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Abstract—In this paper, I present some new and joint work
on local and selective segmentation models and algorithms
which have potential applications in medical imaging. First I
review a familiar segmentation model of global energy mini-
mization framework in two dimensions (three dimensions may
be presented similarly). Then I discuss selective segmentation
models and several refined models where pre-defined geometric
constraints guide local segmentation. Such 2D models can be
generalized to 3D and some brief experiments are given to
demonstrate the ideas of the paper. Finally I discuss the use
of image registration methods to obtain geometric constraints or
equivalent initial contours towards an automatic segmentation
framework.

As mentioned, the work discussed here represents a small
portion of results obtained in the Liverpool’s Centre for Math-
ematical Imaging Techniques (CMIT) and is jointly carried
out with collaborators; for this paper, these include Noor
Badshah (Peshawar, Pakistan), Jian-ping Zhang and Bo Yu
(Dalian, China), Lavdie Rada (Liverpool), Noppadol Chumchob
(Silpakorn, Thailand), Carlos Brito (Yucatan, Mexico), and Derek
A. Gould (Royal Liverpool University Hospital, Liverpool).

I. INTRODUCTION

Image segmentation is an important task in a number
of real life image processing applications. Although edge
based models have been in wide use for much longer time,
region based models offer more robust methods for many
challenging problems. Following the seminal works of Osher-
Sethian (1988) [25], Mumford-Shah (1989) [24] and Chan-
Vese (2001) [14], more and more image segmentation models
are proposed, refined and tested. However almost all these
models aim to identify all edges and features in an image and
such global models may not be needed in some applications
where extraction of an particular feature is intended.

Nevertheless, variational segmentation methods using global
energy optimization, due to their robustness and reliability,
are increasingly used to detect objects in recent years. These
techniques might be subdivided in three major categories: (i)
the edge detector based contour methods [3], [2], [10], [11],
[12], [18], [20], (ii) the region based methods [4], [5], [6],
[26], [14], [21], [24], [28], [31] and (iii) combined methods
using the above two approaches.

For a comprehensive survey of the literature, we refer the
reader to the more recent books by [3], [13], [27], [22], [30]
and the references therein.
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II. GLOBAL ENERGY MINIMIZATION MODELS

As a special case of the Mumford and Shah segmentation
technique [24], the Chan-Vese variational model of active
contours without edges [14] has gained much popularity in the
community due to its simplicity. It has been used successfully
for segmentation of all global features of an image. Since this
model does not use directly the gradient of the image as a
stopping process, it is extremely robust to presence of noise
as a region based method.

Without loss of generality, we only briefly review this
model. Assume that a given image z may be approximated by
two regions of piecewise constant intensities, of distinct values
Zi = Zin and 2z, = Zoutside- Thus the object to be detected is
automatically represented by the region with intensities closest
to the value z;. Let I' denote the boundary that separates the
domain 2 into two regions {2; (the feature) and 25 = Q\Qil
(the background). Then z = z; inside the object (inside I")
and z = z, outside the object (outside I'). Precisely, Chan and
Vese proposed the variational problem [14]

min_ J(T', 1, ¢2) (1

c1,c2,l

for the segmentation of all image features, where

J(T,cq,c2) = plength(T') + Aq / |z(z,y) — ¢1|2dQ

inside(T")

B [ el - el @)
outside(T")

Here z(x,y) is the original image, ¢; and co are the average
values of z inside and outside of the variable contour I', also
u, A1 and Ao are non-negative fixed parameters that should
be related to the features’ diameter. As both the integral and
the limits of integration in equation (2) are not known, to
overcome this problem, a level set function ¢ (by Osher
and Sethian [25]) is introduced. The unknown curve I' can
be represented by the zero level set of Lipschitz function
¢ : 2 — R such that

inside(T") = Q1 = {(z,y) € Q | ¢(x,y) > 0},
outside(I') = Qo = {(z,y) € Q | ¢(z,y) < 0},
I'= oM :{(Jﬁ,y) €Q | d(z,y) :0}



Define the Heaviside and the Dirac delta function as

H(x):{llfxzo and

0 ifz<O

and, given ¢ as above, equation (2) is rewritten in the following
way (with Fy = |2(z,y) — c1]?)

J(bere) = / VH(6)[d2+ A /Q FyH (6, 4))d)

+A2/Q 12(x,y) — c2]?(1 — H(¢(z,y)))dQ. (3)

Once the level set function ¢ is obtained, the segmented image
is given by

u=c1H(¢)+c2(1 — H(¢)).

To minimize J with respect to ¢, co, keeping ¢(x,y) fixed,
we have

o by — do 2@V H (O, y))d

if [, H(¢(x,y))dQ2 > 0 (i.e the curve has a nonempty interior
in ), and

(.o — d2 2@y~ H(d(z,y)))d2
Aot = Jo(1 = H(b(z,y)d

if [(1—H(¢(z,y)))dz > 0 (i.e the the curve has a nonempty
exterior in €2). A typical segmented result may be shown in
Fig.1, where one sees that the two-phase method does its
job nicely but such a result is hardly of any use in medical
imaging.

®)

Fig. 1: The result of a typical global segmentation model

III. NEW LOCAL ENERGY MINIMIZATION MODELS

Aiming to locate a particular feature only, one desires to
have a model that does the selective segmentation job of
a region growing method such as [1] but is more robust
and reliable. Recent work by Gout and Guyader [19] and
Badshah-Chen [6] proposed two different variational models
for selective segmentation. The Gout-Guyader model [19] is
based on edge information of the object while the Badshah-
Chen model [6] combines an edge based model with region
based information. Both models are useful and can segment
a range of images, but there are cases which appear too
challenging for either model. The latter model, with the help
of region information, improved the former in robustness and
segmentation quality in case of noisy images. It should be
remarked that for global segmentation, the idea of combing an
edge based model with region based information was earlier
used in [8], [29] among other works which involve combined
models.

Below is the Badshah-Chen model [6]:
J(¢(J}7 y)a C1, 62) =

min
o(z,y),c1,c2

" / Az, 9)g(IV () ) [V H (6, 1)) [d2
+ A / |2(2,9) — 1 P H (6(, y))d2
Q

+ 2 /Q 2 9) — ea2(1 - H(g(x. )2, (6)

where d = d(z,y) is the minimal distance function from all
given geometric constraints which roughly point out where the
desired feature is located, and g is an edge detection function.
The main problem with (6) lies in the last term which helps to
reach out to all background features or push redundant features
to domain 24, potentially failing the model.

Several ways have been proposed to overcome this problem.
In [26], we propose to replace this term by using a second
global level set function in a dual level set framework (¢ =
¢Locala ¢G = ¢Global):

b, pin J(Tr,Ta,cr,e2) =

i / (e g1V 0)ds +

" / IV 2(z,9)))ds +

T
>\1Gf |2(z,y) — e1]*dQ +
inside(T')

7
G |z(z,y) — 02|2dQ + @
outside(I'¢)
A1 2(z,y) — e1]?dQ +
inside(T",)
Ao |z(z,y) — c1[2dQ +
outside(I"z, )Ninside(I' ¢ )
A3 |Z(‘Tay) _CZ‘ngv

outside(I", )Noutside(T" )

where the desirable feature is contained in €2, ;, or inside(I'y).



A second method for improving (6) is to replace the Lo
fitting of Mumford-Shah or Chan-Vese type by a coefficient
of variation fitting term as in [7]:

J(er, 0, T) = p /F deye(Valds + @

zZ—C 2
W[ EmaPug [ lecer
outside(T") 551 inside(T") 5

where the idea is to promote local solutions near the initial
contour that is set by the geometric constraints.

The third method is to replace the whole domain 2 by
a local dynamic domain for both fitting terms in (6). Then
the evolving curve will not move away to nearby features to
lead to redundant segmentation. The precise formulation is the
following [32]:

minJ(I‘,cl,CQ):/d(x,y)g(|Vz|)d8 + )
r

A1 / (Z — Cl)QdQ + )\2/ (Z — Cz)QdQ,
Qin,-y(r) Qout,'y(r)

where 2;,, ,(I') denotes a v band domain away from I', instead
the whole feature domain {2;. Assume that ¢ is positive inside
the desired region and negative outside it. Then the local fitting
energy function

b(p(x),7) = H(¢(x) —7)(1 = H(d(x) + 7))

characterizes the domain Q, = Q;;, - (I')UI'UQy¢ (I') which
is a narrow band region surrounding the local boundary I'. The
band size may be even made variable before each iteration step
to achieve a robust model.

(10)

Other approaches are also in progress. With any of these
models, an excellent segmentation result in Fig. 2 can be
achieved for the problem in Fig.1. Here one observes that the
desirable feature is isolated without involving nearby features.
In fact generalization to the three dimensions is feasible and
results such as in Fig.3 have been achieved. One often obtains
results such as from Fig.3 by building up a sequence of 2D
segmented slices. Here they can be from a 3D model directly.

IV. USE OF REGISTRATION MODELS FOR ROBUSTNESS

A careful reader can see from Figs 1-2 three red dots which
are the geometric constraints given to define d and the initial
level set functions. If one has defined such positions before
for one image, to segment a new image of a similar nature
(e.g. both of livers in medical imaging), it is natural to re-use
the previous knowledge of such constraints on the new image
through a registration process of the two images.

Suppose that two images R (the reference) and T (the
template), intended for registration, are given as the continuous
functions mapping from an image domain  C R? into
V = [a,b] C R{ and each component u; of w is the
function of the spatial position x = (71,72)" € €. The

Fig. 2: The result of local segmentation models

following variational model with a new similarity functional
and regularization terms is proposed [16]

Igigjah% (u,¢) =D (u,c) + ey R1(u) + azRa(c) (11)
with
Dlu,c) = 5 [ (06 T+ () = R(x))*dx,
2
=3 [ oot
Rale) = Kle) / D(s(c)dx,
Q

where ®(x) = 2. It should be remarked that much work

on using a mean curvature stems from our success of [9]
in solving the curvature equation (or fourth order and highly
nonlinear partial differential equations) efficiently.

Although there exist many models of variational framework
[23], for mono-modality images, we recommend the model of
[17]; for multi-modality images, we believe the new model by
[16] is much better in terms of robustness than widely used
mutual information based models.



Finally for both segmentation and registration models, one
may follow the simple algorithms from [15] to develop fast
multigrid algorithms [17], [16], [4], [5].
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