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On High-Order Denoising Models and Fast
Algorithms for Vector-Valued Images

Carlos Brito-Loeza and Ke Chen

Abstract—Variational techniques for gray-scale image de-
noising have been deeply investigated for many years; however,
little research has been done for the vector-valued denoising
case and the very few existent works are all based on total-vari-
ation regularization. It is known that total-variation models for
denoising gray-scaled images suffer from staircasing effect and
there is no reason to suggest this effect is not transported into the
vector-valued models. High-order models, on the contrary, do not
present staircasing. In this paper, we introduce three high-order
and curvature-based denoising models for vector-valued images.
Their properties are analyzed and a fast multigrid algorithm for
the numerical solution is provided. AMS subject classifications:
68U10, 65F10, 65K10.

Index Terms—Fourth-order partial differential equations
(PDEs), image denoising, multilevel methods, regularization,
variational models.

I. INTRODUCTION

D ENOISING of gray-scale images has been extensively
studied and investigated within the last decades. With the

appearance of the total variation (TV) model of Rudin, Osher,
and Fatemi [23], it became evident that variational approaches
to the image denoising problem can yield often excellent re-
sults. However, for images with smooth features and nonpiece-
wise constant intensities, the TV model may produce images
appearing blocky with the so called staircase effect. There exist
several ways of improving the model by a different regularizer
(see [20], [27] and [10] and references therein) and one effec-
tive approach is to use high-order models of partial differential
equations (PDEs) [34], [7], [19], [18], [10], [35]. This paper will
address such types of high-order models for vector valued im-
ages (including color images with three channels) and the asso-
ciated fast algorithms.

In contrast to the extensive studies of the TV model to gray-
scale images, extension models to color or vector-valued im-
ages have been less thoroughly investigated although several
interesting works about this subject do exist [25], [2], [4], [28].
The most natural method of extension is the channel by channel
(TV1-CbC) approach which implies using the TV model in-
dependently for each channel. It is not hard to find examples
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(where channels are quite different) when such a simple ex-
tension is inadequate. Thus taking into consideration the dif-
ferences in channels, coupled models that we shall review are
found to deliver better results than the simple TV1-CbC ap-
proach in a number of situations.

By combining the above mentioned two ideas: high-order
regularization plus channel coupling, it would be ideal to have
a high-order color denoising model with coupling among chan-
nels. Surprisingly and up to our knowledge, there is however
no published work of such a kind of vector-valued high-order
model. Of course, we expect such a model to deliver better re-
sults than its counterpart (the high-order CbC approach).

In this paper, we take the high-order and curvature-based de-
noising model of Zhu-Chan [35] for gray-scale images as our
starting point and introduce two different ways to generalize
it to vector-valued images obtaining respectively what we call
global and local coupling among the channels. We will analyze
the properties of these two new models and will show some ex-
amples suggesting that our global high-order model is not only
better than its correspondent CbC high-order competitor but also
better than TV based color models. Finally, we will show how
to implement a fast multigrid algorithm for this recommended
model.

This paper is organized as follows. First in Section II, we
state the variational denoising problem for vector-valued im-
ages, presenting four TV-based models for vector-valued image
denoising. Then in Section III, our two new high-order models
(CU2-LCM and CU3-GCM) are introduced. In Section IV, the
numerical discretization of these high-order models is presented
followed by the numerical algorithms with emphasis on a multi-
grid algorithm for the recommended CU3-GCM model. Finally,
numerical experiments Section V and conclusions Section VI
will be presented.

II. PROBLEM FORMULATION AND CURRENT MODELS

Define a vector-valued image as a function
i.e., with

. A noisy image is obtained by adding up Gaussian
noise to , i.e., . The variational approach to remove

from is then

(1)

where
and is a regularization term selecting the

space of functions were will belong.
In Fig. 1, we show an example of a synthetic color image and

the way each one of its channels looks in an one-dimensional
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Fig. 1. Model problem, an image with a weak piecewise constant red channel, a
piecewise smooth green channel, and a strong piecewise constant blue channel.

space. We will use this image to test the models we review here.
We now proceed to present in historical order three different
ways to generalize the total variation model of Rudin, Osher, and
Fatemi [23] from gray-scale to vector-valued images. This will
prove to be helpful at the moment of introducing our high-order
color models.

In the widely used RGB image color model there are three
channels (red, green, and blue) and therefore and .
Then we note that be an image with three
channels .

A. The Total Variation Model With Channel-by-Channel
Coupling (TV1-CbC)

As commented, the simplest regularizer with channel-by-
channel coupling for is the following:

(2)

with which the resulting Euler–Lagrange equation of (1) is given
by

(3)

where and Neu-
mann boundary conditions are applied to each channel.

Unless all are similar to each other, the TV1-CbC method
is not robust. For instance, in Fig. 2 the regularization parameter

was selected to obtain the best restoration for the two strong
channels and this caused the small step in the weak channel to
be almost completely wiped out. Ideally one would like to use
the regularizer of the type

(4)

with suitable adjusting to the channel variations. In fact the
models reviewed next attempt to do this in an automatic way.

Fig. 2. Result from the TV1-CbC model.

B. Total Variation Model of Bresson and Chan (TV2-BRC)

The Bresson and Chan model [4] formally generalizes the TV
semi-norm to the case of vector-valued images before using it
for in (1). For a given vector-valued function

the vectorial total variation norm is denoted the finite
positive measure

(5)

where
is the divergence operator such that

, the
product is the Euclidean scalar product defined as

, which implies that
and the Euclidean norm is

naturally defined by .
Depending on the set of functions of the dual variable ,

the vectorial total variation semi-norm (VTV) can be defined
in different ways; Bresson and Chan [4] considered two cases:

and
where

and . Further
setting [4] leads to the vectorial TV semi-norm

(6)

and using it as in (1) yields the total variation TV1-CbC
color denoising equation of (3). Likewise selecting [4]
leads to the vectorial TV semi-norm

(7)

and the Euler–Lagrange equations defined by

(8)

where .
Observe that, in the system of PDEs (8), the coupling

among the channels is through the diffusion coefficient
. Since takes different values across the
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Fig. 3. Result from the TV2-BRC model.

Fig. 4. Results from the TV2-BRC model applied to a simple 1-D color image
with a kink in two of its channels. Dirichlet boundary conditions were used
here. (a) Clean color image. (b) TV2-BRC denoising result. (c) 1-D plot of each
channel. This problem was actually suggested in [2].

image, the level of coupling varies from one region to another
locally adjusting the level of regularization. The result from
applying the TV2-BRC model to our model problem of Fig. 1
is presented in Fig. 3. As can be seen for this example, the
coupling between channels in the TV2-BRC model is so strong
that it tends to align all channels causing color smearing in the
image. This is further illustrated in Fig. 4 where a very large
in (8) was selected to make the phenomenon more evident.

C. Vectorial TV Model of Blomgren and Chan (TV3-BLC)

The Blomgren and Chan [2] model is based on an alterna-
tive generalization of the TV semi-norm (related to but different
from (7)). Define for channel .
The following total variation semi-norm was proposed

(9)

which, when used as in (1), leads to the Euler–Lagrange
equations (to be named as TV3-BLC) for

(10)

and on the boundary , where is the normal
unit vector on the boundary of the th channel.

Fig. 5. Results from the TV3-BLC model for two different values of�, (a) � �

����, and (b) � � ���.

As seen from (10), the global quantity
plays the role of in (4) so the

coupling in this model between channels is global.
This adjusting has the effect of preventing the wiping out of

weak channels—a problem that the total variation TV1-CbC
approach does have. This phenomenon is illustrated with the
help of the Fig. 5 where we can compare with the Fig. 2 for
TV1-CbC.

D. Vectorial Anisotropic Diffusion Model of Sapiro and
Ringach (TV4-SaR)

The Sapiro and Ringach approach [25] constructs a new edge
detector for vector valued images for a Perona–Malik model.
Let and be two points in the
3-D image space; then the difference of image values at these
two points is defined as . When the Eu-
clidean distance between two points tends to zero, the differ-
ence becomes the arc element and
its squared norm also called the first fundamental form [12], [21]
is defined by , i.e.,

(11)

where . If denotes
a unit direction, then measures the rate of change in the
direction . To find the extrema of such changes, we are led to
consider the directions of the eigenvectors , and
the corresponding eigenvalues of the matrix , given by

and

Here is the direction of maximal change and
the maximal rate of change; similarly, points to
the minimal change and the minimal rate.
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It is proposed [25] to detect image discontinuities by defining
a function that measures the dissimilarity be-
tween and . In [25], it was proposed to use any decreasing
function and the evolution equation

(12)

to denoise color images. When for the gray-scale images,
so we have

(13)

which means that the above model (left) based on eigenvalues
can be reduced to the TV model for single-valued images.

However, as remarked by Blomgren and Chan, for
, the above choice of regularization using

leads to extremely inconvenient min-
imization and the equally-justifiable alternative is to use

which happens to be precisely the TV1-CbC.
In summary, and as remarked in [2] and [4], the TV3-BLC

model seems to be superior in quality of restoration to both the
TV1-CbC approach and the TV2-BRC model although the latter
is equipped with a faster numerical solver [4].

III. NEW AND HIGH-ORDER VECTOR-VALUED MODELS

We are ready to state our proposed models. As in the vec-
torial TV case we need to have a starting point and from there
start moving on. In other words, we have to select a working
high-order model for gray-scale images and upgrade it to vector-
valued images. The idea is also to have coupling among chan-
nels as in the vectorial TV models since this has proven to im-
prove the quality of reconstruction.

To this end we decided to use the curvature-based model [35]
as our starting point. Our motivations are three fold: 1) this
model has nice properties like no staircase effect and contrast
and corners preservation [35], 2) a fast multigrid solver can be
implemented for this model, and 3) curvature is an intrinsic geo-
metric feature so generalization is easier.

First we review very briefly what it would be the CU1-CbC
approach of this curvature-based model for color image de-
noising.

A. Channel by Channel Curvature-Based Model—(CU1-CbC)

Denote as usual the true vector-valued
image, the noisy image, and

the curvature vector with
the curvature of the th channel of . Then solve

(14)

which may be done by solving the system of Euler–Lagrange
equations in for :

(15)

Fig. 6. Result from the curvature-based CU1-CbC approach. The small step in
the weak red channel has been almost wiped out.

with boundary conditions for each
channel. The objective of is to efficiently measuring the
random high frequency oscillations representing noise in .
Many different high-order options including or

have been studied; some of those can be found in [34], [18],
[19], and [7] and references therein. In particular, we use here
and throughout the rest of this work due to its nice
properties already summarized above and detailed in [35]. With
such a selection .

Here as in the TV1-CbC approach for the vectorial TV model,
is the same for all channels so we expect to have difficulties

when denoising a color image having weak channels. This is,
by selecting the best for one channel we may over-smooth the
weak channel. We illustrate this effect in the Fig. 6.

B. Local Curvature-Based Color Model—(CU2-LCM)

Here we introduce our first high-order denoising model for
vector-valued images. We construct this model based on ideas
from the Bresson and Chan model. This model is to solve

(16)

which leads to solve the Euler–Lagrange equations

(17)

in for , with boundary conditions
and defined as

(18)

As can be appreciated, the amount of diffusion in this model,
is mainly affected by , a vector that locally varies across
the image. Due to this, we name this model the local curvature-
based model (CU2-LCM).

By analyzing the above equation, we observe that here we
do not have the same problem as in the TV2-BRC model (its
equivalent local TV model). In the TV2-BRC model the coeffi-
cient never stops diffusing across edges unless all are
aligned. As a consequence, color is smeared. In the CU2-LCM
model the two coefficients and only depend
on so diffusion is properly stopped in every channel.
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Fig. 7. Result from the CU2-LCM model. The small step in the weak red
channel is better recovered but a kink appeared in the blue channel.

Unfortunately, our experiments revealed that this model has a
tendency to develop kinks (see the blue channel in Fig. 7) in the
image not only decimating the quality of restoration but making
more difficult to construct stable numerical solvers as well.

C. Global Curvature-Based Color Model—(CU3-GCM)

Our second new high-order model is inspired by the Blom-
gren and Chan TV-based model. Here we propose to solve

(19)

which leads to the Euler–Lagrange equations in

(20)

with boundary conditions for
where and are defined by

(21)

Note that in the total variation TV3-BLC model, the amount
of regularization or diffusion is determined by the quantity

while here with the curvature
model CU3-GCM we have which
acts as a regularization weight for channel . For this reason,
we call this model the global curvature-based model.

Thus, we expect this model to reduce regularization for weak
channels, i.e., avoiding smearing them. This is a very similar
idea to the one used in the TV3-BLC model; however, our ex-
periments show that applied together with the curvature-based
model, it delivers much better results. A clear example is given
in Fig. 8 where the reconstruction of the small step in the weak
left channel is very good and the quality in the others channels
is preserved.

Fig. 8. Result from the CU3-GCM model. All channels, including the weak
one, are very well reconstructed.

An extra feature of this model is that a fast nonlinear multigrid
algorithm can be constructed as we will show in Section IV-A.

IV. NUMERICAL SOLUTION OF THE HIGH-ORDER MODELS

Here, we shall first discuss the finite differences discretization
of the curvature models CU1-CbC, CU2-LCM, and CU3-GCM,
and then present numerical solution techniques. As the above
tests have demonstrated, CU3-GCM is the best model of the
three so we shall mainly address the solution of this model al-
though the discussion applies to all three methods.

Assume the continuous domain and let
represent a vector of finite mesh sizes. We also define

the infinite grid as
and for simplicity assume and

. Then the discrete grid is defined as
and a discrete function on the grid as

. These discrete functions take on
scaled values in the interval . We also denote the derivative
with respect to any variable as .

Thus, for any vector its divergence is approx-
imated using central differences, i.e.,

.
We now show how to approximate all the other involved

quantities at the half-points. It shall be enough to show it only
for and since the others can be done similarly.

Curvature by

Partial derivatives in by the central differencing of two adja-
cent whole pixels
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where is a small regularization parameter. Partial deriva-
tives in by the min-mod [23] of ’s at two adjacent whole
points

with

and

with

For all models we use Neumann’s boundary condition on
since this class automatically satisfies the particular

boundary conditions of each model. This is done as follows:
.

Additionally, for the CU2-LCM model, is computed by

(22)

Also for the CU3-GCM model, and are computed
in the following way:

(23)

A. Stable Fixed Point Method

Here we present a general method to implement a fixed point
algorithm for any of the high-order models presented so far.
Later on this section, we will show how to modify slightly this
method to obtain an optimal performance for the CU3-GCM
model. Then we will introduce a nonlinear multigrid method
for it.

The Euler–Lagrange equations of all of the high-order models
can be written in the general form

(24)

where for and, respectively, for the CU1-CbC
model, the CU2-LCM model, and the CU3-GCM model

To obtain a fast solution of the above PDE a fixed point method
similar to the ones described in [33], [32], [8], and [26] for the
TV model would be desirable. Straightforward implementation
of such a FP method does not work for PDEs like (24) so we
use a method where a stabilizing term is included and
the following fast fixed point scheme is used:

(25)

For the CU1-CbC and CU3-GCM models
is selected. For the CU2-LCM model however

provides a
better performance of the algorithm.

To solve (25), we linearize it by lagging the nonlinear terms
in and in its left-hand side, i.e.,

evaluating them at th step. Hence, we are led to solve a linear
system of equations of the form

(26)

where for example for the CU1-CbC
and CU3-GCM models

and so on,

(27)

and is defined as the right-hand side of (25). This linear system
can be arranged in matrix form
with a sparse, symmetric and positive definite matrix. To
solve this system we use a simple lexicographic Gauss–Seidel
method. The procedure is the following.

Algorithm 1 CFPGS

Require: On a grid with mesh size , choose an initial guess

for (25)

1: for to do
2: for to do
3: Apply Gauss-Seidel iterations to the linear

system
4: end for
5: end for
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Fig. 9. Evolution of the values of ��� � in the CU3-GCM and TV3-BLC
models when solving the problem of Fig. 1. In the CU3-GCM model and within
the first 40 iterations the values continuously and strongly change until reaching
a stable state.

From the evidence shown in Section III, there is clear indica-
tion that the CU3-GCM method is the best among the high-order
models. Due to this, we now concentrate on optimizing the Al-
gorithm 1 for this model.

A number of experiments revealed that the correct selection
of the value of the stabilizing constant is very important for the
good performance of the numerical algorithm (25) and the value
of among others strongly depends on the value of the regular-
ization parameter . In the CU3-GCM model the term is
a constant that is varying as the iterative algorithm evolves. That
is, we can view the CU3-GCM model as the CU1-CbC model
with varying regularization parameter .

We show in Fig. 9 an example of the evolution of
for the CU3-GCM and TV3-BLC models where for the latter
variations are much more moderate. Clearly, in our high-order
CU3-GCM model will affect the performance of the al-
gorithm if a fixed is selected. This was confirmed in our initial
experiments. In view of this, we use and solve
instead the equation

(28)

This method automatically increases the value of when
is small and decreases it when is large. We now

proceed to introduce a multigrid algorithm for the CU3-GCM
model.

B. Nonlinear Multigrid Algorithm

We can go one step further and use the above fixed-point
method (28) as the foundation for a nonlinear FAS MG algo-
rithm [31], [9]. This algorithm has been successfully developed
and tested in a number of imaging problems, for instance: [15]
on image registration, [1], [22] on image segmentation, [26],
[27], [6], [13], [11] on image denoising-deblurring, and [5] on
image inpainting.

Multigrid schemes considerably speed up numerical pro-
cesses achieving fast results by constructing a hierarchy of
discretizations where at each level the error equation is partially
solved and the new approximation transported to next coarser
level. This process is recursively applied until reaching the
coarsest level where and exact but computationally cheap
solution is obtained. Then the process move backwards on the

hierarchical structure transporting the more accurate error and
updating the approximate solution at each level until reaching
the finest level again. Usually standard coarsening is used
to construct the hierarchical structure halving the number of
variables on each dimension at each level.

To apply this scheme to our problem we define the nonlinear
discrete equations

(29)

where
, and define as the vector of

nonlinear operators on the grid of mesh size such that
. Define the residual equations as

and the correspondent vector .
Then the nonlinear MG scheme for the vector-valued problem
is stated in Algorithms 2 and 3.

Algorithm 2 Nonlinear Multigrid Method

Require: Select an initial guess on the finest grid

1:
2: while do
3:
4:
5:
6: end while

Algorithm 3 FAS Cycle

1: if coarsest grid then
2: solve accurately (i.e., iterations by

CFPGS) and return.
3: else
4: continue with step 6.
5: end if
6: Pre-smoothing: Do steps of

7: Restrict to the coarse grid,
8: Set the initial solution for the next level,
9: Compute the new right hand side

10: Implement

11: Add the residual correction,
12: Post-smoothing: Do steps of

As a smoother we use our fixed-point CFPGS algorithm;
however, to achieve the best possible performance of the MG
algorithm, we found that applying over-relaxation into the GS
sweeps (SOR method [24]) considerably speeds convergence,
i.e., we update the unknown using
with . We also apply a small number of extra local
relaxation steps around the difficult points (edges of the image)
as suggested in [3] which is where the most in-homogeneous
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Fig. 10. (a) Clean image. (b) Denoised image using the TV3-BLC model with
� � ����. (c) Denoised image using the TV3-BLC model with � � ���.
(d) Denoised image using the CU3-GCM model.

parts are located. This guarantees the residual to be smooth
enough before being transported to the next coarser grid and
is computationally very cheap since these regions represent
normally less than 1/7 of the whole image domain so the
overall cost of the MG algorithm is incremented in a very small
percentage.

V. FURTHER NUMERICAL EXPERIMENTS

We now proceed to show some results obtained using the
CU3-GCM model and the multigrid algorithm outlined above,
using three realistic color images.

Of the three total variation models, the general belief [2], [4]
is that the TV3-BLC model delivers the best result. Of the three
high-order models (CU1-CbC, CU2-LCM, and CU3-GCM) we
have presented here, our experiments suggest that CU3-GCM
is better than the other two. Due to these facts, we only com-
pare the quality of restoration yielded by the TV3-BLC and
CU3-GCM models.

A. Quality of Restoration

The one-dimensional plots shown in Figs. 5 and 8 already
suggest that our color global curvature-based model outper-
forms the TV3-BLC model. Maybe a more accurate comparison
can be carried out by computing the peak-signal-to-noise-ratio
(PSNR) values between the true image and the denoised
image for each channel. The PSNR measure for one channel
of size is defined as

(30)

where
and usually the larger the PSNR is, the better restoration of the
image is obtained. It should be noted however that PNSR not

Fig. 11. Residuals versus the cycles of a nonlinear multigrid algorithm when
solving the problems of (a) Fig. 12, (b) Fig. 13, and (c) Fig. 14 all with size
256� 256 and SNR � ��.

TABLE I
PSNR VALUES FROM THE TV3-BLC AND CU3-GCM MODELS

Fig. 12. Example 1: Denoising example using the CU3-GCM model.

always correlates with human perception. In a real life situation,
such a measure is also not possible because is not known.

From the obtained PSNR values for the model problem of
Fig. 1 and presented in Table I, it becomes quite clear that the
CU3-GCM model delivers a much better restoration than the
TV3-BLC model. In this case, is visually quite evident from
Fig. 10 that this time PSNR does correspond with human per-
ception.

Even more, when carefully inspecting Fig. 10(b), we see
that the denoised image coming from the TV3-BLC method
with looks a bit dirty. This is a combined effect of
staircase plus noise still present on the weak red channel, as
also backed up by the results shown in Fig. 5(a). By increasing
the regularization with , now the denoised image
in Fig. 10(c) looks visually much better because noise has
been removed from the red channel which we can confirm
in Fig. 5(b). However, by doing so, the blue channel is over
smoothed, see again Fig. 5(b), and its correspondent PSNR
value gets worsened as seen from Table I. Also notice that the
staircase effect still can be appreciated in Fig. 10(c). After all
seems to be that the TV3-BLC model cannot cope easily with
unbalanced channels.

Finally, in Figs. 12–14, we present some qualitative results.
Fig. 12 shows a noisy image and its nice reconstruction by the
CU3-GCM model. The aim of Figs. 13 and 14 is to compare
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Fig. 13. Example 2: (a) Denoising example using the CU3-GCM model.
(b) Denoising example using the TV3-BLC model. (c) A magnified region
taken from (a). Correspondent magnified region taken from (b).

Fig. 14. Example 3: (a) Denoising example using the CU3-GCM model.
(b) Denoising example using the TV3-BLC model. (c) A magnified region
taken from (a). Correspondent magnified region taken from (b).

the quality of restoration between TV3-BLC and CU3-GCM.
Although both restorations of Fig. 13(a) and (b) may look very
similar, when details are magnified as in Fig. 13(c) and (d), the
CU3-GCM model shows a superior quality of restoration. Sim-
ilar behavior is observed in Fig. 14.

B. Multigrid Performance

Now we proceed to illustrate the fast performance of the non-
linear multigrid algorithm for the CU3-GCM model. In Fig. 11,

TABLE II
COMPARISON OF CPU-TIMES AND PSNR VALUES FROM THE MG AND CFPGS

ALGORITHMS WHEN SOLVING THE PROBLEMS OF FIGS. 12–14. THE MG
ALGORITHM IS ROUGHLY FROM 5 TO 6 TIMES FASTER AND BOTH DELIVER

THE SAME QUALITY OF RECONSTRUCTION

we present the history iteration for solving each one of the prob-
lems from Figs. 12–14 all with SNR . For these problems
we used the following parameters:

. Clearly, the MG iteration is
very good reaching very quickly very small residuals. A good
stopping criteria for the MG algorithm is to stop when the rela-
tive residual is less than .

In Table II, we present the CPU-time consumed for both, MG
and CFPGS algorithms, when solving the same problems of
above now with noisier images i.e., SNR and using the
stopping criteria just described above. Although both methods
are pretty fast, MG is roughly from 5 to 6 times faster than
CFPGS. We also present the obtained PSNR values to illustrate
the well-balanced restoration of all of the three channels of the
color images. All simulations were carried out using Matlab®

2008a on a 2.8-GHz Intel-Xeon-based computer.

VI. CONCLUSION

In this paper, we have introduced three high-order models for
color image denoising. These models were designed from the
curvature-based denoising model for gray-scale images origi-
nally published in [35].

The new models are designed to have coupling among the
channels of the color image which many researchers have
identified as highly desirable. Of the presented three curvature
models, the global CU3-GCM model delivers the best results.
Further a fast numerical multigrid algorithm is constructed for
this model.

A comparison between the new CU3-GCM model and the
previously best TV3-BLC model was presented in denoising
color images. The CU3-GCM model is found to cope better with
unbalanced channels in the common situation where different
levels of illumination are present when a color picture (with
noise) is produced.
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