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1. Introduction: Polarized PDFs, their evolution, α 2
s

calculations, large-x limit

The unpolarized and polarized parton distributions of a longitudinally polarized hadron are given by

fi(x,µ2) = f →i (x,µ2) + f ←i (x,µ2) and ∆ fi(x,µ2) = f →i (x,µ2) − f ←i (x,µ2) , (1.1)

respectively, in terms of the quark and gluon distributionsf →i and f ←i for the same and opposite
helicity. Herex is the parton’s momentum fraction, andµ denotes the factorization scale which, in
the present context, can be identified with the renormalization scale without loss of information.

Their scale dependence is governed by the renormalization-group evolution equations

d
d lnµ2 (∆) fi(x,µ2) =

[

(∆)Pik(αs
(µ2))⊗ (∆) fk(µ

2)
]

(x) , (1.2)

where⊗ represents the standard Mellin convolution. The expansion of the respective splitting
functions powers of the strong coupling constantα

s
(µ2) can be written as

(∆)Pik(x,µ
2) = ∑n=0 an+1

s
(∆)P(n)

ik (x) with a
s
≡ α

s
(µ2)/(4π) . (1.3)

The third-order (NNLO) contributions∆P(2)
ik for the polarized case are the subject of this note.

The corresponding second-order order calculations were performed in the 1990s, when a lot
of attention was devoted to the polarized parton distributions in the wake of the ‘spin-crisis’ set
off by Ref. [1] in 1988. All these calculations were performed in the framework of dimensional
regularization, and thus had to address the treatment of the Dirac matrixγ5 in D 6= 4 dimensions.

The splitting functions∆P(1)
qq and∆P(1)

qg were obtained, together with the second-order coeffi-
cient functions for the structure functiong1 in polarized deep-inelastic scattering (DIS) by Zijlstra
and van Neerven in 1993 [2], using the so-called Larin scheme [3] withp/γ5,L = i

6 εpµνρ γµγν γρ ,

where the resulting contractions of theε-tensor are evaluated in terms of theD-dimensional metric.

The complete matrix∆P(1)
i j was calculated in 1995 independently by Mertig and van Neerven

[4] and by Vogelsang [5]. The former calculation was performed in the framework of the operator
product expansion (OPE) and used the ‘reading-point’ scheme forγ5 [6]. The latter calculation
was carried out in the lightlike axial-gauge approach and employed primarily the ‘t Hooft/Veltman
prescription forγ5 of Refs. [7] which, in the present context, is equivalent to the Larin scheme.

The relation of the prescriptions of Refs. [3, 7] to theMS scheme was addressed to second
order (NNLO) in 1998 in Ref. [8], where the transformation matrix is of the form

Zik(αs
(µ2)) = δiqδkq

(

a
s
z(1)
ns +a2

s

[

z(2)
ns +z(2)

ps
]

+ . . .
)

. (1.4)

Its non-singlet (ns) entries can be fixed by the relation between the corresponding coefficient func-
tions forg1 and the structure functionF3 which is known to orderα 3

s
[9]. The critical part is thus

the pure-singlet (ps) part for which only that one calculation has been performed so far.

For reasons that will become obvious below, it is important for us to controlthex→1 threshold
limits of the splitting functions. Here it is reasonable to expect a helicity-flip suppression by a factor
of (1−x)2 or 1/N2 in Mellin space, cf. Ref. [10]. E.g., the differencesδ (0)

ik ≡ P(0)
ik −∆P(0)

ik of the
(scheme-independent) leading-order (LO) unpolarized and polarizedsplitting functions read

δ (0)
qq = 0 , δ (0)

ik = const· (1−x)2 + . . . for ik = qg, gq, gg . (1.5)
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Figure 1: The two-loop (NLO) splitting functions∆P(1)
i 6=k(x), compared to their unpolarized counterparts.

The results are shown as published in Refs. [4, 5] (‘M’) and after an including an additional termz(1)
gq =

−∆P(0)
gq in the transformation from the Larin scheme (‘A’), which removes all(1−x)0,1 terms fromδ (1)

gq .

The corresponding NLO results are, in the standard version (denoted by ‘M’ below) of MS [4,5],

δ (1)
ik = O((1−x)a) for ik = qq, gg(with a=1), qg(with a=2) (1.6)

δ (1)
gq = 8CF(CA−CF)(2−x) ln(1−x) + 4CFβ0−6C2

F

+(20/3CFCA +2C2
F −8/3CFnf )(1−x) + O((1−x)2) . (1.7)

The question arises whether these(1− x)0 and(1− x)1 terms are a physical feature or a scheme
artifact. Flavour-singlet physical evolution kernels for structure functions in DIS, cf. Refs. [11,12],

dF
d lnQ2 =

dC
d lnQ2 f + CP f =

(

β(a
s
)

dC
da

s

+CP
)

C−1F = KF , (1.8)

if available for corresponding quantities, can provide insight on this question.

2. α 3
s

contributions via g1 (at all N ), and graviton-exchange DIS (for fixedN-values)

Following Refs. [13–17], our third-order calculation of polarized DIS proceeds via the optical
theorem, which relates probe(q)-parton(p) total cross sections (withQ2 = −q2 > 0 andp2 = 0)
to forward amplitudes, and a dispersion relation inx, which provides theN-th Mellin moment

AN =
∫ 1

0 dx xN−1A(x) (2.1)

from the coefficient of(2p·q)N. The unpolarized case was first computed at evenN ≤ 10 in the
mid 1990s in Refs. [13, 14], using the MINCER program for three-loop self-energy integrals [18].
The corresponding all-N and all-x expressions were derived by us ten years ago [15–17].

A brief account of the extension of the latter calculations to the polarized structure function
g1 was presented at Loops & Legs 2008 [19], where we focused on the resulting expressions for
∆P(2)

qq andP(2)
qg which can by extracted from theε−1 poles of the unfactorized structure functions.
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The resultingC2
F nf contribution to the latter function, in the standardM scheme, is given by

1
8 ∆P(2)

qg (N)
∣

∣

C2
F nf

= 2∆pqg(−S−4 +2S−2,−2 +4S1,−3 +2S1,1,1,1−S1,1,2−5S1,2,1

+ 4S1,3 +2S2,−2−6S2,1,1 +6S2,2 +7S3,1−3S4)

−3ζ3(2D2
0 +4D2

1−9D0 +12D1)+4S−3(D2
0−2D0 +2D1)+8S1,−2(2D2

1−D0 +D1)

−2S2,1(4D2
0 +2D2

1−11D0 +11D1)+S1,1,1(5D2
0−2D2

1−21/2D0 +12D1)

−2S1,2(2D2
0−2D2

1−5D0 +5D1)+2S3(3D2
0 +6D2

1−11D0 +11D1) (2.2)

+2S−2(8D3
1−5D2

0−6D2
1 +10D0−9D1)−S1,1(10D3

0 +6D3
1−35/2D2

0−5D2
1

+29D0−36D1)+2S2(4D3
0 +6D3

1−10D2
0−4D2

1 +17D0−22D1) −6D2(S−2 +1)

+S1(7D4
0 +4D4

1−43/2D3
0−15D3

1 +99/2D2
0 +18D2

1−78D0 +329/4D1)+32D5
1

−15/2D4
0−3D4

1 +59/8D3
0 +53/4D3

1 +77/8D2
0 +213/8D2

1−1357/32D0 +777/16D1

in terms ofDk = (N+k)−1 and∆pqg = 2D1−D0, with all harmonic sums [20] at argumentN.

This result shows some interesting features. The weight-4 sums in the first two rows have the
same coefficient in the unpolarized case of Ref. [16], where∆pqg is replaced by its counterpartpqg.
The lower-weight denominator structure is simpler in the present case, with only two terms with
D2 (third line from below) which do not lead to additional denominator primes at odd values of
N. As in previous results in massless QCD, Eq. (2.2) does not include sums withindex−1. The
large-N suppression ofδ (2)

qg by two powers of 1/N holds separately for each harmonic sum. Finally
the coefficientsD5

0,1, D4
1 andS1,1,1 are predictable in terms ofx→0 andx→1 knowledge, i.e., by

Ref. [21] and by extending Ref. [22], see also Ref. [23], and Ref.[12] to the present case.

The lower-row splitting functions∆P(2)
gq and ∆P(2)

gg enter standard (electroweak gauge-boson
exchange) DIS only at orderα 4

s
. Hence an additional probe directly coupling to gluons is required.

Following Ref. [11], the computation ofF2 has been complemented by DIS via a scalarφ with a
φGµνGµν coupling to gluons, i.e., the Higgs boson in the heavy-top limit, in Refs. [14,16].

In the polarized case a non-(pseudo)scalar probe is required, in contrast to our statement in the
penultimate paragraph of Ref. [19], which was based on an incorrectly simplified diagram database.
One way to address this issue would be to extent the calculations to a supersymmetric case, as done
in the context of NNLO antenna functions in Ref. [24]. Instead we consider graviton-exchange
DIS, as described in Ref. [25], see also Ref. [26], which provides five relevant structure functions,
Hk, k = 1−4,6, that can be combined to provide unpolarized and polarized analogues of the system
(F2,Fφ), plus an analogue of the standard longitudinal structure functionFL .

A major drawback of this approach is that it leads to a very large number of higher tensor inte-
grals, far beyond those tabulated during the calculation ofF2 andFφ [15–17] and its later extension
to g1 [19]. We have therefore decided to (first) fall back to fixed-N calculation using MINCER [18],
for which we have improved our diagram management and, in particular, thehigh-N efficiency of
the MINCER program, see Ref. [27]. These improvements have allowed us to calculate polarized
graviton-exchange DIS at the third order completely for the 12 odd moments 3≤N≤ 25. The first
moments are directly accessible neither in our calculation nor via operator matrixelements [25].

The calculations were performed on computers at DESY-Zeuthen (mainly for M INCER devel-
opment), NIKHEF (hardest diagrams at highest values ofN) and theulgqcd cluster in Liverpool
(bulk production, using more than 200 cores), using the latest version ofTFORM [28].
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As an example, we here show the calculated moments of theC3
F part of ∆P(2)

gq in the Larin scheme.

N = 3: 186505/7776

N = 5: 9473569/3037500

N = 7: −509428539731/193616640000

N = 9: −266884720969207/56710659600000

N = 11:−3349566589170829651/608887229282640000

N = 13:−751774767290148022507/130490947198868256000 (2.3)

N = 15:−23366819019913026454180147/4047226916198744678400000

N = 17:−305214227818628090680174170947/53873282508311259589115520000

N = 19:−570679648684656807578199791973487/103793635967590259537308862400000

N = 21:−2044304092089235762279148843319979/385456787045956248050132280576000

N = 23:−289119840113761409530260333250139823739/56707019270988141152999601215071395840

N = 25:−1890473255283802937678830745102921869938637/386426908528565021863360305851160000000000

Returning to the large-x limit, we note that the unpolarized structure functionsH2̄ (LO: quarks,
due to forming a suitable linear combination ofH2 andH3) andH3 (LO: gluons, from the outset)
and their polarized counterpartsH4̄, H6 form a set of quantities as mentioned at the end of Section 1.

Comparing the NLO evolution kernelK (1)

32̄
andK (1)

64̄
, which we have calculated at allN/all x, we

can conclude that the large-x behaviour of∆P(1)
gq of Refs. [4,5] discussed above is not physical.

Consequently one may expect the existence of a simple additional NNLO transformation that
restores also the 1/N2 suppression ofδ (2)

gq (N) = P(2)
gq (N)−∆P(2)

gq (N). As shown in Fig. 2, where
all non-nf andnf

1 colour factors have been combined for brevity, this expectation appearsto be jus-
tified. Hence the three-loop analogue of Eq. (1.7) can be predicted fromlower-order information.
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Figure 2: The moments of the three-loop (NNLO) splitting functions∆P(2)
gq in QCD determined using the

M INCER program for gravition-exchange DIS. The results are shown separately for thenf
0 andnf

1 part in the

Larin scheme (‘L’), the standardMS scheme according to Ref. [8] (‘M’) and with a NNLO additional term
z(2)

gq =−1
2∆P(1)L

gq in the transformation from the Larin scheme toMS (‘A’).
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3. All-N expressions, using end-point knowledge and number-theorytools

We illustrate the determination of the all-N expressions for the criticalnf
0 parts of∆P(2)

gq (N). Anal-
ogous to Eq. (2.2), the coefficients of the weight-4 sums are fixed by the unpolarized case. This
leaves 2×32 coefficients of sums at weight three and below combined with powers ofN−1 and
(N+1)−1, plus up to 11 sums combined with(N−1)−1. Of these 75 unknowns, the 24 coefficients
of D1

0 andD1
1 can be eliminated using the empirical 1/N2 large-N suppression ofδ (2)

gq (N) in the
A-scheme, and a further 6 from small-x and large-x constraints as discussed below Eq. (2.2).

We have developed FORM tools which analyze the prime decomposition of the calculated
moments and facilitate the derivation of relations between the remaining coefficients (which are all
integer if suitably normalized) using the Chinese remainder theorem. These have proved sufficient,
sometimes together with a brute-force scan of a few remaining variables, to solve simpler cases.
It is however rather hard to get more than about ten relations for the difficult nf

0 parts of∆P(2)
gq (N).

Motivated by Ref. [29], we have turned to professional number-theory tools for these cases,
in particular the program provided atwww.numbertheory.org/php/axb.html which
‘Solves a system of linear Diophantine equations using the Hermite normal form of an integer
matrix via the Havas-Majewski- Matthews LLL-based algorithm. . . . . We find . . . the solutions X
with minimal length, using a modification of the Fincke-Pohst algorithm’[30].

Since that algorithm looks for short vectors, it is best for our purposes to eliminate, say, six
‘unpleasant’ coefficients, in particular those of the low-weight combinations D2

0 , D2
1 , D2

0S1, D2
1S1,

using the moments 3≤ N≤ 13, and to use the above program for the remaining six equations.

Using the moments shown on the previous page, this procedure leads to theM-scheme result

1
8 ∆P(2)

gq (N)
∣

∣

C3
F

= 2∆pgq(−S−4 +6S−2,−2 +4S1,−3 +2S1,1,1,1 +S1,1,2

+3S1,2,1−3S1,3 +2S2,−2 +2S2,1,1−2S2,2)

+6ζ3∆pgq(2S1−3)− 4S−3(2D2
0−D0 +D1)−8S1,−2(D2

1−2D0 +2D1)

+S1,1,1(2D2
0−5D2

1−6D0−3/2D1)−2S1,2(D2
1 +4D0−D1)

−S2,1(4D2
0 +4D2

1−4D0 +7D1)+S3(2D2
0 +D2

1 +6D0−3/2D1) (3.1)

−S−2(8D3
1 +4D2

0 +18D2
1−26D0 +24D1)+2S2(D3

1 +2D2
1 +10D0−4D1)

−S1,1(6D3
0 +6D3

1 +4D2
0 +5D2

1 +2D0−7/4D1) − 6D−1(S−2 +1)

−S1(6D4
0 +7D4

1 +4D3
0 +23/2D3

1−27/2D2
0 +39/4D2

1−8D0 +23/4D1)

−8D5
0−12D5

1 +23D4
0−28D4

1−39/4D3
0−427/8D3

1−341/8D2
0−767/8D2

1

+2427/16D0−4547/32D1

with ∆pgq = 2D0−D1 and, again,Dk = (N+ k)−1 and all harmonic sums taken at argumentN.
The corresponding expressions for theCFC2

A andC2
F CA parts are somewhat lengthier; while the

nf -dependent terms are much simpler and do not require theN=25 moment. The determination

of the all-N result for the NNLO gluon-gluon splitting function∆P(2)
gq proceeded in an analogous

manner; finding the all-N form of itsC3
A part was the overall most difficult task.

While it is easy to recognize, by looking at the pattern of the coefficients, whether or not the
correct all-N form is returned by the solution of a Diophantine system, it is necessary to validate
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the results. For this purpose the results are Mellin-inverted tox-space expressions∆P(2)
gq (x) and

∆P(2)
gg (x) in terms of harmonic polylogarithms [31], from which arbitrary moments can be deter-

mined. The results can thus be compared to additional moments calculated using MINCER, such as

−∆P(2)
gq (N=27) = 4609770383587605432813291530849726335264810727/

982934508627216318966565777854990940800000000C3
F + . . . (3.2)

with Total execution time: 256 874 306.6 sec. Maximum disk space:1 261 024 031 636 bytes.

Further high-N checks have been performed for∆P(2)
gq (N=29) in the planar limitCA−2CF → 0

at nf = 0, which combines the three difficult all-N expressions, and for the crucialC3
A parts of

∆P(2)
gg (N) atN = 27 andN = 29. The functions∆P(2)

gq (x) and∆P(2)
gg (x) pass all these tests.

Finally thesex-space expressions also facilitates the determination of the first moments,

∆P(2)
gq (N=1) =

1607
12 CF C2

A −
461
4 C2

F CA +
63
2 C3

F +
(

41
3 −72ζ3

)

CF CAnf

−
(

107
2 −72ζ3

)

C2
F nf −

13
3

CFn2
f , (3.3)

∆P(2)
gg (N=1) =

2857
54 C3

A −
1415
54 C2

A nf −
205
18 CF CAnf + C2

F nf +
79
54 CAn2

f +
11
9 CF n2

f

= β MS
2 . (3.4)

The agreement, for all six colour factors, of∆P(2)
gg (N=1) with the NNLO contribution [32] to the

β-function of QCD in theMS scheme provides another strong check of our results.

The new splitting functions∆P(2)
gq (x) and∆P(2)

gg (x) are shown in Fig. 3. As in the previous
figures, the curves are scaled such that the results are approximately converted from the small
parametera

s
= α

s
/(4π) in Eq. (1.3) to an expansion inα

s
. In Fig. 4 the impact of these results on

the evolution is illustrated for a sufficiently realistic model input [33] at a rather large value ofα
s
.
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Figure 3: The NNLO splitting functions∆P(2)
gq (x) (left) and∆P(2)

gg (x) (right) compared to the corresponding
unpolarized quantities. The results are shown in theM andA schemes for three light flavoursnf .
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Figure 4: The LO, NLO and NNLO approximations to the scale derivativesof the polarized singlet quark
(left) and gluon (right) distributions in the standard version (‘M’) of the MS scheme [4,5,8], for the (order-
independent) benchmark initial distributions of Refs. [33] at a low scaleµ2 with α

s
(µ2) = 0.3.

4. Summary and outlook: more checks and calculations

We have finally, 10 years after publishing their unpolarized counterparts[15,16], derived all NNLO
helicity-difference splitting functions∆P(2)

i j (x). The last part, the lower row∆P(2)
gq and∆P(2)

gg of
the flavour-singlet matrix, has been obtained by a combination of brute-force computations using
M INCER [18], insights into the structure of these functions, and number-theory tools [30].

The three-loop MINCER computations of graviton-exchange DIS [25] have also been per-
formed for the unpolarized case and, also to very high values of the Mellin momentN, for the
upper row for which we had calculated the all-N results before [19]. The resulting agreement with
the corresponding splitting functions provides checks of our treatment ofgraviton-exchange DIS
and of the MINCER code as modified for much better large-N performance.

Our results agree with all previous partial results – if interpreted properly; in particular, the
leading small-x terms of Ref. [21] apply to the NNLO physical kernels in the off-diagonalcases, not
to the correspondingMS splitting functions – and expectations for the high-energy and threshold
limits, the first moments of∆Pgg and the leading large-nf contributions [34].

As for the unpolarized case, the numerical effects of these NNLO contributions are small
down to low values ofx after the convolution with realistic quark and gluon initial distributions.
The published version of theMS scheme, defined by the transformation correcting for the use
of, e.g., the Larin scheme forγ5 in dimensional regularization, is somewhat unphysical forx→1
already at NLO. However this does not appear to be a practically relevant problem, hence we see
no reason to advocate a change of the scheme after almost 20 years of NLO data analyses.

Nevertheless, a re-calculation of the critical NNLO transformation quantityz(2)
ps (and a check

of z(n)
gq = 0) would be worthwhile. In fact, its extension to the third order would sufficeto fix the

N3LO quark coefficient function forg1, as we obtained the Larin-scheme result some years ago.

8



The three-loop helicity-dependent splitting functions A. Vogt

Acknowledgements

We would like to thank John Gracey for useful discussions. This work has been supported by
the UK Science & Technology Facilities Council(STFC) under grant number ST/G00062X/1, the
GermanBundesministerium für Bildung und Forschungthrough contract 05H12GU8, theEuro-
pean Research Council(ERC) Advanced Grant no. 320651,HEPGAME, and by the European
Commission through contract PITN-GA-2010-264564 (LHCPhenoNet). We are particularly grate-
ful for the opportunity to use a substantial part of theulgqcd computer cluster in Liverpool which
was funded by STFC under grant number ST/H008837/1.

References

[1] J. Ashman et al. [European Muon Collab.], Phys. Lett. B206 (1988) 364

[2] E.B. Zijlstra and W.L. van Neerven, Nucl. Phys. B417 (1994) 61 [E.: ibid. B426 (1994) 245; B773
(2007) 105]

[3] S.A. Larin and J.A M. Vermaseren, Phys. Lett. B259 (1991)345;
S.A. Larin, Phys. Lett. B303 (1993) 113, hep-ph/9302240

[4] R. Mertig and W.L. van Neerven, Z. Phys. C70 (1996) 637 (6= hep-ph/9506451v1)

[5] W. Vogelsang, Phys. Rev. D54 (1996) 2023, hep-ph/9512218; Nucl. Phys. B475 (1996) 47,
hep-ph/9603366

[6] J.G. Körner, D. Kreimer and K. Schilcher, Z. Phys. C54 (1992) 503;
D. Kreimer, hep-ph/9401354

[7] G. ’t Hooft and M.J.G. Veltman, Nucl. Phys. B44 (1972) 189;
P. Breitenlohner and D. Maison, Commun. Math. Phys. 52 (1977) 11

[8] Y. Matiounine, J. Smith and W.L van Neerven, Phys. Rev. D58 (1998) 076002, hep-ph/9803439

[9] S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B813 (2009) 220, arXiv:0812.4168

[10] S.J. Brodsky, M. Burkardt and I. Schmidt, Nucl. Phys. B441 (1995) 197, hep-ph/9401328

[11] W. Furmanski and R. Petronzio, Z. Phys. C11 (1982) 293

[12] G. Soar, S. Moch, J.A.M. Vermaseren and A. Vogt, Nucl. Phys. B832 (2010) 152, arXiv:0912.0369

[13] S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren, Nucl. Phys. B427 (1994) 41

[14] S.A. Larin, P. Nogueira, T. van Ritbergen and J.A.M. Vermaseren, Nucl. Phys. B492 (1997) 338,
hep-ph/9605317

[15] S. Moch, J. Vermaseren and A. Vogt, Nucl. Phys. B688 (2004) 101, hep-ph/0403192

[16] A. Vogt, S. Moch and J.A.M. Vermaseren Nucl. Phys. B691 (2004) 129, hep-ph/0404111

[17] J.A.M. Vermaseren, A. Vogt and S. Moch, Nucl. Phys. B724(2005) 3, hep-ph/0504242

[18] S.G. Gorishnii, S.A. Larin, L.R. Surguladze, F.V. Tkachov, Comput. Phys. Commun. 55 (1989) 381;
S.A. Larin, F.V. Tkachev and J.A.M. Vermaseren, NIKHEF-H-91-18

[19] A. Vogt, S. Moch, M. Rogal and J.A.M. Vermaseren, Nucl. Phys. Proc. Suppl. 183 (2008) 155,
arXiv:0807.1238

9



The three-loop helicity-dependent splitting functions A. Vogt

[20] J.A.M. Vermaseren, Int. J. Mod. Phys. A14 (1999) 2037, hep-ph/9806280

[21] J. Blümlein and A. Vogt, Phys. Lett. B386 (1996) 350, hep-ph/9606254

[22] A. Vogt, JHEP 10 (2011) 025, arXiv:1108.2993

[23] A. Vogt, C.H. Kom, N.A. Lo Presti, G. Soar, A.A. Almasy, S. Moch, J.A.M. Vermaseren and K. Yeats,
PoS LL2012 (2012) 004, arXiv:1212.2932

[24] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, Phys. Lett. B612 (2005) 36, hep-ph/0501291

[25] C.S. Lam and B.A. Li, Phys. Rev. D24 (1981) 3273

[26] W.J. Stirling and E. Vryonidou, Eur. Phys. J. C71 (2011)1677, arXiv:1104.3086

[27] J.A.M. Vermaseren,Xtreme manipulation, these proceedings

[28] J.A.M. Vermaseren,New features of FORM, math-ph/0010025;
M. Tentyukov and J.A.M. Vermaseren, Comput. Phys. Commun. 181 (2010) 1419, hep-ph/0702279;
J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, CPC 184 (2013) 1453, arXiv:1203.6543

[29] V.N. Velizhanin, Nucl. Phys. B864 (2012) 113, arXiv:1203.1022

[30] K. Matthews,Solving AX= B using the Hermite normal form, (unpublished), summarized in
J.H. Silverman, Designs, Codes and Cryptography 20 (2000) 5[see pages 16/17]

[31] E. Remiddi and J.A.M. Vermaseren, Int. J. Mod. Phys. A15(2000) 725, hep-ph/9905237

[32] O.V. Tarasov, A.A. Vladimirov, and A.Y. Zharkov, Phys.Lett. 93B (1980) 429,
S.A. Larin and J.A.M. Vermaseren, Phys. Lett. B303 (1993) 334, hep-ph/9302208

[33] A. Vogt, Comput. Phys. Commun. 170 (2005) 65, hep-ph/0408244;
G. Salam and A. Vogt, section 4.4 [pages 93-102] of hep-ph/0511119

[34] J.A. Gracey, Nucl. Phys. B480 (1996) 73, hep-ph/9609301;
J.F. Bennett and J.A. Gracey, Phys. Lett. B432 (1998) 209, hep-ph/9803446

10


