = 20), the mean of the relative residuals obtained from the
Euler–Lagrange equations (22) is smaller than a small number ε2 > 0 (typically ε2 = 10−4), the

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1986 CHUMCHOB AND CHEN

relative reduction of the dissimilarity is smaller than some ε3 > 0 (we usually assign ε3 = 0.10
meaning that the relative reduction of the dissimilarity would decrease about 90%), or the change
in two consecutive steps of the data/fitting term D is smaller than a small number ε4 > 0 (typically
ε4 = 10−4).

D. Local Fourier Analysis For The PDFP Method

As mentioned, a FAS-NMG method may not converge for nonlinear PDEs. In fact, we have tried
many other approaches for solving (20), to which no effective unilevel iterative methods (as pos-
sible smoothers) were found. Only our proposed PDFP method for the reformulated system (22)
was found effective. Later we shall analyze the PDFP smoother to find a theoretical reason for its
effectiveness using a local Fourier analysis (LFA).

The LFA is a powerful tool for analyzing the smoothing properties of iterative algorithms
used in MG methods. Although LFA was originally developed for discrete linear operators with
constant coefficients on infinite grids, it can also be applied to more general nonlinear equa-
tions with varying coefficients such as the discrete versions of (22). To this end, first an infinite
grid is assumed to eliminate the effect of boundary conditions and second it is assumed that
the discrete nonlinear operator can be linearized (by freezing coefficients) and replaced locally
by a new operator with constant coefficients [47]. This approach has proved to be very useful
in the understanding of MG methods when solving nonlinear problems; see for instance Refs.
[20–22, 24, 29, 30, 32, 50–52] for interesting examples and discussions.

For linear problems, iterative methods such as damped Jacobi or Gauss–Seidel methods are
usually enough to rapidly reduce high frequencies of the underlying error. However, for nonlinear
problems, nonstandard smoothers are often required and their efficiency in smoothing is the deci-
sive factor in determining whether a given MG is convergent or not. For nonlinear and anisotropic
problems such as (22), developing such an effective smoother is by no means a trivial task. A
quantitative measure of the smoothing efficiency for a given algorithm is the smoothing factor,
which is defined as the worst asymptotic error reduction, by performing one smoother step, of
all high-frequency error components [47, 49], denoted by μ and numerically computed for test
problems.

Later we shall use the LFA to analyze the smoothing properties of the PDFP iterations applied
to the linearized system Nh[zh]zh = Gh[zh] obtained by freezing coefficients in (33) at some
outer step. Here, zh and zh denote the exact solution and the current approximation and N[zh] and
G[zh] the resulting discrete operators from the linearization at zh.

Let ϕh(θ , x) = exp(iθx/h) · Î be grid functions, where Î = (1, 1, 1, 1, 1, 1)�, θ = (θ1, θ2)
� ∈

� = (−π , π ]2, x ∈ �∞
h , and i = √−1. Similarly, our LFA is performed over the infinite grid

�∞
h = {x ∈ �|x = (x1i

, x2j
)� = ((2i − 1)h/2, (2j − 1)h/2)�, i, j ∈ Z

2}. (54)

and applied to each grid point ξ = (i, j) separately. Here, we denote by

μ̄loc = max
ξ∈�h

μloc

the smoothing factor defined as the worst possible value of the local smoothing factor μloc = μ(ξ)

over �h and Nh(ξ)zh(ξ) = Gh(ξ) the local discrete system centered and defined only within a
small neighborhood of ξ and uh(ξ) = [uh

1(ξ), uh
2(ξ)].

Let us consider first the case of the PCGS (ω = 1) approach. The splitting

Nh(ξ) = N[+]
h (ξ) + N[0]

h (ξ) + N[−]
h (ξ)
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leads the local inner iterations to

N[+]
h (ξ)zh

new(ξ) + N[0]
h (ξ)zh

new(ξ) + N[−]
h (ξ)zh

old(ξ) = Gh(ξ) (55)

where zh
old(ξ) and zh

new(ξ) are the approximations to zh(ξ) before and after the inner smoothing
step, respectively. Here,

N
[+]
h (ξ) =

⎡⎢⎢⎢⎢⎢⎢⎣

−Lh[+]
1 (ξ) 0 0 0 0 0
0 −Lh[+]

2 (ξ) 0 0 0 0
0 0 −Lh[+]

3 (ξ) 0 0 0
0 0 0 −α1Lh[+]

1 (ξ) 0 0
0 0 0 0 −α1Lh[+]

2 (ξ) 0
0 0 0 0 0 −α2Lh[+]

3 (ξ)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(56)

N[0]
h (ξ) =

⎡⎢⎢⎢⎢⎢⎢⎣

−Lh[0]
1 (ξ) 0 0 −1 0 0
0 −Lh[0]

2 (ξ) 0 0 −1 0
0 0 −Lh[0]

3 (ξ) 0 0 −1
σ11(ξ) σ12(ξ) σ13(ξ) −α1Lh[0]

1 (ξ) 0 0
σ21(ξ) σ22(ξ) σ23(ξ) 0 −α1Lh[0]

2 (ξ) 0
σ31(ξ) σ32(ξ) σ33(ξ) 0 0 −α2Lh[0]

3 (ξ)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(57)

N[−]
h (ξ) =

⎡⎢⎢⎢⎢⎢⎢⎣

−Lh[−]
1 (ξ) 0 0 0 0 0
0 −Lh[−]

2 (ξ) 0 0 0 0
0 0 −Lh[−]

3 (ξ) 0 0 0
0 0 0 −α1Lh[−]

1 (ξ) 0 0
0 0 0 0 −α1Lh[−]

2 (ξ) 0
0 0 0 0 0 −α2Lh[−]

3 (ξ)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(58)

− Lh[+]
m (ξ) = 1

h2

⎡⎣ 0 0 0
−Dm2(zm(ξ)) 0 0

0 −Dm1(zm(ξ)) 0

⎤⎦ , (59)

− Lh[0]
m (ξ) = 1

h2

⎡⎣0 0 0
0 �m(ξ) 0
0 0 0

⎤⎦ , (60)

and

−Lh[−]
m (ξ) = 1

h2

⎡⎣0 −Dm3(zl(ξ)) 0
0 0 −Dm3(zl(ξ))

0 0 0

⎤⎦ , (61)

for m = 1, 2, 3. Subtracting (55) from Nh(ξ)zh(ξ) = Gh(ξ) yields the system of local error
equations

N[+]
h (ξ)eh

new(ξ) + N[0]
h (ξ)eh

new(ξ) + N[−]
h (ξ)eh

old(ξ) = 0
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or

eh
new(ξ) = Sh(ξ)eh

old(ξ)

where

eh
old(ξ) = zh(ξ) − zh

old(ξ) and eh
new(ξ) = zh(ξ) − zh

new(ξ)

are the error functions and

Sh(ξ) = −[N[0]
h (ξ) + N[+]

h (ξ)
]−1[

N[−]
h (ξ)

]
(62)

is the amplification factor. Recall that the Fourier symbols of Lh[+]
l (ξ ) and Lh[+]

l (ξ ) denoted by

−Lh[+]
m (ξ , θ) = 1

h2
(�m(ξ) − Dm1(ξ) exp(−iθ1) − Dm2(ξ) exp(−iθ2)) (63)

and

−Lh[−]
m (ξ , θ) = − 1

h2
(Dm3(ξ)(exp(iθ1) + exp(iθ2))). (64)

are used to compute (65); [47,49]. Hence, the PDFP local smoothing factor for this case is defined
by

μloc = sup{|ρ(̂Sh(ξ , θ))| : θ∈ �high} (65)

where

Ŝh(ξ , θ) = −[N̂[0]
h (ξ , θ) + N̂[+]

h (ξ , θ)
]−1[

N̂[−]
h (ξ , θ)

]
is the Fourier symbol of Sh(ξ).

For the case of the ω-PCGS approach, the PDFP local smoothing factor can be defined in a
similar way to (65),

μloc = sup{|ρ(̂Sh(ξ , θ , ω))| : θ∈ �high}, (66)

where the Fourier symbol of the amplification factor Sh(ξ , ω) is given by

Ŝh(ξ , θ , ω) = [N̂[0]
h (ξ , θ) + ωN̂[+]

h (ξ , θ)
]−1[

(1 − ω)N̂[0]
h (ξ , θ) − ωN̂[−]

h (ξ , θ)
] ∈ C

6×6. (67)

To select the optimal value of ω, we used four registration problems shown in Fig. 8 on a 32×32
grid. Our results indicated that ω = 0.7 provides good smoothing properties (μ∗

loc ≈ 0.60). Clearly
a smoothing rate of 0.6 is definitely sufficient for driving a MG algorithm [47, 53]. We also con-
ducted several numerical tests to confirm that (33) is a potential smoother for our FAS-NMG
method to solve (22); see Table I in Section B of section 5.
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TABLE I. Registration results of Algorithm 2 with the proposed solver in Algorithm 1 for processing four
sets of clinical data shown in the first and second columns of Fig. 8.

Example 1 Example 2 Example 3 Example 4
M/D/WUs M/D/WUs M/D/WUs M/D/WUs

α1 = 10−4, α1 = 2α2 α1 = α2 = 10−4 α1 = 10−4, α1 = 2α2 α1 = α2 = 10−4

h = 1/128 1/0.0322/27 1/0.0264/27 2/0.1183/53 1/0.0914/27
h = 1/256 1/0.0381/27 1/0.0301/27 2/0.1242/53 1/0.0953/27
h = 1/512 1/0.0410/27 1/0.0357/27 2/0.1299/53 2/0.1004/53
h = 1/128 5/0.0321/133 5/0.0263/133 6/0.1182/160 5/0.0913/133
h = 1/256 5/0.0381/133 5/0.0300/133 6/0.1241/160 5/0.0952/133
h = 1/512 5/0.0409/133 5/0.0356/133 6/0.1298/160 6/0.1003/133
The letters “M,” “D,” and “WUs” mean the number of MG steps, the relative reduction of dissimilarity (̃ε3), and the work
units, respectively. The last three rows are results for dropping the mean of relative residuals to 10−4.

V. NUMERICAL EXPERIMENTS AND RESULTS

To validate and evaluate our new variational registration model (14) and the performance of our
Algorithm 2, we first performed a series of tests to verify the model effectiveness and to compare
with previous work. Second, we tested with respect to different resolutions. In all registration
problems, the bilinear interpolation was used to compute the transformed template image T (u)

and we stared our MG algorithm with ν1 = ν2 = PCGSiter = 10, β1 = 1, β2 = 10−2, u[0] = 0,
and c[0] = 0.

A. Qualify And Comparison of Registration

In the first test, we evaluated the robustness of the proposed registration model (14) or (19) for
the cases where the required geometric and intensity transformations are very complex. Shown
in Fig. 8 are results from four clinical cases. In each case, the reference R and the template T are
from different view points and times. Shown across each row are the reference R and template
T and the registered image T(u). Even in the presence of significant intensity variations, the
registered images T(u) by our new model (19) are in good agreement with the reference and
show good qualitative registration results.

In the second test, we used the problem in Fig. 8 (d,e) to compare two regularizers K(c) (this
work) and RL2(c) (as used in Ref. [13]), with results shown in Fig. 9. Although the registered
images by two regularization techniques for c are almost identical by error comparisons, the
registration results in Fig. 9 (c,d; after zooming in) confirm that our new model is better for this
more challenging problem (where very accurate results are required for clinical image analysis);
compare the white arrow locations.

Finally, shown in Fig. 10 are more comparative results from the third test for the problem in
Fig. 8(g,h). They indicate that our PDE-based registration model (19) is more robust than that of
the previous work (8) of Ref. [13]. Here, D = DSSD

II , (μ, λ, α1, α2) = (1.00, 1.00, 0.10, 0.05) and
the Dirichlet boundary condition ul = 0 (l = 1, 2) were used throughout this test.

B. MG Performance

As is well known, the main property of MG algorithms is that their convergence does not depend
on an increasing sequence of resolutions (or a decreasing mesh parameter h). Therefore, in the
next round of tests, we designed our experiments to investigate this property.
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FIG. 9. Numerical results for the second problem shown in Fig. 8(d, e) by two regularization techniques
for c. Left to right: results by K(c) and RL2 (c). Top to bottom: registered images and composite views in the
middle right regions between R and T(u). As shown in (c), the intensity variations of T(u) in the bottom
right region (at the white arrow location) by K(c) is well matched, compared with those of (d) by RL2 (c).

To do this, we resolve four registration problems of medical data as shown in the first and sec-
ond columns in Fig. 8 and started the registration processes with h = 1/128, 1/256, 1/512. Here,
we define a work unit used in measuring computational complexity as the work of performing a
smoother or relaxation step on the finest grid defined as follows:

1 WU = (cost of discretizating and constructing the linearized system per grid point

+ cost of PCGS updating per grid point)N (if N is the number of grid points).

Thus, a work unit in performing one step of our smoother can be estimated by

1 WU = [177 + 284(PCGSiter)]N

where each grid point in the linearized system (6 × 6) given in (48) is solved by the Gauss-
ian elimination method, which has the cost of (6)3

3 + (6)2

2 − 5(6)

6 additions and (6)3

3 + (6)2 − (6)

3
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FIG. 10. Numerical results for the third problem shown in Fig. 8(g, h) by two PDE-based registration
models. Left to right: results by our model (22) and model (8) of Ref. [13]. Top to bottom: registered images
and composite views between R and T(u). The top right and bottom left regions of T(u) in (c) by our
model are well-registered with the adjacent regions of R, compared with those of (d) by Ref. [13].

multiplications. Therefore, the total cost of one V-cycle used L coarse grids can be estimated as
follows:

V-cycle cost = (ν1 + ν2)[177 + 284(PCGSiter)]N
L∑

k=0

(1/4)k <
4

3
(ν1 + ν2) WUs.

Here, we have ignored the cost of interpolation and restriction procedures as well as the cost of
residual correction procedure because they are relatively small compared with smoothing pro-
cedures. Recall that ν1, ν2, and PCGSiter denote respectively the number of presmoothing and
postsmoothing and PCGS steps.

The numerical results are reported in Table I where one can see three quantities: the numbers
of MG cycles “M”; the relative reduction of dissimilarity D = ε̃3; and the work units “WUs”.

As expected from a MG technique, Table I shows that our MG algorithm is h-independent,
that is, scalable. Moreover, it took only one or two MG steps to solve the registration problems
and reduce the dissimilarities between the reference and registered images by more than 85% for
all problems we tested.
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VI. CONCLUSIONS

In a multimodality problem where two images to be registered have different intensity ranges, the
standard model of the SSD is not sufficient as it can fail to register such images. In this article,
we have proposed an improved model of the SSD using homogenization-based correction ideas
and incorporating curvature regularizers for both the displacement field and intensity correction.
Although the results of our model show a major improvement over related models, the underlying
Euler–Lagrange system consisting of more complex nonlinear PDEs is less amenable to efficient
solution than models without intensity corrections. To this end, a MG algorithm using a new
PDFP smoother is developed to speed up the solution. Numerical tests confirm that both of our
registration model and MG algorithm are reliable in reducing registration errors and providing
visually pleasing results for practical applications.
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