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Abstract

We compute the next-to-next-to-leading order (NNLO) citmitions to the three splitting functions
governing the evolution of unpolarized non-singlet conaltions of quark densities in perturbative
QCD. Our results agree with all partial results availabléhm literature. We find that the correct
leading logarithmic (LL) predictions for small momenturadtionsx do not provide a good esti-
mate of the respective complete results. A new, unpredldtezbntribution is found for the colour
factor d2°°d,y,c entering at three loops for the first time. We investigatesilae of the corrections
and the stability of the NNLO evolution under variation oétfenormalization scale. Except for
very smallx the corrections are found to be rather small even for largesgaof the strong coupling
constant, in principle facilitating a perturbative evadutinto the sub-GeV regime.



1 Introduction

Parton distributions form indispensable ingredientsheranalysis of all hard-scattering processes
involving initial-state hadrons. The dependence of thesmtties on the fractior of the hadron
momentum carried by the quark or gluon cannot be calculatgxbrturbation theory. However,
the scale-dependence (evolution) of the parton distobstican be derived from first principles
in terms of an expansion in powers of the strong coupling teonsis. The correspondingth-
order coefficients governing the evolution are referred 4dhee n-loop anomalous dimensions
or splitting functions. Parton densities evolved by inghgdthe terms up to ordex*? in this
expansion constitute, together with the correspondingjtefor the partonic cross sections for the
observable under consideration, theLK (leading-order, next-to-leading-order, next-to-ntot
leading-order, etc.) approximation of perturbative QCD.

Presently the next-to-leading-order is the standard aqupiation for most important processes.
The corresponding one- and two-loop splitting functiongenbeen known for a long time [1, 2,
3,4,5,6,7,8,9, 10, 11]. The NNLO corrections need to beuishet!, however, in order to arrive
at quantitatively reliable predictions for hard procesaepresent and future high-energy collid-
ers. These corrections are so far known only for structunetfans in deep-inelastic scattering
[12, 13, 14, 15] and for Drell-Yan lepton-pair and gaugedvogroduction in proton—(anti-)proton
collisions [16, 17, 18, 19] and the related cross sectionsiiggs production in the heavy-top-
quark approximation [17, 20, 21, 22]. Work on NNLO cross e for jet production is under
way and expected to yield results in the near future, see [R8F.and references therein. For
the corresponding three-loop splitting functions, on ttleeohand, only partial results have been
obtained up to now, most notably the lowest six/seven (evesdd) intege™N Mellin moments
[24, 25, 26].

These Mellin moments already provide a rather accurateriggisn of the splitting functions
at large momentum fractions[25, 27, 28, 29]. Their much-debated behaviour at smallesf
X, on the other hand, can only be determined by a full calcutatAs we will demonstrate below
for the non-singlet cases, this statement holds despitexistence of resummation predictions
for the leading smalk logarithms [30, 31], sincea—the correctly predicted logarithms do not
dominate the three-loop splitting functions at any pradlycrelevant value ok and—b—a term of
the same size occurs with a new colour factor at third ordechvbould not have been predicted
from lower-order results, analogous to the situation ferfthur-loop-function of QCD [32].

In this article we present the (unpolarized) flavour norglgh(ns) splitting functions at the
third order in perturbative QCD. The corresponding flavangtet results will appear in a forth-
coming publication [33]. The present article is organizedalows: In section 2 we set up our
notations for the three independent third-order splitfungctions and briefly discuss the method
of our calculation. The MellilN space results are written down in section 3 together with the
explicit largeN limit which is relevant for the soft-gluon threshold resuatiaon [34, 35, 36] at
next-to-next-to leading logarithmic accuracy [37]. A suspg relation is found between the lead-
ing largeN term at two loops and the subleadifigN)/N contribution at third order. In section

1



4 we present the exact results as well as compact parantetnzdor thex-space splitting func-
tions and study their behaviour at small The numerical implications of these results for the
scale dependence of the non-singlet quark distributiomglastrated in section 5. Except for very
small values ok, the perturbation series appears to be well-behaved ewen osub-GeV scales
where the initial distributions have been studied using-perturbative methods for example in
Refs. [38, 39, 40, 41, 42, 43]. Finally we briefly summarize fondings in section 6.

2 Notations and method

We start by setting up our notations for the non-singlet coiations of parton distributions and the
splitting functions governing their evolution. The numbestributions of quarks and antiquarks in
a hadron are denoted loy(x, ufz) andgi(x, u]?), respectively, wherg represents the fraction of the
hadron momentum carried by the parton amdtand for the factorization scale. There is no need
to introduce a renormalization scaledifferent fromy; at this point. The subscripindicates the
flavour of the (anti-)quark, with=1,...,n; for n; flavours of light quarks.

The general structure of the (anti-)quark (anti-)quarkspg functions, constrained by charge
conjugation invariance and flavour symmetry, is given by

Poac = Paa = 6i|<':)o\|ICPLF’qu

In the expansion in powers ofs the flavour-diagonal (‘valence’) quantiB, starts at first order,
while P(;’a and the flavour-independent (‘sea’) contributid@% and quﬁ are of ordem2. A non-
vanishing dif“ferenc@ofcI — quaoccurs for the first time at the third order.

This general structure leads to three independently ewplyipes of non-singlet distributions:
The evolution of the flavour asymmetries

qri;ik = G £0 — (G £ ) (2.2)
and of linear combinations thereof, hereafter generiaglyoted byg, is governed by
P = Py, £ PYg. (2.3)

The sum of the valence distributions of all flavours,

N

qXS = z (Qr - q_r> ) (2.4)
r=1
evolves with
Prs = Pc;/q - Pc\]lf]"' Ng (quq - quﬁ) = Ps+P%. (2.5)

The first moments oP,5 and P; vanish, since the first moments of the distributigfsand gy
reflect conserved additive quantum numbers.
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We expand the splitting functions in powersaf= as/(4m), i.e. the evolution equations for
Ahs(X, 12), i = 4, v, are written as

2 n+1 .
“S(“f>> Pre (X) ® Ghe(X, 1) (2.6)

d 2y _
ans(xa uf) = n; < ATt

where® represents the standard Mellin convolution.

Our calculation is preformed in Mellitd space, i.e., we compute the non-singlet anomalous

dimensionS/EQi(N) which are related by the Mellin transformation

. 1 .
yﬁrs')'(N) - —/ dx xN-1 P,22>'(x) (2.7)
0

to the splitting functions discussed above. The relatige 8 the standard convention. Note that
in the older literature an additional factor of two is oftecluded in Eq. (2.7).

The calculation follows the methods of Refs. [24, 25, 26, 49]., We employ the optical
theorem and the operator product expansion to calculatéinviebments of the deep-inelastic
structure functions. Since we treat the Mellin momBIn&s an analytical parameter, we cannot
apply the techniques of Refs. [24, 25, 26], where thei®ER program [46, 47] was used as the
tool to solve the integrals. Instead, the introduction of/nechniques was necessary, and various
aspects of those have already been discussed in Refs. [480 480]. Here we briefly summarize
our approach, focussing on some parts which have not besariezl yet. It should be emphasized
that we have at our disposal a very powerful check on all ouvatgons and calculations by
letting, at any pointN be some positive integer value. Then we can resort to theoapprof
Refs. [24, 25, 26] and, with the help of theitMCER program, the checking of all programs greatly
simplifies.

We start by constructing the diagrams for the forward Compéactions
quark(P) + vector(Q) — quark(P) + vector(Q) , (2.8)

which contribute to the non-singlet structure functiéysF, andF; of deep-inelastic scattering.
The N-th Mellin moment is given by thél-th derivative with respect to the quark momentBm
atP = 0. The diagrams are generated automatically with the dag@nerator QrRAF [51] and
for all symbolic manipulations we use the latest version oRM [52, 53]. The calculation is
performed in dimensional regularization [54, 55, 56, 57fmd = 4 — 2¢. The unrenormalized
results in Mellin space are formulae in terms of the invasaletermined by the colour group [58],
harmonic sums [6, 7, 59, 60, 61] and the valggs(4, (5 of the Riemanr{-function. In physics
results the terms witld4, cancel inN-space. With the help of an inverse Mellin transformation
the results can be transformed to harmonic polylogarittGBs§3, 64] in Bjorkenx space. Details
have been discussed in Refs. [45, 65]. The renormalizatioarried out in thd1S-scheme [66, 67]
as described in Ref. [24, 25, 26].



The complete non-singlet contributions to the structureefions can be obtained from three
Lorentz projections of the amplitude for the process (28t is withg”, PMP¥ and withePQW =
e“B“VPaQB. For the projection witlg"’ and P*PY one has two vector-like couplings, whereas
for the projection witheP@¥ one has the product of a vector and an axial-vector couplifig
axial nature leads to the need for additional renormabnatiwithZ,, the axial renormalization,
and withZs, the finite renormalization due to the treatment of yeieThis is all described in the
literature [68]. For the anomalous dimensions we need dmydivergent parts of thg®’ and
ePQW projections, but just as for the fixed moments we can alsdmbia finite pieces which lead
to the coefficient functions in ;LO. The determination of the latter fét, andF, requires also
the computation of th&"PY projection which is still in progress. The results for theetitloop
coefficient functions will thus be presented in a future jmailon [69].

To solve the integrals we apply the following strategy [4%)]. AVe set up a hierarchy of classes
among all diagrams depending on the topology, for instaadddr, Benz or non-planar. Within a
certain topology, we define a sub-hierarchy depending onuh&ber ofP-dependent propagators.
We define basic building blocks (BBB’s) as diagrams of a git@pology in which the quark
momentumP flows only through a single line in the diagram, while comp®$iuilding blocks
(CBB’s) denote all diagrams with more than dielependent propagator. We determine reduction
schemes that map the CBB'’s of a given topology class to the’'88Bhe same topology class or
to simpler CBB topologies. Subsequently, we use reductlentities that express the BBB’s of a
given topology class in terms of BBB’s of simpler topologies

This procedure has been discussed to some extent in RefsA9#i5It exploits various cat-
egories of relations between the integrals which can beveldras follows. For a generic loop
integral depending on external momeRandQ, the first category are integration-by-parts iden-
tities [54, 70],

/ndenaip“p}‘x(...) Y (2.9)

These give a number of nontrivial relations by making vasioboices for they andp; from the
loop momenta. Additionally; can be equal t& or Q. The second category is based on scaling
arguments [45] in Mellin space. They involve applying onéhaf operators

9 .0 L0

M — — 2.10
both inside the integral and to the integrated result. Tladérsgin Mellin space tells us the effect
of these operators on the integrated result, while insidétegral we just work out the derivative.

These relations naturally involve polynomials lineaNnThe fourth operator of this kind,

9
oPH

cannot be used naively in this context, because it does motnede with the limitP-P — 0. More
care is needed in this case and we will come back to this ghortl

QM (2.11)
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A third category of relations is obtained along the linesha&f Passarino—\Veltman decomposi-
tion into form factors [71]. In Mellin space we write

/Hdenpi“x(...) — QMg +PHIp (2.12)

wherelg andlp are the two form factors. By contracting Eq. (2.12) eithethv@,, or B, thelq
andlp are determined in terms of a number of integrals. Next, bintathe derivative with respect
to Qy, the relevant identities can be obtained. Because the momegn can be any of the loop
momenta, Eq. (2.12) gives us as many relations as there@ps.l@d\gain, in Mellin space, these
relations contain polynomials linear b

The fourth and the fifth category of relations are new. Togettith the form factor relations
from Eq. (2.12) they were crucial in setting up the reducoheme for the three-loop topologies.
They are based on operators that do not commute with thefrRit— 0. In the fourth category,
one considers the dimensionless operators

O = o o@am 213)
0o 0
(P-Q? 0 0
Os = "m0y pnapH (2.15)

Each individual operatdd; does not commute with the limit- P — 0O, but certain linear combina-
tions of theO; do. However, one has to extend the ansatz based on scalungangs inN-space.
Specifically, one has for th¥-th moment of an integrdi(N)

2P-Q\N

N = (5g) @y +(

2P. Q>N 2p.pP
Q-Q

where theC,(\,O) andC,(f) are dimensionless functions df, anda adjusts the mass dimensions.
The novel feature is here the te(Eﬁz) proportional toP - P, which one may call higher twist. In
contrast, for the relations based on Eq. (2.10) it was seffidio restrict the ansatz (C,{,O).

Applying the differential operatoi®; in Egs. (2.13) — (2.15) to the ansatz (2.16), one finds that
the combinations

2(0+1—-N)0O; -0y, (2N—4+D)0O;—03 (2.17)

do commute with the limiP-P — 0. That is to say, any dependence on the higher twist term
C,(\,Z) vanishes in this limit and one is left with only contributefrom C,(\,O). Eg. (2.17) adds two
more relations, which in Mellin space contain quadraticypomials inN due to the differential
operators of second order. We have checked that diffetergexators of yet a higher order
andQ do not add any new information.



Finally, the fifth category of relations again uses the foactdr approach of Eq. (2.12). How-
ever, now we do not take the derivative with respecQfpbut with respect td?,. Some extra
book-keeping is needed here, since one has to take along peoportional td°-P. Let us write
Eq. (2.12) as

p'l = QMlg+PHIp. (2.18)
Taking the derivative of Eq. (2.18) with respectRpin N-space one finds

0

0
ﬁpi“| lo+(D+N—-1)lp. (2.19)

= 5
Solving Eq. (2.18) forlg and Ip as above, however keeping all terfRsP, substituting into
Eqg. (2.19) and finally taking the limR-P — 0O, we find

0 u|_Ppl

0 Q-PP-Q-Q-QP-p
PP T P

(P-Q)?
Again, as the momentuip can be any of the loop momenta, Eq. (2.20) gives us as martioreda
with polynomials linear irN as there are loops.

-2 (DrN-2)

5pi . (2.20)

Taken together, the reductions of category one to five suffiagbtain a complete reduction
scheme. In particular, the reduction equations of catetyaoyto five involve explicitly the param-
eterN of the Mellin moment. They give rise to difference equationbl for an integral (N),

ao(N) I (N)+ay(N) I (N—1)+...+an(N) I (N—m) = G(N) , (2.21)

in which the functionG refers to a combination of integrals of simpler topologiésroth order
equations are of course trivial, although sometimes thetionG can contain thousands of terms.
First order difference equations can be solved analyyi¢gala closed form, introducing one sum.
Higher order difference equations on the other hand canlvedoonstructively, sometimes with
considerable effort, by making an ansatz for the solutiotenms of harmonic sums. For the
present calculation we had to go up to fourth order for cergpbes of integrals.

Due to the difference equations, which have to be solved uteessive way, a strict hierarchy
for topology classes is introduced in the reduction schefa. a given integral, a difference
equation as in Eq. (2.21), with some (often lenghty) funttexpressed in terms of harmonic
sums, can be solved in terms of harmonic sums again. Sub#gquke result forl can be part
of the inhomogenous term in a difference equation for anpthere complicated integral. This
requires the tabulation of a large number CBB and BBB intsgbecause each integral is typically
used many times, thus it saves computer time and disk spaute ttids tabulation, which required
the addition of features todRm [53], renders the calculation feasible with current conmput
resources. For the complete project, including Refs. [33, We have collected tablebases with
more than 1000 integrals and a total size of tables of more than 3 GByte.



3 Results in Mellin space

Here we present the anomalous dimensiﬁfg%(N) in theMS-scheme up to the third order in the
running coupling constarts, expanded in powers afs/(41). These quantities can be expressed
in terms of harmonic sums [6, 7, 59, 60]. Following the natatof Ref. [59], these sums are
recursively defined by

M i
SinM) = 3 7 3.1)
and M i
S:tml,rrp,...,rrk(M) = Zl (:itTll)Snz,...,m((i) . (3-2)

The sum of the absolute values of the indiogsdefines the weight of the harmonic sum. In the
n-loop anomalous dimensions written down below one encosisieams up to weightr?— 1.

In order to arrive at a reasonably compact representationiofesults, we employ the abbre-
viation Sy, = Sy(N) in what follows, together with the notation

NiSn=Sn(N£1),  NiiSn= Sa(N=£i) (3.3)

for arguments shifted by-1 or a larger integei. In this notation the well-known one-loop (LO)
anomalous dimension [1, 2] reads

VR (N) = Ce(2(N-+N;)S-3) (3.4)

and the corresponding two second-order (NLO) non-singlehijties [4, 6] are given by

VE(N) = 4C,Cr (N, S5~ 50 255 S+ (N +Ny) S5 +28 o~ 9]
+4Cen, <1i2+gsl—(N+N+)[1§151—%SZ])+4CF2<4S3+251+252—g
FN- S+ 255 — (N +N2 ) [S 448242512+ 2%1+ S ) (3.5)
VT (N) = v () +26C (e~ 2) (N- N [S- 8] ~2N- +N, ~2)s3)

(3.6)

The three-loop (NNLO, RLO) contribution to the anomalous dimensigi(N) corresponding
to the upper sign in Eq. (2.3) reads
@+(N) = 87, 2,105 0o 4o 2 2
Vit (N) = 16CaCeny (Sla— 5 + 5 S8 — g S+3S2-554+251- 5%
257 2 2 2 23
+ oS- 58 a1 Ny S0 - 5% — 5% —(Ne — 1) | TS~ %) - (N-+N.) S
1237 317

11
T 561 182 108

2

16 2 1 1 1 1
S+ 351,—2 — 551,—2,1 — 551,—3 — 551,3 — 552,1 — 552,_2 +S1(3

7



1 , /1657 15 31 67
+ 55371} ) +16CrCp <ﬁ - 713 +2S 5+ €&4 —4S 41— 3&3 +2S 3 >
11 3 1883

333,1 +-S2-6S203—2S 2 3+3S 2 2-4S 2 21+8S 21 2— Hsl

2
16 5 1 176 13
105, 3-552+125 21+453-4% 2~ 5+ 5SS+ 2+ S

9737

19
+(N_+N4—2)[3503+ 1151 —4S1 12| + (N_+Ny) Esl—351,74+ gsl,fS

91 29 19
+85, 31+ 351,—2 —6S, 2 _2— ES_L,—Z,l +8S11,-3—16S1 214513~ Zsl’s
1967

11 1
+4531+354+8S 21+253—- 2+ 1—28371 ~—S$1-4S 3+ 6827,2 ~ 16 S
121

1 3 29
+ %)~ (N- N2 [358a+ 7921~ 3812+ 2% 21— ;S35 S-2— & S8
28 2376 17

+ 17154,1 + %5273 - 52772] +N. [353 ~ o162 254 - SSSD +16C n?(m
151

13 2 2. 11 1 , . (45
~ 579 g%t (NN [ 8= %+ 75 ) + 1660 (00— 7 — 108
89

134 31 9
——S 4+20S_41+ T&s —2S 3 2— 333,1 +2S 37— 55—2 +18S 2(3+10S 2 3

6
26 28 185
—6S 5 2+85, 212855, »+465 3+ 351,—2 — 485 51+ 351,2 - TS3

133 209 242
—8513+25% 2~ 45— (N-+N; —2) [9810s— S+ - S — 14511 2~ =%

33 14 107
+9S o+ ZSl -3+ 352,1} +(N_+Ny) [1781,_4 — Tsl’_g —325, 31

173 103
- ?51,72 +16S;, 2 >+ 751,72,1 —2S,_22—365,1,3+5651_21+8513

109
9
31 67
~5%5— Q1+ T2 5 S| + (N- —N;) 9503 +25 3 +4% 21~ 1251 2
1 11 33 59 127 1153
253+ 1381+ 5% 2+ oS- DSt St e S 5| + N (82
4 23 73. 151 , (23 3 4 59
So1- 22+ 1S+ St TSt %) ) +16C2n (T - Slat 58 a1 o S
4 20 20 8 8 4 25 4 1
+384- g8t 8382 38— et N TR 3% 58
67 4 4 325 2 32
—(Ny—1) [3_682 — §52,1+ §S3 +(N-+Ny) [SLZ3 — msl — ésl,—s—f— 351,—2
4 4 16 4 11 2 10 1 2 8
~ 3821t 38t G S S Sat (5% s %2t g 21t S8 T2 S
29 15

+ 16C|:3 <125_5 - 3—2 - EZS +9S 4— 24&471 - 4&37,2 -+ 6&371 — 4&372 +3S 5+ 255

67
—12S 5(3—125 5 3+24S 51 2—525 _3+45 _»+485 ,1—-4S o+ ?SQ —-17%

+

43 11
S12-4S 2+ 351,3 —8531 1154+ 352,2 +21S _3-30S, _21-4S1 2

+
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31
+(N=+N. —2) (68103 — 1+ 35511~ 12511 2+ Si2+ 108 2+ S1+252— 251
38|+ (N +N,)[238 3-228, 4+325, 51-25, 2- 85, 2 2305, 21— 653
+4S, _2,4+40S11_3—-4851-21+8S2 2+4522+8531+454+285 _21+4S5 12
3
+45,1+4%511-432+851 2265 _3-253-45 -3 235+ 531]

81
+(N_—N+)[12521—2—65213—252—3+3523+253—2——321+14S31—552—2

St St s 138 4 as] 1N, [1as - 2005 - Os asias)) . @)

The third-order result for the anomalous dimensjgg(N) corresponding to the lower sign in
Eqg. (2.3) is given by

. C 367
V27 (N) = v2F(N) + 16C,Cr (CF - ?A) ((N_ FNL-2) [1—851+ 125103+ 251 >

140
+4S, _3+8S, 21+ 751,1 —-1651 2—-S—-8%1— 31} +(N_—Ny) [455 —125(3
70 70 13 41
-4 3-8 21— 35271 +16S1 2+4S _>—851+ 353,1 + 554 — 1—852
152 Ca
+2S 2— 753} +4(N+—1) [452,—2 —8%— 53]) + 16Cg 1y (CF - ?)
61 8 4 41 38 4 4
: <(N, +Ny—2) [351 - ésll} +(N-—N4) [5)521 - 3524- 353 - é%,l - é&])
C
+16C%(Cr — 2 ) ((N-+N;. ~2)[85y 2~ 155~ 125105 1251 3~ 60811

+24811 2 +8512+405,— 125 2+ 891+ 7S+ 1251465 + (N —N.)[125¢s
—245+125 _3+8S, 2+3091 2451 2452 — 15538531 + 432 + 2451
- 12%} (N4 —1) [8837_2 n 2654]) . (3.8)

Finally the quantityy;s(N) corresponding to the last term in Eq. (2.5) starts at threpdavith

s 3P e 25 11 5 1

VRE(N) = 16n; e : <(N—+N+)[351+1—251,—3—551,—2,1—651,1,—2]

13 91 3 1 91 3 5
+(N-+N;. -2 [1_2517—2 + 2—45171 - 551,3 - ZSZ,—Z - 4—852—|- 1—653—|- 55371]
2 2
§(N+ N.2) [344’52—2—53,1} —g(N72+N+2) [51 —3—51—21—511—2]
109 41

+(N- - )[ S+5 55} (N —N+)[ S -3+ 2 Sz 2——52——521 53

1

~5%1-S12+ Zsz,s + 5&,,2 - 2154,1} - gsl = ésl,,e, +2S 21— sl,l,,z) . (3.9)

Egs. (3.7) — (3.9) represent new results of this articlehwlite exception of the (identical)
n]? parts of Egs. (3.7) and (3.8) which have been obtained bye&yrac Ref. [72] and of the
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contribution linear im; in Eq. (3.7) which we have published before [49]. All our iksagree
with the fixed moments determined before using thed&ER program [46, 47], i.e. EqQ. (3.7)
reproduces the even momemis= 2, ...,14 computed in Refs. [24, 25, 26], while Egs. (3.8) and
(3.9) reproduce the odd momems=1,...,13 also obtained in Ref. [26].

0.3 T T T T T T T T T T T T 0.105 L T T T T T T T T I T T T T ]

: Yas(N)/ InN- ]

0.1+ _

0.2 i ]

L arrows: N - oo i

0.095 (in highest term)

i ~ =

0.1 009F TTTmmm-o-o----s :

0.085 |- -3

0 i ]

0.08 :_ ............................... _:

| 0g=0.2,N=4 )

-01 0075 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 5 10 15
N

Figure 1: The perturbative expansion of the anomalous dsinery,s(N) for four flavours at
os = 0.2. In the right part the leadinlj-dependence for largd has been divided out, and the
corresponding asymptotic limits are indicated as disalisséhe text.

The results (3.4), (3.5) and (3.7) fgry(N) are assembled in Fig. 1 for four active flavours
and a typical valuexs = 0.2 for the strong coupling constant (recall that the termsauprter
al! are included at RLO). Numerically, the colour factors take the val@s= 4/3,C,=3and
d3P%d,pc/ne = 40/9. Note that the latter normalization is different from thatployed in Ref. [58].

The NNLO corrections are rather small under these circumsstg amounting to less than 2%
for N > 2. At largeN the anomalous dimensions behave as

InN 1
Vg@i’v(N) = AnanN+Ve)—Bn+CnW+O(N) (3.10)
whereye is the Euler-Mascheroni constant and the coefficients azeifspd in the next paragraph.
Thusy;is = yi/InN, also shown in Fig. 1, approaches a constantNor> o. The asymptotic
results are indicated by replaciﬁé@Jr(N =15) by VEQH(N — o) for the respective highest term
included in the curves (e.g., far= 2 at NNLO). Obviously the approach to the asymptotic limit is
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very slow. Yet the results & — oo, which can be derived much easier than theMstlependence
[73], do provide a reasonable first estimate of the corrastio

The leading largaN coefficientsA,, which are also relevant for the soft-gluon (threshold) re-
summation [34, 35, 36, 37], are given by

Ay = 4Ce
e = o0 [(-z)onSn
As = 16CFC? <22i45—6—7z2 1—1<3+—z2) + 16C2n; <—g—2+2zg)

+ 16C-Cany (—i—gz 13012——13) + 16Cgn? <—2i7) . (3.11)

Then;-independent contribution to the three-loop coefficigats also a new result of the present
article. Inserting the numerical values of thdunction and the QCD colour factors it reads
Ag\nf:o >~ 1174898, in agreement with the previous numerical estimate éf [R€]. The con-
stantsB,, can be read off directly from the terms widli1 — x) in Egs. (4.5), (4.6) and (4.9) below.
Surprisingly, the coefficientS, in Eq. (3.10), which are also best determined using tixesgace
results, turn out to be related to thg by

CL =0, C =4CA;, C3 = 8CrA>. (3.12)

Especially the relation fo€3 is very suggestive and seems to call for a structural exptama

4 Results in x-space

The splitting functlonﬂ(,s) ( X) are obtained from thil-space results of the previous section by

an inverse Mellin transformation, which expresses thesetions in terms of harmonic polylog-
arithms [62, 63, 64]. The inverse Mellin transformation lexgs an isomorphism between the set
of harmonic sums for even or oddland the set of harmonic polylogarithms. Hence it can be per-
formed by a completely algebraic procedure [45, 64], basette fact that harmonic sums occur
as coefficients of the Taylor expansion of harmonic polytdges.

Our notation for the harmonic polylogarithniy, . m,(X), mj = 0,+1 follows Ref. [64] to
which the reader is referred for a detailed discussion. dhest-weight\ = 1) functionsHm(X)
are given by

Ho(x) = Inx,  Hi1(x) = FIn(1¥x) . (4.1)
The higher-weightw > 2) functions are recursively defined as
1 .
Wlnwx, if m,....m,=0,...,0
Hml,...,mN(X) = X (4.2)
dz tv, (2) Hmy,...my(2) , else
0



with

1 1
f = - f — 4.3
0(X) oL +1(X) T=x (4.3)
A useful short-hand notation is
Ho,....0+1,0,...,0,+1,..(X) = Hims1), +(ns1),...(X) - (4.4)
N—— S——

m n

For w < 3 the harmonic polylogarithms can be expressed in termsaofisrd polylogarithms; a
complete list can be found in appendix A of Ref. [45]. All hamic polylogarithms of weight

w = 4 in this article can be expressed in terms of standard pgdylthms, Nielsen functions [74]
or, by means of the defining relation (4.2), as one-dimergioegrals over these functions. A
FORTRAN program for the functions up to weight= 4 has been provided in Ref. [75].

For completeness we recall the one- and two-loop non-disgl#ting functions [3, 8]

PY(X) = Cr(2pgq(x)+35(1—X)) (4.5)
and
7 11
Pr%)Jr(X) = 4CCr (pqq( X) [6 — o+ — 6 Ho + Ho, O] + Pgq(— X) [ZZ—FZH—LO - I'|O,O}

+ 200481 %) [0+ 500~ %s] ) ~4Cen; (poql) o + 2Ho| + 2(1-X

+3(1-x) | 112 + §Z2] ) +4C¢?(2pgg(x) [Hi0— gHo +Ha| — 2pgq(—X) [ L2+ 2H 10
~Hoo] ~(1-0)[1- Ho| ~Ho— (L+x)Hoo+8(1-X) [ 3 +6%3]) . (46)
P~ (x) = P (x)+16Cc (Cr - %) (Paal—X) [¢2+2H 10— Hoo| —2(1-X)
—(1+X)Ho> . 4.7)
Here and in Eqgs. (4.9) — (4.11) we suppress the argumefithe polylogarithms and use
Pgg¥) = 2(1—x) "t -1-x. (4.8)

All divergences fox — 1 are understood in the sensedjedistributions.

The three-loop splitting function for the evolution of th@us’ combinations of quark densities
in EQ. (2.2), corresponding to the anomalous dimensior) (8&ls

1 10 209 167
Pr(é)+(x) = 16C,Ceny <—pqq(X) [ 3 (o— 36 93— 1—8H0+2HOZZ —7Ho0—2Ho 0,0
1 10
+3H1,o,o—H3] +§pqq( )[ Zs——lz—H 20— 2H 1(2— ?H 10— H- 100
1 5 257 43 1
+2H 12+ EHOZZ+ §H0,0+ Ho.00— Hs] +(1-x) [ (2— i 1_8H0 - éHoo —Hi

12



2 1 1 1 5 167 1, 25
—(1+4x) [§H71,0+ éHz} + §Z2+ Ho + 5H0’0+6(1_X) [Z - §Z2+ %12 + 1_8Z3])

5 69
+16C,C? (pqq(x) [613 - %122 —H_30—3H_2{>—14H > _10+3H_20+5H 200
151 41 17 13 23 2
—4H 55— EHO + 1—2H012 — 7H013 — ZHo,o —4Ho0(2 — 1—2Ho,o,o +5Ho,0,00+ §H3

67 31
—24H (3 —16H; 50+ 3"'1,0 —2H1 002+ 3 H100+11H1 000+ 8H1100—8H13+Hs

67 11 1, 67
+ §H2 —2Hy(o + EHz,o +5H200+ H3,o} + Pgg(—X) [le )
31

31 9
—32H 2(p—4H 5 10— EH—z,o +21H_200+30H_22 — EH—llz —42H_1(3+ - Ho

4
134
—4H_1 _20+56H_1 _1{»—36H_1 _100—56H_1_12— ?Hfl,o —42H_10(2 —Hsp

31 31 13 29 67
+32H-13— o H-100+17H 1000+ ZH-12+2H-120+ 5Hol2+ - Hols + 5 Hoo

12 9
89 31 133
+13Ho 002 + 1—2Ho,o,o —5Ho,0,0,0 — 7TH2{2 — 3 Hz — 10H4] +(1-x) [% +4Ho 000
167 77 209
- TZS —2Ho{3 —2H_30+H_2{>+2H_» 10—3H_200+ ZHo,o,o - ?Hl —7TH1{>
14 43 25 13
+4H100+ 3"'1,0} +(1+x) [352 — 3%+ EHfz,o —31H 1{>—14H_1 10— §H71,0

55 1457 1025 155
+24H_12+23H_ 100+ EHolz +5Ho,0(2 + KHO — @Ho,o — THZ +Ha(o, —15H;
1 37 242
+2H200 — 3H4} -5 — 5122 +50¢3 —2H_30—7H_20—Hol3 — 7H012 - THO
185 28 151 205
— 2Ho,0{2 + ——Ho,0 — 22Hy,0,0 —4Ho,000+ 5 H2+6H3 +8(1 —X) | — + {23 —

6 3 64 24
247 211 15 2 245 67 12, 1 1043
~ 0%+ %t 5 %] ) +16Cx"Cr (paal) | Zg — 1glet 5"+ lat o
3 31 389

+H 30+4H 2 10— EH—z,o —H_200+2H_22— 1—2H012 +4Hol3 + ~7 Ho,0 —2H2,0,0

11 31
—Ho0,00+9H1{3+6H; _20—H10l2— ZHLO,O —3H1000—4H1100+4H13+ 1—2Ho,o,o
11

11 67 , 11
““Ha+H ) [ 22— 0% = 2la—H 30+ 8H 2lo+ —=H 20— 4H_
+ oMt 4} + Pgq(—X) [18Z2 (2 7 (3 30+8H 20+ 5 H-20 2,0,0

11 67
—3H_1000+ 3 H_1{o+12H 1(3—16H_1 _1{>+8H_1 _100+16H_1 1o+ 9 H_10
11 11 3 1 67
—8H 5, +11H “TH 100— —H 12— 8H_ 13— SHo— =Hols — 4Hol3 — —H
8H 22+ 1,042 + g H-100— 5 H-12 8H 13 2Ho— 5 o2 o3 1800

31 11 1883 1

—3Ho,0(2 — 1—2Ho,o,o +Ho,000+2H2{2+ EHS + 2H4] +(1—x) [TOES - EHo,o,o,o +11H;
1 1 1 523 13 5

—H 2 10+ ins,o — éHfzzz + inz,o,o + %Ho +Holz— §Ho,o — iHo,o,o +2H1(>

8 13 3
— 2H1,o,o} +(1+x) [SH—lzz +4H_1 10+ §H—1,o —5H_100—6H_12— 312 + élzz

31
o+ 713 +5H_39

2+
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43 5 11 1 5 1 3 1
20— 2H 50— =Holo — =Halo — 2H 7H, — =H Hs + SH ] “H
413 SH-20—7 o2 > 202 ) 0,0{2+ 7Hp 2 200+3 s+ Ha| +5 0,0(2

1., 8 17 19 5 13 5 1
+ le - §12 + ?Zs+ H_ 20— 7H0+ 5H012 —Holz+ 3H0,0+ éHo,o,o+ éHo,o,o,o
1657 281 1., 97 5 /1 1 5
~8(1-X)|7g — 7 Gt gle’ + g o 58] ) + 16Cen7 ( gPaa)[Hoo — 5+ 5Ho]
17 5

F(1-%) Eﬁ %Ho} ~3(1-X) [m— o+ éag}) +16C2n, <%pqq(x) [5z3 ~4Hy00

55 5 3 10 10 2 5
— 4 THo+H “Ho.o—Ho00— —H10— —H2—2Hp 0 — 2H3| + = pgq(—X) | =
16 8 0" 012+2 00— M000~ = H10~ =2 2,0 3}+3pqq( X)[312
1 5 ]

3 10
— 513 +H 20+2H 1+ —5H_10+H_100—-2H 15— EHOZZ — §Ho,o —Ho00+Hs3

3
10 19 4 25 1

2 4 4 2
(1% S Hoo— 2H1+ SHio+ oHa| + (14 %) [2H 10— ZHo+ ZH “H
( X)[9+18 00— zH1+ZHi0+ 5 2]+( +X)[3 10— 5 Ho+5 o,o,o]Jr9 0

7., 4 23 5, 29 , 17 ; 9,
+ gHoo+ Hz = 8(1-x) | T2 502~ 558 +€Zs])+16CF (Pag) [Ezz ~2H_30

9 3 16 12
3 3 13
+6H_2{>+12H > _10—6H_200— 1_6H0 - EHOZZ +Holz+ 5 Ho,0 —2Ho,0,00+ 8H13
+12H1{3+8H1, 20— 6H100—4H1000+4H120—3H20+2H200+ 4H2 10+ 4H22
7 9
+4Hzo+4Hz 1+ 2H4] + Pgq(—X) [5122 - 513 —6H_30+32H 20> +8H_» _10+3H_2p
—26H_200—28H_22+6H_1{> +36H_1{3+8H_1 _20—48H_1 _1{>+40H_1 100
3

+48H_1 12 +40H_10{>+3H_100—22H_1000—-6H_12—4H_120—32H 13— EHO

3 9
- EHOZZ —13Hy{3 — 14Hy ol — iHo,o,o +6Ho,0,0,0 +6H2{2 + 3H3 + 2H3 0 + 12H4]
31 5
+(1-x) [ZH—s,o —g T 4H_2 0,0+ Ho,0{2 —3Ho,0,0,0 + 35H1 + 6H1{ —H1 0+ éHz,o]
37 93 81
+(1+X) [EQZ - ZZz — 713 —15H 20+30H 1{2+12H 1 10—2H 1p0—26H 100

539

191 85
—24H_12— EHO —28Hy(o + ?Ho,o +20Hp 00+ ZHZ —3H2,00—2H30+ 13H3

67
— H4} +4(>+333+4H_30+10H o+ 7"'0 +6Ho{3+ 19Hp(» — 25Hy 0 — 17Hp 0,0

29 9 18 17
~2Hp — Hao— Mg+ 8(1—X) | 5 — Rala+ glat = Lo + 5 a—15s) ) (4.9)

Thex-space counterpart of Eq. (3.8) for the evolution of the ‘ansircombinations (2.2) is given by
@~y — p@+ _Ca o [134
PR (0 = Pi&"" () +16CaCr (Cr — =2 ) (Pac(—X) | =5
22 44
+32H_ 20> + §H,270 —16H_200—32H 57+ 3H71Z2 +48H_1{3—64H_1 _1{»

268 22 44
+32H.1100+64H112+—5-H-10+44H 1002+ ZH-100 - 12H 1000~ 5 H-12

{2 — 402" — 1103 — 4H 30

2 134 31
—32H_13—3Hp — §H012 — 16Hy(3 — 5 Hoo— 12Hy0l2 — §Ho,o,o +4Ho0,00+8H2(2
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22 367 1
—}—§H3+8H4}—|—(1—X)[1—8—|— Zz +2H_ 30—2H 2(2—4H 2, 10—10H 20—2H00

140
+2H_20,0+ 2Ho{3+ Ho,0{2 — Ho,0,0,0 + 8H1{2 + ?Hl} +(1+x) [32H_112 —18(,

26 481 70
—233+ 3 H-10-16H100—-32H. 12—1—8H0—29|'|012+5H000+24H3+ 3H2}

~ 20— 23+ 320+ 14Hel2 + 2Ho 00 — 16Hs) + 16Cen; (Cr - %) (Paal—x) 223

8 40 4 8 2 20 4
——Zz—— _§H 112—§H 10—§H 1oo+3H 12+ 5 H012+ 9Hoo+3Hooo
4 61 8 8 41 4
—§H3}+(1—x) [—9 —éHl} +(14x) [ZHOO—éH Lo+ 9Ho—§H2D

Ca
+16C, (C,: : ) (pqq( X) [913 —72,% +12H 30— 64H 20, — 16H 10— 6H_20
+52H 200+ 56H 22 —12H_1{> — 72H_1{3—16H_1_20+96H_1 _1{> —80H_1 100
—96H_1_12—80H_10{2—6H_100+44H_1000+12H_12+8H_120+64H_13+3Ho

+ 3Ho2 + 26Hy{3 + 28Hp 02 + 9Ho 0,0 — 12Hp 0,00 — 12H2{2 — 6H3 — 4H3 0 — 24H4]
—(1-x%) [154— 8H_30+8H_20,0+ 61Hy + 6Hol3 + 2Hg 02 — 6Hp 00,0 + 12H (> +60H;
+ 8H1,0} +(1+x) [2412 +57(3+10H 20 —48H_1{> —4H_10+40H_100+48H_ 1>
+59Hy(» — 22Hy 0 — 35Hp 0,0 — 22Hy — 4Hp 0 — 44H3} +8(2—42(3—4H 50 +42Hy

—38Holz + 14Hoo — 16H, + 26H 00+ 24Hs ) (4.10)

Finally the Mellin inversion ofy(rfs)s(N) in Eq. (3.9) leads to the following result for the leading
(third-order) diﬁerencé’é?s(x) of the ‘valence’ and ‘minus’ splitting functions:

dabld, . /1 50 41 9
Pr(é)s(x) = 16n; abc<§(1—x) [3 —Zz——(z —H_30+H_2{o—H_ 2oo+4H3
C
3 1 3 91 1 3 3
+2H 5 10+ EHO,OZZ— H1lo — —H100+ 12H1] + 5(1+X) [Hfl ~10— 5H7112+ ZHO
13 1 3 9 29 41 1
P H_o100+2H 12— “H_ H H Hz — Halz — SH
6 1o+2 1,00+ 1,2 > 20+ = 012+12 oo+12 2 202 2.0,0
3 1/1 1,
+§H4] - 5(— + X ) [3H7112+2H71 710—2H7100—2H712+H112} +3X [513—2H3
91
+2H_ 20+4H012—2H000+2H112] +24H0+13——12+12 —Holz —Hol2 — 2Hp 02
3 1 1
—Hpo—-H —H H_>o0—H3) . 4.11
+8 00~y o,o,o+2 0000+H_20 3) (4.11)

Of particular interest is the end-point behaviour of thentamic polylogarithms ak — 0 or
x — 1, where logarithmic singularities occur. In the limit— O, the factors Ix are related to
trailing zeroes in the index field, whereas in the limit> 1 factors of If1 — x) emerge from
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leading indices of value 1. In both limits, the logarithma te factored out by repeated use of the
product identity for harmonic polylogarithms,

Ho, OHR,(X) = Y Hp (%) (4.12)
I_‘WJrV:ﬁ‘NH'JﬁV
Herem,, W ny, represents all mergers af, andny, in which the relative orders of the elements of
my andny are preserved. All algorithms for this algebraic procechaee been coded indRwm,
some explicit examples are given in Refs. [64, 76].

The largex behaviour of splitting function®2 " (x) reflects the largé¥ behaviour of the
corresponding anomalous dimensions in Eq. (3.10). Spaltyfithe (identical) largecbehaviour

of P2V (x) is given by

PATY(x) = (153)% + B3d(1—x) + CzIn(1—x) + O(1) . (4.13)

The constant®\3 andC3 have been specified in Eqgs. (3.11) and (3.12), respectiwdlife the
coefficients o®(1— x) are explicit in Eq. (4.9). At smak the splitting functions can be expanded

in powers of Irx. For the three-loop non-singlet splitting functidh%)i’s(x) one finds
P (x) = DyIn*x + DiIn3x + DjIn?x + DiInx + O(1) . (4.14)

Generally, terms up to fx occur at ordelu's‘“. Keeping only the highesi+1 of these, one
arrives at the RLx smallx approximation. Like the largg-coefficients, these contributions can

be readily extracted from our full results using Eq. (4. Fr Pr(éH we obtain
2

Df = =C2
0 3 F
22 4
Dy = 3 C2C,—4CE - 3 C2n;
121 472 44
Dy = [7 - 3012] CeC2+ [? + 96&4 C2Cp+[4— 1042, C3 - 5 CrCany
64 4
— KCEnf + éCanz
3934 370
Dy = [7 - 9212} C:CZ + {? +2160 + 48(3} CZCy (4.15)
1268 88 88
— [30+19225 + 9673| C2 — | ——=— — 82| CECany — — C2n¢ + —=Cgn? |
27 9 27
or, after insertingca = 3 andCg = 4/3 and the numerical values ¢f and{s,
DJ = 1.58025
DI = 296296237037
D = 295042—32.1975n; +0.592597
D = 126111-152597n; +4.34567N7 . (4.16)
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The corresponding coefficients fﬁr@_ are given by

1
D, = —CeCA+4CiC,— §OcF

_ 40 14 20 16

Dl - 3 CFCA 3 CFCA 4C|: + 9 CF nf 9 C,:CAnf
1

1% cun

152
D, = [81414(yC:CZ— [T + 9612] C2C,— [60— 10425 CE —

4
—Cen?

80
+ —C?n; + 5

3
3442 100 1850 680

_ 88
D3 — 7 A ZZ + 112Z3:| CFCA |iT = T A ZZ - 336Z3:| CFCA + 27CF nf

568 32 2252 8
~ [286— 19212—224z31cp+[7+ Jcénf—[?——zz} CeCany , (4.17)

and

1.43210
35.5556— 3.16049

~ 399205- 39.7037n; + 0.59259n?
D; = 146593— 172693n; +4.34567N7 . (4.18)

O O O
NPT O
(P [P 14

The coef‘ficientsDaE of the leading logarithms in Egs. (4.15) and (4.17) agreé tie predictions

in ref. [31] based of the resummation of Ref. [30]. Finallg gmallx expansion oPr(é)s(x) reads

dabeg I 1

D§ = -

0 n '3
D]S_ _ dabcd I ( )

s dabCdabc
DF =~y (18— 102y)

abc,

D3 = dni(:abcnf (56+2¢2—1643) , (4.19)

or, inserting the QCD value of 49 for the group factod®dgpe/Ne,

Dj = +1.48148 , DJ = —2.96296n;
D5 &~ +6.89182n; D3 = +178030n; . (4.20)

Then? andnf parts of the function®2* (x) in Egs. (4.9) and (4.10) are separately shown
in Figs. 2 — 4 together with the approximate expressionsséédrin Ref. [29] mainly from the
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integerN results of Refs. [24, 25, 26]. Also shown for the non-fernéagontributions in Figs. 2
and 3 are the successive approximations by smilaldfarithms as defined in Eq. (4.14) and the text
below it. As can be seen from Egs. (4.16) and (4.18), the cieffis of Ix for Pr(é)i increase
sharply with decreasing powkr Consequently the shapes of the full results in Figs. 2 and Bea
produced only after all logarithmically enhanced termsena@en included. Even then the small-
approximations underestimate the complete results bgifaeis large as 2.7 and 2.0, respectively,
for Péﬁ” and Pr(é)* atx =104, rendering the smalt-expansion (4.14) ineffective for any practi-
cally relevant value ok. Keeping only the Lx (I#x) or NLx (In*x and Ir®x) contributions leads
to a reasonable description only at extremely small valigs Dherefore, meaningful estimates of
higher-order effects based on resumming leading (and adiolg) logarithms in the smaX{imit
appear to be difficult.

The new three-I00|v|f1 contributionPr(é)S with the colour structurelabcdabc/ Nc is graphically
displayed in Fig. 5 fon; = 1. Rather unexpectedly, also this function behaves lik& for x — 0,
and here the leading smallterms do indeed provide a reasonable approximation. In fact
function dominates the smallbehaviour of the non-singlet splitting functions, far= 4 being,

for example, about 7 times larger thaﬁ@i(x) atx=10"*. The presence of a (dominant) leading
smallx logarithm in a term unpredictable from lower-order struetuappears to call into question
the very concept of the smatlresummation of the double logarithm™ In%x.

In view of the length and complexity of the exact expressifuisthe functionsPrgsz)i(x), it
is useful to have at ones disposal also compact approxiregtesentations involving, besides
powers ofx, only simple functions like the--distribution and the end-point logarithms

Do=1/(1—x)+, Li=In(1-x), Lo=Inx. (4.21)
Inserting the numerical values of the QCD colour fac:té’p@+ in Eq. (4.9) can be represented by

P2 (x)

I

+ 1174898 + 12953845(1 — X) + 714111 + 16411 — 3135x+ 2436 %2
— 52213+ LoL1[5639+256.8L¢] 4+ 1258L+ 294913+ 800/27L3 + 128/81L
+ 0 ( — 1831877 —1739275(1 — X) —5120/81L1 — 197.0+ 381 1x+ 72.94%

+44.79x3 — 1.497xL3 — 56.66LoL; — 1526L¢ — 2608/81L5 — 64/27 Lg)
+ n? (— Do — (51/16+ 375 — 522) 8(1—X) +X(1—X) Lo (3/2Lo+5) +1
+(1-x) (64 11/2Lo+3/4L5)) 64/81. (4.22)

A corresponding parametrization Bfé)_ in Eq. (4.10) is given by

P27(x) = +1174898Dp+ 12954705(1—x)+ 71411, + 18602 — 3505x + 297.0%2
—4332x3 4 LoL1[684+2512L0] + 1465219+ 399215+ 320/9L3 + 116/81L3
+ o ( — 1831877 —1739333(1 — x) —5120/81L1 — 21662+ 406 5x+ 77.89x°
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Figure 2: Then;-independent three-loop contributiéﬁ%(x) to the splitting functiorP5(x), mul-
tiplied by (1 — x) for display purposes. Also shown in the left part is the utatety band derived
in Ref. [29] from the lowest six even-integer moments [24, 26]. In the right part our exact
result is compared to the smalbpproximations defined in Eq. (4.14) and the text below it.
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Figure 3: As Fig. 2, but for the splitting functid®g(x). The first seven odd moments underlying
the previous approximations [29] also shown in the left paxte been computed in Ref. [26].
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Figure 4: Thenf1 three-loop contributionE’fi(x) to the splitting functions::(x), compared to
the uncertainty bands of Ref. [29] based on the integer mtsweaihculated in Refs. [24, 25, 26].
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Figure 5: The first non-vanishing contributi@é?(x) to the splitting function®5,(x), compared
to the approximations of Ref. [29] (where, assuming the detepess of the resummation [30, 31],
the possibility of a Iffx term was disregarded) and to the smaéixpansion in powers of k
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+34.76x3 — 1.136xL3 — 65.43LgL; — 17269 — 3216/81L3 — 256/81|_8>
+ n? (— Do — (51/16+ 33— 522) (1 —X) +x(1—X) Lo (3/2Lo+5) + 1
+(1—X)(6+11/2Lo+3/4 Lg)) 64/81. (4.23)

Finally the splitting function:’rg?S in Eq. (4.11) can be approximated by

P2%(x) = n, <[L1(—1639x‘1—7.208x)+15149+44.51x—43.12x2+4.82x3][1—x]

+LoL1[—1731+46.18L¢] + 17804Lo+ 6.892L3+40/27[L3 — 2L3] ) . (4.29)
The identicalnf2 parts ofPr(fs)i, the +-distribution contributions (up to a numerical truncatioi
the coefficients involvind}i), and the rational coefficients of the (sub-)leading regafad-point
terms are exact in Eqgs. (4.22) — (4.24). The remaining caoefiis have been determined by fits to
the exact results, for which we have used tlerFRAN package of Ref. [75]. Except forvalues
very close to zeros d?r(é)'(x), the above parametrizations deviate from the exact expresby
less than one part in thousand, which should be sufficiemityrate for foreseeable numerical
applications. For a maximal accuracy for the convolutionth whe quark densities, also the co-
efficients ofd(1 — x) have been slightly adjusted, by 0.02% or less, using lonwggtenoments.
Also the complexN moments of the splitting functions can be readily obtaireea perfectly suffi-
cient accuracy using Egs. (4.22) — (4.24). The Mellin transfof these parametrizations involve
only simple harmonic sumSy-o(N) (see, e.g, the appendix of Ref. [60]) of which the analytic
continuations in terms of logaritmic derivatives of Eusdr-function are well known.

5 Numerical implications

In this section we illustrate the effect of our new threed@plitting functionsPr(fs)i’V(x) on the

evolution (2.6) of the non-singlet combinaticané;"(x, u]?) of the quark and antiquark distributions.
For all figures we employ the same schematic, but charatitem®del distribution,

X0z’ (%, Hg) = x3(1—x)P (5.1)
with
a=05, b=3, (5.2)

facilitating a direct comparison of the various splittinm€tions contributing to Eq. (2.6). For the
same reason the reference scale is specified by an ordgreimdient value for the strong coupling
constant usually chosen as

as(ud) = 0.2. (5.3)

This value corresponds mg ~ 25...50 Ge\? for GS(MZZ) =0.114...0.120 beyond the leading
order, a scale region relevant for deep-inelastic scagdooth at fixed-target experiments and,
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for much smallex, at theep collider HERA. Our default for the number of effectively nséesss
flavours isn, = 4. The normalization oy, is irrelevant for our purposes, as we consider only the
logaritmic derivativesy's = dIng/s/dInp?.
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Figure 6: The perturbative expansion of the logarithmidesdarivatived Ing;l;/dInu? for a char-
acteristic non-singlet quark distributioiz = x%>(1—x)3 at the standard scaje = .

The scale derivatives of the three non-singlet distrimsgiare graphically displayed in Figs. 6
and 7 over a wide region of. At large x the NNLO corrections are very similar in all cases,
amounting to 2% or less for > 0.2, thus being smaller than the NLO corrections by a factor of
about eight. The same suppression factor is also foundgk) in the region 10° < x < 1072,
The NNLO effects are even smaller fgy, at smallx, but considerably larger far)s atx < 1073,

For example, ax ~ 104, WherePr(é)v(x) exceedSDr(é)_(x) by a factor of about 8 as discussed in
the paragraph above Eq. (4.21), the ratio of the correspgratirrections in Fig. 7 amounts to 2.5.
Recall that the scale derivatives (2.6) do not probe thetsgifunctions locally inx due to the

presence of the Mellin convolution.

The numerical values fag¥y(x, i) are presented in Tab. 1 for four characteristic values of
Also illustrated in this table is the dependence of the tesri the shape of the initial distribution,
the number of flavours and the value of the strong couplingtamt. The relative corrections
are rather weakly dependent of the lasgpewerb in Eq. (5.1). They increase at smallwith
increasing smalk powera, i.e., with decreasing size af. At largex, where then; d*¢d,pc/nc
contributionP5g is negligible, the NNLO corrections decrease with incregsi;. At smallx
this decrease is overcompensatedip by the effect ofPJ. Except for very small momentum
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Figure 7: As Fig. 6, but for the scale derivatives of the twientnon-singlet combinatiorg,s" .

fractionsx < 10~2 (where the non-singlet quark densities play a minor rolenfioist important
observables) the NNLO corrections amount to 15% or less farean strong coupling constant as
large asos = 0.5. Hence the non-singlet evolution at intermediate ancelargppears to remain
perturbative down to very low scales as used in the phenological analyses of Refs. [77, 78]
and in non-perturbative studies of the initial distribmtdike those of Refs. [38, 39, 40, 41, 42, 43].

Another conventional way to assess the reliability of p#dtive calculations is to investi-
gate the stability of the results under variations of theoreralization scaley. For, # ps the
expansion in Eq. (2.6) has to be replaced by

Pas(H, 1)

+ 85

wsfyel + 08 (A it

3(1P) (Pé?" — {B1PI +2BoPiE" } 1n E; + 2P In2 E;) .

(5.4)

wherepy represent th&1S expansion coefficients of thgzfunction of QCD [79, 80, 81, 82].

In Fig. 8 the consequences of varyipg over the rather wide ranggp? < p2 < 8y are
displayed forgf; at six representative values xf The scale dependence is considerably reduced
by including the third-order corrections over the fxdtange. At NNLO both the points of fastest
apparent convergence and the points of minippaensitivity,dqg,l./0u, = 0, are rather close to the
‘natural’ choicey, = ps for the renormalization scale.
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X LO NLO NNLO r Mo I’2/I’1
default (Fig. 7)
104 6.546-10°2 | 8.424-102| 9.163-10°2 | 0.287| 0.088| 0.31
0.002| 5.632-102| 6.875-102| 7.041-102| 0.221| 0.024| 0.11
0.25 | —-5.402-10°2 | —6.331-10 2 | —6.457-10°2 || 0.172| 0.020| 0.12
0.75 | —1.949-10°1 | —2.189.10°1 | —2.222.10°! || 0.123] 0.015| 0.12
a=0.8
104 1.660-10°1| 2351.101| 2818101 | 0.417|0.198| 0.48
0.002| 1.249-101| 1583.101| 1.650-101| 0.268| 0.042| 0.16
0.25 | —4.352.10°2 | —-5.171-102 | —5.283-10°2 || 0.188] 0.022| 0.12
0.75 | —1.930-101 | —2.168-10°1 | —2.200-10°! || 0.123] 0.015| 0.12
b=5
104 6.474-10°2| 8.278-102| 8917-102 | 0.279| 0.077| 0.28
0.002| 5.324-102%| 6.432-102| 6.546-102 | 0.208| 0.018| 0.09
0.25 | —7.835-10°2 | —9.022-10°2 | —9.180-102 || 0.151| 0.018| 0.12
0.75 | —2.300-10°1 | —2.580-10°1 | —2.619-10°! || 0.122] 0.015| 0.12
104 6.546-10°2| 8.480-102| 9.187-102 | 0.295| 0.083| 0.28
0.002| 5.632-102| 6.942-102| 7.174-102| 0.233| 0.033|| 0.14
0.25 | —-5.402-10°2 | —6.406-10 2 | —6.588-102 || 0.186| 0.028| 0.15
0.75 || —1.949-10°1 | —2.219.-101 | —2.269-10°1 || 0.139| 0.023| 0.16
n; =3 andas=0.5
104 1.636-10 1| 2845.101| 3.949.10°1| 0.739| 0.388|| 0.53
0.002| 1.408-101| 2227.101| 2589.101| 0.581| 0.163|| 0.28
025 || —1.350-10°1 | —1.978.101 | —2.262.-10°1 || 0.465| 0.144| 0.31
0.75 | —4.871-101 | —6563-101 | —7.346-10°1 || 0.347| 0.119| 0.34

Table 1: The LO, NLO and NNLO logarithmic derivativg$,= dIngys/dIn ufz at four representa-

tive values ofx, together with the ratios, = N"LO/N"~1LO — 1 for the default input parameters
specified in the first paragraph of this section and somet@ngthereof.
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Figure 8: The dependence of the NLO and NNLO predictionggfr= dIng;s/dIn u? on the
renormalization scalg, for six typical values ok. The initial conditions are as in Fig. 5.

The relative scale uncertainties of the average results/ecionally estimated by

max(Gns(X, W = ZHF - - 44F)] — min[Aps(X B = 717 ... 4487))]
2|averageghy(x, K2 = 7147 ... 443)] |

is shown in Fig. 9 for all three cases- +,v. These uncertainty estimates amount to 2% or less ex-

cept forx < 10-3, an improvement by more than a factor of three with respettte@orresponding

NLO results. Taking into account also the apparent convergef the series in Figs. 6 and 7, it is

not unreasonable to expect that the effect of the four-lampsinglet splitting functions — which

most likely will remain uncalculated for quite some time —lIvie less than 1% fok > 1073,

This expectation is consistent with the Padé estimaté’é?&'femployed in Ref. [83] for the RLO

largex evolution of the deep-inelastic structure functidasandFs. At very small values ok the
higher-order corrections will presumably be consideradniger.

NG = (5.5)
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Figure 9: The renormalization scale uncertainty of the NIo@d AINLO predictions for the scale
derivative ofqgl, i = +,V, as obtained from the quantify defined in Eq. (5.5). Here and
in Figs. 6 and 7 the spikes close xo= 0.1 reflect the sign-change of,c and do not constitute
appreciable absolute corrections and uncertainties.

6 Summary

We have calculated the complete third-order contributtortie splitting functions governing the
evolution of unpolarized non-singlet parton distributionperturbative QCD. Our calculation is
performed in MellinN space and follows the previous fixétleomputations [24, 25, 26] inasmuch
as we compute the partonic structure functions in dee@stiel scattering at even or ofidusing
the optical theorem and a dispersion relation as discusg@®]. Our calculation, however, is not
restricted to low fixed values &f but provides the completé-dependence from which thxespace
splitting functions can be obtained by a (by now) standardiMi@version. This progress has been
made possible by an improved understanding of the mathesnatiharmonic sums, difference
equations and harmonic polylogarithms [59, 64, 45], anditif@ementation of corresponding
tools, together with other new features [53], in the symbatanipulation program &RMm [52]
which we have employed to handle the almost prohibitivalgdantermediate expressions.

Our results have been presented in both Mdlimnd Bjorkenx space, in the latter case we
have also provided easy-to-use accurate parametrizatlungesults agree with all partial results
available in the literature, in particular we reproduce ltheest seven even- or odd-integer mo-
ments computed before [24, 25, 26]. We also agree with thewesation predictions [30, 31]
for the leading smalk logarithms Irf x of the splitting functiond;5(x) andPxs(X) governing the
evolution of flavour differences of quark-antiquark sumd differences. However, an unpredicted
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term of the same size is found also for the rc&RFdabc/nc contributionsP3; to the splitting func-
tion for the total valence distribution. At largeve find that the coefficient of the leading integrable
term In(1 — x) at ordern is proportional to the coefficient of the (only-distribution /(1 — x)

at ordem— 1, a result that seems to point to a yet unexplored structure.

We have investigated the numerical impact of the three-I®dgLO) contributions on the
evolution of the various non-singlet densities. The effgfcthe new contributiorP3y(x) is very
small at largex but rises sharply towards— 0, reaching 10% for a standard Regge-inspiyéd
initial distributions atx ~ 1072, At x > 102, on the other hand, the perturbative expansions for
the scale dependencetn gns(X, 1) /dInuZ appear to be very well convergent. Faoy= 0.2, for
example, the NNLO corrections amount to 2% or less for fowoilas, a factor of about 8 less
than the NLO contributions. Also the variation of the renalization scale leads to effects of
aboutt+2% at NNLO in this region ok. Corrections of this size are comparable to the dependence
of the predictions on the number of quark flavours, rendegipgoper treatment of charm effects
rather important even for largenon-singlet quantities, see Refs. [84, 85] and referericaein.

FoRM files of our results, and BRTRAN subroutines of our exact and approximaispace
splitting functions can be obtained from the preprint serivet p: // ar Xi v. or g by downloading
the source. Furthermore they are available from the autiyye request.
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