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Abstract

We present the third-order contributions to the quark-gluon and gluon-quark timelike splitting
functions for the evolution of fragmentation functions in perturbative QCD. These quantities have
been derived by studying physical evolution kernels for photon- and Higgs-exchange structure
functions in deep-inelastic scattering and their counterparts in semi-inclusive annihilation, together
with constraints from the momentum sum rule and the supersymmetric limit. For this purpose we
have also calculated the second-order coefficient functions for one-hadron inclusive Higgs decay
in the heavy-top limit. A numerically tolerable uncertainty remains for the quark-gluon splitting
function, which does not affect the endpoint logarithms forsmall and large momentum fractions.
We briefly discuss these limits and illustrate the numericalimpact of the third-order corrections.
Compact and accurate parametrizations are provided for allthird-order timelike splitting functions.



In this article we address the scale dependence (evolution)of the parton fragmentation distributions
(functions) Dh

f (x,Q
2), see Ref. [1] for an introductory overview, at the next-to-next-to-leading

order (NNLO) in massless perturbative QCD. Herex represents the fractional momentum of the
final-state partonf transferred to the outgoing hadronh; andQ2 is a (timelike) hard scale, for in-
stance the squared momentum of the virtual photon orZ-boson in semi-inclusive electron-positron
annihilation (SIA),e+e− → γ , Z → h+X, whereX stands for all accessible hadronic states.

The evolution of the fragmentation distributions is given by

d
d lnQ2 Dh

a(x,Q2) =

Z 1

x

dz
z

PT
ba

(

z,αs(Q
2)
)

Dh
b

( x
z
, Q2

)

, (1)

where the summation overb = qi , q̄i , g for i = 1, . . . , nf is understood, andnf denotes the number

of effectively massless quark flavours. Unlike the functions Dh
f (x,Q2), the ‘timelike’ splitting

functionsPT
ba can be expanded in powers of the strong couplingαs,

PT
ba

(

x,αs(Q
2)
)

= asP(0)T
ba (x) + a2

s P(1)T
ba (x) + a3

s P(2)T
ba (x) + . . . . (2)

We normalize the expansion parameter asas = αs/(4π) and use, without loss of information, the
standardMS scheme with the choiceµ2

r = µ2
f = Q2 for the renormalization and fragmentation

(final-state mass factorization) scale. The system (1) of(2nf +1)×(2nf +1) coupled equations can
be decomposed into 2nf +1 scalar flavour non-singlet equations and the 2×2 flavour-singlet system

d
d lnQ2

(

Dq
Dg

)

=

(

PT
qq PT

gq

PT
qg PT

gg

)

⊗

(

Dq
Dg

)

with Dq =

nf

∑
i=1

(Dqi
+Dq̄i

) . (3)

Here⊗ abbreviates the convolution in Eq. (1), and we have suppressed all functional dependences.

The leading-order (LO) splitting functionsP(0)T(x) [2] are identical to their ‘spacelike’ coun-
terparts [3] for the evolution of the initial-state parton distributions (where the matrix in Eq. (3) is
transposed), a fact often referred to as the Gribov-Lipatovrelation [4]. The next-to-leading order
contributionsP(1)T were derived by several groups about thirty years ago [5–9].Unlike the space-
like case [10, 11], where the calculations can be performed via forward scattering amplitudes, the
NNLO correctionsP(2)T have eluded a direct calculation in terms of Feynman diagrams so far.

The (three) non-singlet quantitiesP(2)T
ns and the diagonal entries in Eq. (3) have been deter-

mined by two of us a couple of years ago [12, 13] via analytic continuations (see below) of the
unfactorized partonic structure functions from the spacelike (deep-inelastic scattering, DIS) to the
timelike SIA case, supplemented by complementary considerations based on Ref. [14]. Only the

second Mellin moments ofP(2)T
gq (x) andP(2)T

qg (x) are fully known at this point [13], since these
quantities are fixed by the momentum sum rule and the diagonalentries.

Beyond the leading order, there is no direct relation between the spacelike splitting functions,
or their x → 1/x analytic continuations (AC), and their timelike counterparts in theMS scheme.
However such a relation exists for spacelike and timelike physical evolution kernelsK(x,αs) for
photon-exchange DIS and SIA structure functions at NLO [15], see also Ref. [16]. Defining the
expansion coefficientsK(n) as in Eq. (2), it can schematically be written as

AC[K(n)S(x)] = K(n)T(x) for n = 0, 1 . (4)
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In order to access all four splitting functions, we study thephysical evolution kernels for the
systemF1 andFφ of flavour-singlet DIS structure function. The former quantity is chosen, instead
of F2 in Ref. [17], since it directly corresponds to the transverse fragmentation functionFT in SIA.
The NNLO coefficient functions for these observables are known from Refs. [18, 19], see also
Refs. [20, 21].Fφ is the structure function for DIS by the exchange of a scalarφ coupling directly
only to gluons via a termφGµνGµν in the Lagrangian (such as the Higgs boson in the limit of a five
massless flavours and a very heavy top quark), whereGµν denotes the gluon field strength tensor.
The NNLO coefficient functions for the structure functionFφ have been calculated in Refs. [17,22],
while those for the corresponding fragmentation functionFT

φ are presented in Appendix A.

The spacelike physical kernels have been discussed, for thesystem(F2,Fφ), in detail in Ref. [17].
The timelike case is completely analogous up to a transposition of the matrices:

d
d lnQ2 FT = KT⊗FT =

{(

β
dCT

das
+ CT⊗PT

)

⊗ (CT)−1
)}

⊗FT (5)

with

FT =

(

FT

FT
φ

)

, KT = ∑
n=0

an+1
s

(

K(n)
TT K(n)

Tφ

K(n)
φT K(n)T

φφ

)

, CT = ∑
n=0

an
s

(

C(n)
T,q C(n)T

φ,q

C(n)
T,g C(n)T

φ,g

)

(6)

wherec(0)
T,q = C(0)T

φ,g = δ(1−x) andc(0)
T,g = C(0)T

φ,q = 0. We have skipped the superscript ‘T’ where
it is not needed for uniqueness in the present context. It should be noted that the normalization of

c(n)
T,g in Eq. (6) differs by a factor of 1/2 from that in Refs. [19,21]. Finallyβ in Eq. (5) is the standard

beta function of QCD,β = −β0a2
s + . . . with β0 = 11/3CA−2/3nf andCA = Ncolours= 3.

For the off-diagonal entries the analytic continuation involves, besidesx→ 1/x and the mul-
tiplication by a factorx due to the phase space of the detected parton in the SIA case [19], a sign
factor and a ratio of colour factors, leading to (withCF = 4/3 in QCD)

AC[K(n)
2φ (x)] = −

CF

nf
xK(n)

2φ (1/x) , AC[K(n)
φ2 (x)] = −

nf

CF
xK(n)

φ2 (1/x) . (7)

The critical part of the analytic continuation is that of powers of ln(1−x), which is given by

ln(1−x)
ACκ−→ ln(1−x) − lnx + κ iπ with κ = 0 or 1. (8)

Forκ = 1 the real part is taken in the end. It is not clear at all that beyond NLO Eq. (8) is applicable,
in either form, to quantities such as physical evolution kernels instead of to (classes of) Feynman
diagrams, see the discussions in Refs. [5,8,16].

The NLO physical kernels for(F1,Fφ) and(FT ,FT
φ ) fulfil Eq. (4) for bothκ = 0 andκ = 1 in

Eq. (8). However, for the NNLO diagonal entries we find (restricting ourselves tox < 1)

AC0 [K (2)
11 (x)] − K (2)

TT (x) = 24ζ2β0C2
F

1+x2

1−x
lnx = 12ζ2 β0CF P(0)

qq (x) lnx , (9)

and a completely analogous relation withP(0)
gg = K (0)

φφ on the right-hand-side forK (2)
φφ and K (2)T

φφ .

Usingκ = 1 instead leads, besidesζ2β0 terms withP(0)
qq (x) andP(0)

qq (x) lnx, to the same spurious
ζ2C3

F contribution as found in the analytic continuation in Ref. [12].
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There is no obvious reason why an NNLO imperfection of theAC relation should lead to an
offset proportional toβ0 and the lowest-order kernel, and why exactly the same relation should
hold for two different kernels. Hence it seems very likely that a non-vanishing r.h.s. of Eq. (9)
is genuine and analogous to the ‘Crewther discrepancy’ between the Gross–Llewellyn Smith sum
rule in DIS and the Adler function ine+e− annihilation observed and discussed in Ref. [23], see
also the all-order proof and the recent explicit fourth-order calculation in Refs. [24].

Therefore, if one tried to fix the so far unknownζ2 terms of the off-diagonal splitting func-

tions by imposing Eq. (4) forK (2)
1φ , K (2)

φ1 and their timelike counterparts, one should find an offset
proportional toβ0 in the known second moments which is then compensated by right-hand-sides
analogous to that of Eq. (9). Carrying out these calculations indeed leads to

[

AC0 [K (2)
1φ ]−K (2)

Tφ

]

N=2
= ζ2 β0CF

(

− 212
3 CA − 16CF

)

, (10)
[

AC0 [K (2)
φ1 ]−K (2)

φT

]

N=2
= ζ2 β0nf

(

9CA − 38
3 CF +4β0

)

. (11)

For the required generalization of these relations to all values ofN, we consider also theκ = 1
continuation which, while again leading to spurious non-β0 terms, appears to provide the right
correction terms for Eq. (10),

AC0 [K (2)
1φ ]−K (2)

Tφ = −6ζ2 β0P(0)
gq (x) [2CA(1− lnx) + CF ] , (12)

as well as theβ2
0 part of Eq. (11). We assume that also the first two terms on the r.h.s. of Eq. (11)

correspond a to combination ofP(0)
qg andP(0)

qg lnx. (Poly-)logarithms with higher weight cannot
occur since this is annf contribution and thus restricted to an overall weight of three. Imposing
also other constraints discussed below we arrive at

AC0 [K (2)
φ1 ]−K (2)

φT = ζ2β0P(0)
qg (x) [8(CA−CF)−12lnx(CA−2CF) + 6β0 ] . (13)

Also the remaining uncertainty of the coefficients of lnx in this relation will be addressed below.

We are now ready to present the (only marginally provisional) results for the NNLO timelike
splitting functions. For completeness we first recall the corresponding LO and NLO results:

P(0)T
qg (x) = P(0)S

qg (x) = 2nf pqg(x) = 2nf (1−2x+2x2) , (14)

P(0)T
gq (x) = P(0)S

gq (x) = 2CF pgq(x) = 2CF(2x−1−2+x) (15)

and

P(1)T
qg (x) = 4CFnf (−6+23/2x−10x2− (5/2−2x−2x2)H0− (1−2x+4x2)H0,0+2H1

+2pqg(x)(−ζ2+H1/2−3H1,0−H1,1 +H2)) − 4/3n2
f (2+2pqg(x)(2/3+H0−H1))

+4CAnf (− (20x−1−13+95x−178x2)/9−4ζ2x− (4+34x+4x2)/3H0

+(2+12x)H0,0−2H1−2pqg(−x)H−1,0 +2pqg(x)(2H1,0−5/6H1+H1,1−2H2)) , (16)

P(1)T
gq (x) = 4C2

F ((9x−1)/2− (8−x/2)H0+(2−x)H0,0−2xH1 +2pgq(x)(2H1,0+H1,1

−2H2)) + 4CFCA(+17/9x−1 +5−x−44/9x2 +4ζ2− (6x−1−8−9x−8/3x2)H0

− (8x−1+4+6x)H0,0 +2xH1−2pgq(−x)H−1,0−2pgq(x)(3H1,0+H1,1−H2)) . (17)
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H~m1
are the harmonic polylogarithms (HPLs) as defined in Ref. [25] with H0,1,0,1(x) ≡ H2,2 etc.

Our new third-order contributions to Eq. (2) are given by

P(2)T
qg (x) =

C2
Fnf (−227/4−1967/2x+1069x2− (288−352x+160x2)H1,0,0+(34−32x−4x2)H1,1

− (240−64x+256x2)H−2,0− (180−192x+144x2)H1,1,0− (176−288x+416x2)H2,0,0

− (124−64x+48x2)H1,2− (120−240x+288x2)H2,1,0− (104−208x+224x2)H2,2

− (96−64x+256x2)H−3,0− (76−64x+48x2)H1,1,1− (56−112x+128x2)H2,1,1

− (40−144x+160x2)H0,0ζ2− (28+144x−16x2)H3− (2−116x+324x2)H2

+(156−816x−640x2)ζ3+(12+272x−176x2)H0ζ2+(16−256x+128x2)H0,0,0,0

+(32+128x+256x2)H−2,0,0 +(36−584x−192x2)H0,0,0+(64+320x+256x2)H−1,0,0

+(40−304x+160x2)H0ζ3+(56−1904/5x+352/5x2)ζ2
2 +(64−128x+192x2)H3,1

+(64+64x+128x2)(H−2ζ2 +2H−2,−1,0)− (496+240x−224x2)H−1,0

+(92−1143x+110x2)H0+(96−192x+352x2)H3,0+(104−144x+224x2)H2ζ2

+(104−80x+16x2)H2,1+(106−564x+564x2)ζ2+(107−42x−76x2)H0,0

+(108−64x−80x2)H1ζ2+(128+160x+32x2)(H−1ζ2 +2H−1,−1,0)

+(180−480x+318x2)H1+(184−128x−112x2)H2,0+(294−560x+468x2)H1,0

+(8−16x+32x2)H4−96pqg(−x)(H−1,−2,0+2H−1,−1,0,0 +H−1,0ζ2−11/6H−1,0,0,0)

+16pqg(x)(31H1ζ3−6H1,−2,0−7H1,0ζ2 +21H1,0,0,0−H1,1ζ2 +H1,1,0,0+3H1,1,1,0

+2H1,1,1,1 +5H1,1,2+19H1,2,0+4H1,2,1 +5H1,3))

+CACFnf (17597/36−220/3x−1+2659/6x−3092/3x2− (288+448x+64x2)H−1,−1,0

− (592/3−1352/3x+192x2)H2,1− (2422/27−30203/27x+17918/27x2)H0

− (188−32x−1−272x+120x2)H1ζ2− (1007/9+6254/9x−2444/9x2)H0,0

− (160+160x+320x2)H3,0− (176−192x+384x2)H3,1− (96+160x−32x2)H−1ζ2

− (64+32x+128x2)(H−2ζ2 +2H−2,−1,0)+(28/3+2032/3x+280/3x2)H2,0

− (488/9−304/9x−1−868/9x+1904/9x2)H1,1− (148/3−1832/3x−640/3x2)H0,0,0

− (48+64x+64x2)H−1,2− (32+64x)H0,0,0,0− (16+96x−1+504x−368x2)H1,0,0

− (44/5−2632/5x+128x2)ζ2
2 − (56−16x+160x2)H0ζ3 +(16−80x−144x2)H−1,0,0

+(32−256x+256x2)H0,0ζ2+(64+96x+128x2)H4+(28/9+4540/9x−2620/3x2)ζ2

+(268/3−32x−1−608/3x+728/3x2)H1,2+(−260/3−176/3x−8x2)H0ζ2

+(2788/27−80/27x−1+19660/27x−19970/27x2)H1+(388/3+256/3x−40/3x2)H3

+(136−1040x+672x2)H2,0,0+(136−368x+320x2)H2,1,1− (200−592x+512x2)H2ζ2

+(424/3−32/3x−1−536/3x+544/3x2)H1,1,1+(2204/9−3772/9x+3176/3x2)H2

+(452/3−32x−1−1024/3x+1048/3x2)H1,1,0+(168−624x+448x2)H2,2

+(184−656x+512x2)H2,1,0+(144+32x+384x2)H−3,0+(336+16x+160x2)H−2,0

+(1340/3+64x−1+4904/3x+488x2)ζ3− (212−304/3x−1−2036/3x+3284/3x2)H1,0

+(672+544x−16x2)H−1,0− (96x+128x2)H−2,0,0−8pqg(−x)(10H−1,−2,0−8H−1,−1,0,0
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−10H−1,−1ζ2+5H−1ζ3−12H−1,−1,−1,0 +4H−1,−1,2+3H−1,0,0,0−12H−1,2,0−4H−1,2,1)

−8pqg(x)(99H1ζ3−10H1,−2,0−10H1,0ζ2 +7H1,0,0,0−4H1,1ζ2−26H1,1,0,0 +2H1,1,1,0

+8H1,1,1,1 +6H1,1,2+30H1,2,0+4H1,2,1−14H1,3))

+C2
Anf (2057/9+2092/81x−1−672x+53753/81x2− (196+2416/3x−328/3x2)ζ3

− (3940/27−752/27x−1+8416/27x−7448/27x2)H1+(288x−96x2)(H2,1,0+H2,2)

− (1262/9−112/9x−1−4828/9x+2900/3x2)H2− (100−64/3x−1+312x−72x2)H2,0

− (352/3+64/3x−1+704/3x+80x2)H−1,2− (100+776x−96x2)H4− (64+128x2)H−2,2

− (2996/27−40x−1+4832/27x−5044/9x2)H0− (104−432x+32x2)H−2,0,0

− (80−256x+192x2)H2,1,1− (598/9+128/9x−1+3508/9x+7208/9x2)H0,0

− (196/3−32/3x−1−344/3x+400/3x2)H1,1,1+(168−432x+384x2)H2ζ2

− (310/3−544/9x−1−308x+536/3x2)ζ2− (56−496x)H−3,0+(64−1264x)H0,0,0,0

− (152/3+32/3x−1+256/3x+248x2)H−1,0− (28−632x+96x2)H0,0ζ2

+(96+64/3x−1−484/3x+824/3x2)H0ζ2 +(134/9−128/9x−1−700/9x+652/3x2)H1,1

+(16−352x−64x2)H−2,−1,0+(728/3+224/3x−1+188/3x−304/3x2)H1,0,0

+(64/3−128/3x−1+2680/3x−192x2)H0,0,0+(64/3−64/3x−1+292x+120x2)H3

+(34+252/5x+704/5x2)ζ2
2 +(160/3+32x−1+304/3x−472/3x2)(H1,1,0+H1,2)

+(184/3+64/3x−1−344/3x+832/3x2)H−2,0+(64−96x+160x2)H3,0

+(440/3−64/3x−1−664/3x+464/3x2)H1ζ2+(72−176x+96x2)H−2ζ2

+(92+408x−32x2)H2,0,0+(320/3−64/3x−1+112/3x−208x2)H−1,−1,0

+(128+32/3x−1−400x+640/3x2)H2,1+(16+960x)H0ζ3 +(176−192x+320x2)H3,1

+(512/3+32/3x−1+760/3x−24x2)H−1ζ2− (562/9+8/9x−1−92/9x−704/3x2)H1,0

− (872/3−128/3x−1+520/3x−304/3x2)H−1,0,0+8pqg(−x)(17H−1ζ3+14H−1,−2,0

−26H−1,−1ζ2−12H−1,−1,−1,0 +8H−1,−1,0,0+20H−1,−1,2 +14H−1,0ζ2 +H−1,0,0,0

−8H−1,2,0−4H−1,2,1)+8pqg(x)(31H1ζ3−2H1,−2,0 +6H1,0ζ2−15H1,0,0,0−2H1,1ζ2

−20H1,1,0,0−4H1,1,1,0+4H1,1,1,1−4H1,1,2−4H1,2,1−16H1,3))

+CFn2
f (−4847/54+200/27x−1−2375/27x+4066/27x2− (32−64x)H0,0,0,0

− (416/9−376/9x+88/3x2)H2+(1684/27+512/27x−1−4022/27x−4480/27x2)H0

− (808/27−560/27x+248/27x2)H1+(902/9+128/9x−1+956/9x+1400/9x2)H0,0

− (64/3−128/3x+176/3x2)H3+(272/9−64/9x−1+8/9x+32x2)ζ2

+(48−64/9x−1−496/9x2)H−1,0+(344/9−376/9x+328/9x2)H1,1

+(80−160x+176x2)/3H2,0− (32−112x−96x2)/3H0,0,0+(64−128x+144x2)/3H2,1

+(32−64x+64/3x2)H−2,0+(80−352x+144x2)/3H0ζ2 +(304/3−608/3x+160x2)ζ3

+(192−248x+232x2)/3H1,0−8/3pqg(x)(3H1ζ2+5H1,2+7H1,1,0 +5H1,1,1−12H1,0,0))

+CAn2
f (−14/9−44/9x−1−1216/9x+916/9x2− (40−352/3x+272/3x2)ζ3

− (296/9+64/9x−1+416/9x+536/9x2)H0,0− (32−96x+224/3x2)H2,1

− (64/3+640/3x)H0,0,0+(44/27−256/27x−1+752/27x−2212/27x2)H0
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+(100/3+32/9x−1+208/3x−16/9x2)ζ2− (24−112/3x+112/3x2)H0ζ2

− (320/9−32/9x−1−544/9x+200/3x2)H1,1− (64/3−128/3x+64/3x2)H−2,0

+(16/9+32/3x−1+496/9x−664/9x2)H1,0+(356/9−1360/9x+632/9x2)H2

+(592−320x−1−1232x+2632x2)/27H1+(104/3−16x+176/3x2)H3

− (144−32x−1−96x−512x2)/9H−1,0+(8+80x−16x2)H2,0+32/3pqg(−x)(2H−1ζ2

+2H−1,−1,0 +H−1,0,0−H−1,2)−8/3pqg(x)(4H1ζ2 +19H1,0,0+2H1,1,0−5H1,1,1+2H1,2))

+n3
f (16/9+8/3[H0−H1+ pqg(x)(ζ2−1+2/3(H0−H1)+H0,0−H1,0+H1,1−H2)]) (18)

and

P(2)T
gq (x) =

C3
F(−1915/2+794x−1+731/4x− (464−320x−1−200x)H2ζ2− (290+251x)H0,0

− (352−144x−1−252x)H1ζ2− (264−180x−1−140x)H1,0− (240−256x−1−120x)H3,1

− (230−228x−1−16x)H1− (224+256x−1−148x)ζ2− (176−128x−1−88x)H3,0

− (776/5−1216/5x−1−84/5x)ζ2
2 − (128−64x)H4− (104−40x)H2,0+(248−28x)H3

− (96+720x−1+196x)ζ3− (80+256x−1−208x)H−1,0− (80−128x−1+200x)H0ζ3

− (72−60x−1−80x)H1,1− (72−56x)H2,1− (64+32x)(H−1ζ2 +2H−1,−1,0)

− (64+96x)H−3,0− (64+64x)H0,0ζ2− (64+128x−1+64x)H−2,0,0 +(208−140x)H2

− (32−48x−1−4x)H1,1,0− (32−96x)H0,0,0,0− (24+192x−1+20x)H0ζ2

+(197+208x−1+29x)H0+(16−52x)H1,1,1+(128+128x−1+96x)(H−2ζ2 +2H−2,−1,0)

+(128−192x−1−112x)H−2,0+(128−48x−1−60x)H1,2 +(128+48x−1−36x)H1,0,0

+(80−64x−1−40x)H2,1,0 +(144−64x−1−72x)H2,2+(160+40x)H0,0,0

− (16−128x−1−40x)H2,0,0 +(208−192x−1−104x)H2,1,1 +(224+96x−1+96x)H−1,0,0

+16pgq(−x)(2H−1,−2,0+4H−1,−1,0,0−H−1,0,0,0)+16pgq(x)(2H1ζ3−2H1,−2,0+4H1,0ζ2

−6H1,0,0,0 +3H1,1ζ2−6H1,1,0,0+H1,1,1,0 +2H1,1,1,1−3H1,1,2+H1,2,0−4H1,2,1−8H1,3))

+CAC2
F(1735/6+200x−1−4811/12x−140/3x2− (336−448x−1−312x)H2,2

− (2338/3−80x−1+441x+1408/9x2)H0,0− (1760/3−336x−1−832/3x+64/3x2)H1,0,0

− (336−384x−1−216x)H2,1,0− (8980/9+5800/9x−1+4576/9x+352/3x2)H2

− (976/3−904/3x−1−404/3x+32x2)H1,2− (320−256x−1−208x)H2,0,0

− (272+832x−1+376x)H0ζ3− (272−320x−1−184x)H2,1,1− (208+448x−1+344x)H3,0

− (192+48x−1+72x)H−1,0,0− (144−96x−1−128x)H−2,0− (128−32x−1+16x)H−2ζ2

− (128+64x−1+96x)H−2,−1,0− (256/3−88x−1−332/3x+32/3x2)H1,1,0

− (608/5+3664/5x−1+2144/5x)ζ2
2 − (88−192x−1+268x)H−1,0− (32−48x)H−3,0

− (152/3−160/3x−1−232/3x+32/3x2)H1,1,1 +(552+264x−1+424x+128/3x2)ζ3

+(136/3+640/3x−1−680/3x−32x2)H3− (160/9−848/9x−1+280/9x+352/9x2)H1,1

− (64+24x−1+32x)H−1ζ2− (16+128x−1+40x)H0,0ζ2− (16+320x−1+216x)H3,1

+(72+192x−1+128x−32/3x2)H0ζ2+(368/3−268/3x+64/3x2)H0,0,0

+(424/3−464/3x−1+28/3x+32x2)H2,1+(600−1280/3x−1+96x+224/3x2)H2,0
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+(488/3+620/9x−1−200x−704/9x2)H1,0+(192+48x−1+128x)H−1,−1,0

+(272−608x−1−456x)H2ζ2 +(336+512x−1+376x)H4+(160+48x−1+96x)H−1,2

− (32+32x)(H−2,0,0−2H0,0,0,0)+(40301/27+244x−1+18911/27x+8932/27x2)H0

+(672−1760/3x−1−180x+224/3x2)H1ζ2+(3452/3+528x−1+436/3x+1760/9x2)ζ2

+(26008/27−39092/27x−1+3988/27x+5908/27x2)H1+8pgq(−x)(4H−1,3+11H−1ζ3

−18H−1,−1ζ2−8H−1,2,0−4H−1,2,1−4H−1,−1,0,0 +12H−1,−1,2+12H−1,0ζ2+H−1,0,0,0

+10H−1,−2,0−12H−1,−1,−1,0)−8pgq(x)(4H−2,2+51H1ζ3−10H1,1,0,0−14H1,3−4H1,2,1

+3H1,0,0,0 +12H1,1ζ2−6H1,−2,0−2H1,0ζ2+8H1,1,1,1 +2H1,1,2+34H1,2,0+14H1,1,1,0))

+C2
ACF(− (12+752/3x−1−532/3x+128/3x2)H0ζ2− (152+128x−1+92x)H4

− (22270/27−31504/27x−1+688/27x+1924/9x2)H1− (144+64x−1+8x)H−2ζ2

− (17798/27−3514/9x−1+3436/27x−4136/9x2)− (400−160x−1−148x+640/3x2)ζ3

− (576−1504/3x−1+424x+512/3x2)H2,0− (1292/3+32/3x−1+284/3x+128/3x2)H3

− (848/3−1856/3x−1+3344/3x+224/3x2)H0,0,0+(572/5+1984/5x−1+314x)ζ2
2

− (32612/27−13384/27x−1+23630/27x+12964/27x2)H0− (160−48x)H−2,−1,0

− (168+176/3x−1+160x+32/3x2)H−1ζ2− (280−344x−1+32x+64x2)H1ζ2

− (848+5176/9x−1+2800/9x+352/9x2)ζ2+(152−128x−1−156x)H0,0ζ2

− (1280/9+248/3x−1−1052/9x−704/9x2)H−1,0− (128−512x−1−632x)H0,0,0,0

− (328/3+272x−1−544/3x+128/3x2)H−1,0,0+(128−192x−1−112x)H2,1,0

+(384+576x−1+480x)(H3,0+1/3H3,1)− (296/3−448/3x−1+260/3x+128/3x2)H2,1

− (280/3+752/3x−1−928/3x+256/3x2)H−2,0+(64−128x−1−80x)H2,1,1

− (16−352/3x−1+160x−64/3x2)H−1,−1,0 +(1300/3−1024/3x−1−1004/3x)H1,0,0

+(104/3−160/3x−1−76/3x+32/3x2)H1,1,1+(48+320x−1+248x)H2ζ2

+(11848/9+3920/9x−1+7280/9x+3688/9x2)H0,0+(112−256x−1−248x)H−3,0

+(368/3−424/3x−1−352/3x+32/3x2)H1,1,0 +(160+352/3x−1+80x+64/3x2)H−1,2

+(240−96x−1−136x)H−2,0,0+(1160/9−4136/9x−1−604/9x+760/3x2)H1,0

+(64−256x−1−176x)H2,2+(352+416x−1+240x)H0ζ3 +(232−160x−1−76x)H2,0,0

+(192−248x−1−72x+32x2)H1,2+(6896/9+4664/9x−1+4220/9x+1552/9x2)H2

+(808/9−532/3x−1−440/9x+560/9x2)H1,1−8pgq(−x)(4H−2,2−H−1ζ3 +22H−1,−2,0

−2H−1,−1ζ2−12H−1,−1,−1,0 +12H−1,−1,0,0−4H−1,−1,2 +10H−1,0ζ2−21H−1,0,0,0

−12H−1,2,0−4H−1,2,1+4H−1,3)+8pgq(x)(41H1ζ3−6H1,−2,0−8H1,0ζ2+35H1,0,0,0

+6H1,1ζ2+10H1,1,0,0 +12H1,1,1,0+4H1,1,1,1+8H1,1,2 +40H1,2,0+4H1,2,1 +10H1,3))

+C2
Fnf (−12803/27+14008/81x−1+30475/54x−21784/81x2+(64−32x)H0,0,0,0

− (204+128/3x−1−142/3x+256/9x2)H0,0− (176/3+128/3x−1−160/3x)H0,0,0

− (484/27−448/27x−1−464/27x)H1+(160/9−160/9x−1−104/9x)(H1,1−2H2)

− (2330/27−200/9x−1−2494/27x−3040/27x2)H0−8/3pgq(x)(3H1ζ2+5H1,0

+5H1,0,0 +H1,1,0−H1,1,1 +H1,2+2H2,1−4H3))
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+CACFnf (332/27+3778/81x−1−2624/27x+1892/81x2+(64−80x−1−40x)ζ3

− (256/9−656/9x−1+464/9x+128/9x2)H0,0− (160/9+160/9x−1+104/9x)H−1,0

− (160/9−160/9x−1−104/9x)H1,1+(32/3+128/3x−1+128/3x)H0,0,0

+(136/9−160/9x−1−104/9x)H2+(448/27−448/27x−1−392/27x)H1

+(1280/27+1156/27x−1+308/27x+64/9x2)H0− (320/9−320/9x−1−136/9x)H1,0

− (32/3x−1+16/3x)H0ζ2 +(8/3−160/9x−1−176/9x)ζ2+16/3pgq(−x)(H−2,0

+H−1,0,0)+8/3pgq(x)(6H1ζ2 +10H1,0,0+2H1,1,0−H1,1,1 +H2,1−2H3)) . (19)

Unlike their spacelike counterparts, the off-diagonal timelike splitting functions show a double-
logarithmic enhancement of higher-order terms not only forx→ 1, but also forx→ 0 [26] with

P(1)T
qg (x) = 4CAFnf L2

1 +
[ 44

3 CAF + 8
3 (CF −nf )

]

nf L1 + O(1) , (20)

P(1)T
gq (x) = −4CAFCF L2

1 − 8CAFCF L1 + O(1) (21)
and

xP(1)T
qg (x) = − 80

9 CAnf + O(xL2
0) , (22)

xP(1)T
gq (x) = −16CFCAL2

0 − 24CFCAL0 + 68
9 CFCA + O(xL2

0) . (23)

Here and below we use the abbreviationsL1 = −H1(x) = ln(1−x), L0 = H0(x) = lnx andCAF =
CA−CF . The large-x and small-x limits of the new result (18) and (19) are given by

P(2)T
qg (x) = 4

3 C2
AFnf L4

1 +
[ 110

9 C2
AF + 20

9 CAF(CF −nf )
]

nf L3
1

+
[(

631
9 −8ζ2

)

C2
AF +

(

652
9 −16ζ2

)

CAFCF − 172
9 CAFnf + 4

3 (CF −nf )
2] nf L2

1

+
[(

4156
27 − 176

3 ζ2 +16ζ3
)

C2
AF +

(

5914
27 −84ζ2+96ζ3

)

CAFCF + 424
9 C2

F (24)

−
(

1672
27 − 32

3 ζ2
)

CAFnf −
392
9 CFnf + 40

9 n2
f −

40
3 ζ2CF(CF −nf )

]

nf L1 + O(1) ,

P(2)T
gq (x) = 4

3 CFC2
AF L4

1 +
[ 50

9 C2
AF −

4
9 CAF(CF −nf )

]

CF L3
1

+
[

52
9 CAFnf −

(

334
9 −8ζ2

)

C2
AF −

(

640
9 −16ζ2

)

CAFCF

]

CF L2
1

+
[(

− 2774
27 + 8

3 ζ2 +80ζ3
)

C2
AF −

( 2360
27 − 148

3 ζ2+48ζ3
)

CAFCF (25)

+
(

392
27 − 32

3 ζ2
)

CAFnf + 4
3 (1+2ζ2)CF (CF −nf )

]

CF L1 + O(1) , (26)

xP(2)T
qg (x) = −64

9 C2
Anf L3

0 −
[

64
9 C2

Anf + 32
9 (CA−2CF)n2

f

]

L2
0

+
[(

40+ 64
3 ζ2

)

C2
Anf −

256
27 (CA−2CF)n2

f

]

L0 + O(1) , (27)

xP(2)T
gq (x) = 64

3 CFC2
A L4

0 +
[

928
9 CFC2

A + 64
9 CFnf (CA−CF)

]

L3
0

+
[

(40−64ζ2)C2
FCA +

(1960
9 −64ζ2

)

CFC2
A − 64

3 C2
Fnf + 328

9 CFCAnf

]

L2
0

+
[(

13384
27 − 752

3 ζ2 +416ζ3
)

CFC2
A + (244+192ζ2−832ζ3)C2

FCA (28)

+(208−192ζ2+128ζ3)C3
F +

(1156
27 − 32

3 ζ2
)

CFCAnf + 200
9 C2

Fnf

]

L0 + O(1) .
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The leading logarithms in all four large-x limits above are identical to those of the correspond-
ing spacelike splitting functions, in agreement with the all-order prediction in Ref. [27]. As in the
spacelike case [11], all double-logarithmic contributions to these equations vanish forCA = CF .
Only one coefficient, that of ln1(1−x) in Eq. (24), does not vanish in the supersymmetric limit
CA = CF = nf . Also this feature is analogous to the spacelike case discussed in Ref. [11]. Eq. (25)
is in complete agreement with the corresponding result of Ref. [28], see also Ref. [29]. This would
not be the case if a term with ln(1−x) were present on the right-hand-side of Eq. (12).

The coefficients of the leading small-x logarithms ofPT
qg andPT

gq at NLO and NNLO are larger
and smaller, respectively, by a factorCA/CF than those ofPT

qq and PT
gg in Eqs. (13) – (15) of

Ref. [13]. ForPT
gq andPT

gg this relation and the corresponding coefficients have been derived to all
orders in Refs. [26]. Unlike at NLO,PT

qq andPT
qg are suppressed by only one power of ln(1−x)

relative toPT
gq andPT

gg at NNLO, and presumably some or all higher orders.

We now turn to the additional constraints mentioned above Eq. (13). These are provided by the
well-known supersymmetric relations for the choiceCA = CF = nf of the colour factors leading
to aN =1 supersymmetric theory. On the one hand, we can investigatethe combinations

∆(n)
A (x) = P(n)A

qq (x)+P(n)A
gq (x)−P(n)A

qg (x)−P(n)A
gg (x) with A = S, T (29)

which vanish at LO, while at NLO andx < 1 these quantities are given by

∆(1)
S (x) = 8

3 x−1 + (4−8x−16x2) lnx + 10
3 − 92

3 x+28x2 ,

∆(1)
T (x) = − 8

3 x−1 − (4−8x−16x2) lnx + 26
3 + 20

3 x−4x2 (30)

in theMS scheme [6], see also Ref. [30]. Obviously∆(1)
S and∆(1)

T are much simpler than the indi-
vidual NLO splitting functions. A further simplification isobtained by adding these two quantities,

∆(1)
S (x)+∆(1)

T (x) = 12−24x+24x2 = 12pqg(x) , (31)

wherepqg(x) has been defined in Eq. (16). Using the results of Refs. [10–13] and Eqs. (18) and
(19) the corresponding NNLO quantities are found to be (alsoatx < 1)

∆(2)
S (x) = −2 ln3x− 9 ln2x −

(

8
3 x−1+ 368

9 +24ζ2
)

lnx + . . . + 8 ln(1−x) (32)

∆(2)
T (x) = −2 ln3x + (16x−1−21) ln2x +

( 928
9 x−1+ 388

9 +24ζ2
)

lnx + . . . + 8 ln(1−x) ,

where we have suppressed all contributions which are regular for x→0 andx→1 for brevity, and

∆(2)
S (x)+∆(2)

T (x) = −24ζ2 pqg(x) + non-ζ2 terms. (33)

The latter means the absence ofζ2 in the expansion aboutx= 1 to all orders in(1−x), cf. Ref. [31].

The absence ofζ2x−1 lnx also in the second line of Eq. (32) provides a check of the coeffi-
cient of lnx, and hence (due to the second-moment constraint (10)) of thewholeCA coefficient
in Eq. (12). An additional lnx term in Eq. (13), except with a prefactorCA−CF , would spoil the
symmetry between the two lines of Eq. (32) and hence also Eq. (33). Obviously non-(CF−CA)
terms not proportional topgq(x) on the r.h.s. of Eq. (13) would also conflict with the latter relation.
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A second aspect concerns the analytic structure of the physical evolution kernels, in particular
the differences between the analytic continuations (x → 1/x) of the spacelike and timelike ones.
From Eq. (4) we define the matrix∆K(n) as

∆K(n)(x) = AC[K(n)S(x)]−K(n)T(x) , (34)

with the restrictionx < 1 and entries according to Eqs. (7), (9), (12) and (13). It is interesting
to investigate whether Eq. (34) directly respects Gribov-Lipatov reciprocity. In Mellin space, this
feature implies that the corresponding expressions are functions only of the productN(N +1) of
the Mellin variableN, i.e., parity preserving, a fact already exploited in the large-x (large-N) limit
of Ref. [28]. The eigenvaluesλi , i = 1,2 of ∆K(n) are determined from the characteristic equation

λ2
i −λi tr(∆K)+det(∆K) = 0, (35)

and, following [29], it is sufficient to study the conditionswhich Gribov-Lipatov reciprocity im-
poses on the trace and determinant of∆K(n) in Eq. (34), i.e.,

AC
[

tr
(

∆K(n)(x)
)]

− tr
(

∆K(n)(x)
)

= 0 , (36)

AC
[

det
(

∆K(n)(x)
)]

− det
(

∆K(n)(x)
)

= 0 . (37)

In QCD, Eq. (36) is fulfilled to NNLO due to Eq. (9), while Eq. (37) is not. However, in the
supersymmetric limit,CA = CF = nf , also Eq. (37) holds to NNLO as a result of non-trivial
relations between the coefficients in Eqs. (12) and (13). Eq.(37) provides thus a further constraint

on P(2)T
qg andP(2)T

gq , again except for contributions proportional toCA−CF , which vanish trivially
in the transition to aN =1 supersymmetric theory.

In summary, these considerations are still not sufficient todefinitely fix the right-hand-side of
Eq. (13). As an estimate of the remaining uncertainty we suggest to use the offset

δP(2)T
qg (x) = ±2ζ2 β0(CA−CF)(11+24 lnx)P(0)T

qg (x) . (38)

The functions (18) and (19), the former including the error band due to Eq. (38), are shown and
compared to their spacelike counterparts in Fig. 1; and the LO, NLO and NNLO approximations
to Eq. (2) are illustrated in Fig. 2 at the typical scaleQ2 ≃ M2

Z . As in the diagonal cases [13], the
higher-order corrections are much larger at small values ofx than in the spacelike case. The small-x

behaviour ofP(2)T
qg andP(2)T

gq is similar to that ofP(2)T
qq andP(2)T

gg , respectively, with particularly

large cancellations between the powers of lnx occurring inP(2)T
gq andP(2)T

gg .

For the use of the NNLO splitting functions in numerical analyses we have prepared, analogous
to Refs. [10, 11], compact and accurate parametrizations not only of the present results, but also
of the non-singlet and diagonal quantities derived in Refs.[12, 13]. These parametrizations can
be found in Appendix B. Corresponding FORTRAN files, and FORM files of our main results, can
be obtained by downloading the source of this paper from thearXiv servers or from the authors
upon request. This includes the rather lengthy (even or odd)integer-N Mellin-space expressions
in terms of harmonic sums [33] which we have not presented here for brevity.
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Figure 1: The third-order timelike off-diagonal (quark-gluon and gluon-quark) splitting functions
for five flavours, multiplied byx and divided by 2000≃ (4π)3 for display purposes. The remaining
uncertainty of the former quantity is indicated by the dash-dotted curves. Also shown are the
respective leading small-x contributions and the corresponding spacelike splitting functions.
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Figure 2: The resulting perturbative expansion of the timelike quark-gluon and gluon-quark split-
ting functions, again multiplied byx, at a typical value of the strong coupling constant.
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To summarize, we have performed an indirect determination of the hitherto unknown off-
diagonal NNLO timelike splitting functions (18) and (19) for the evolution of parton-to-hadron
fragmentation functionsDh

f (x,Q2). We expect the remaining uncertainty of the former quantity,
estimated in Eq. (38) and illustrated in Figs. 1 and 2, to be phenomenologically acceptable. Hence,
combining these results with those of Refs. [12, 13, 19], NNLO analyses are now possible of data
on the transverse fragmentation function (but not yet its longitudinal counterpart, where also the
third-order coefficient functions are required) in semi-inclusive electron-positron annihilation.

The remaining uncertainty ofP(2)T
qg does not affect the logarithmically enhanced large-x and

small-x contributions. We expect that these results can be useful toimprove the corresponding
resummations. In fact, an extension of the generalized large-x resummation of Ref. [32] to the
present timelike case will be presented in a forthcoming publication.

Further research is required to completely fixP(2)T
qg and to check our result forP(2)T

gq . A direct
calculation of the leading-nf contribution to the former quantity should be possible, butwould not
address the critical contributions, while a fullx-dependent diagram calculation beyond these terms
appears to remain formidable task. A computation of theN = 4 andN = 6 moments of then2

f and
nf parts, respectively, of Eqs. (18) and (19) presumably wouldbe sufficient and may be feasible,
e.g., generalizing the approach used in Ref. [21], in the foreseeable future.
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Appendix A

The first- and second-order coefficient functions for SIA viaan intermediate scalar in Eq. (6) read

c(1)
φ,g(x) = CA(11/3(1+x+x2−x−1

1 )+ pgg(x)(8H0−4H1)+(67/9+8ζ2)δ(1−x))

− nf (2/3(1+x+x2−x−1
1 )+10/9δ(1−x)) , (A.1)

c(1)
φ,q(x) = nf (4x−7x2 + pqg(x)(4H0−2H1)) (A.2)

with pgg(x) = x−1−2+x−x2 +x−1
1 , where f (x)x−1

1 ≡ f (x)/(1−x) has to be read as a+-distri-
bution if f (x) does not vanish atx = 1, and

c(2)
φ,g(x) = C2

A ((5099x−1−3301x2−2570x−1
1 )/27−46/3+1858/9x− (140/3+32/3x

+44/3(x−1+3x2−x−1
1 ))ζ2− (101−2092x−1−2623x−268(2x2+3x−1

1 ))/9H0

− (162+138x+484/3x2+220/3(2x−1−x−1
1 ))H0,0− (268−356x

−88(5x−1−2x2 +x−1
1 ))/3H2+(160−46x+340/3x2−778/9(x−1+x−1

1 ))H1
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−88/3(1+x+x2−x−1
1 )H1,0+(452−308x−1−232x+176(2x2−x−1

1 ))/3H1,1

+8/3(6+11x−1+6x+11x2)H−1,0−8(1+x)(8ζ3+8ζ2H0+22H0,0,0−12H3

+4H2,1)+4pgg(−x)(7ζ3−2ζ2H0+9H0,0,0−2H3−2H−2,0−8ζ2H−1+4H−1,2

−8H−1,−1,0−6H−1,0,0)+4pgg(x)(−31ζ3+2ζ2H0+6H−2,0−31H0,0,0 +2H3

−2ζ2H1−20H2,0+10H2,1+6H1,0,0 +10H1,2+10H1,1,0−12H1,1,1)

+δ(1−x)(30425/162−242/3ζ3+830/9ζ2+101/5ζ2
2))

+ CAnf ((358x−1−928−502x+672x−1
1 )/27−116/3x2+(362−260x−1−120x−1

1

−238x+172x2)/9H0+(36−16x−1−12x+40(x2−x−1
1 ))/3H0,0− (350−168x−1

1

−88(2x−1+x−3x2))/9H1+8/3((x−1−1+2x)(2H1,0−H1,1)+(1+x)(H2−ζ2))

−8/3pgg(x)(ζ2+2H1,0−4H1,1+2H2)−δ(1−x)(4112/81+8ζ2+28/3ζ3))

+ CFnf (2x−1
1 − (744+723x−2017x2+928x−1)/27+(8+16/3(x−1+x2)+12x)ζ2

−8/9(63+19x−1+81x+41x2)H0+(14+22x+32/3(x−1+x2))H0,0− (12+8x

+32/3x−1)H2+(78−16x−1−150x+88x2)/9H1+4/3(4x−1−3x−4x2 +3)H1,1

+4(1+x)(4ζ3+4ζ2H0 +11H0,0,0−6H3+2H2,1)−δ(1−x)(63/2−24ζ3))

+ n2
f (8/27(1+x+x2−x−1

1 )(5+3H1)+δ(1−x)(100/81−8/9ζ2)) , (A.3)

c(2)
φ,q(x) = CAnf (− (2590+296x−1−74x)/27−695/18x2+(22−60x+56x2)ζ2

+(16+88x)ζ3+((196+48x−1−2810x+582x2)/9+16ζ2)H0+(8+64x−1

+212x+116x2)/3H0,0+(10−32x−1−212x+180x2)/3H2+(44+248x)H0,0,0

−8(1+4x+2x2)H−2,0− (44+72x+40x2)H3−8/3(3+2x−1+9x+8x2)H−1,0

− (10/3+80x2−4/3(4x−1+53x))H1,1− (127+24x−1−818x+1016x2)/9H1

−8H1,0 +8(4−2x+6x2)H2,1+4pqg(−x)(ζ2(3H0−2H−1)−5H−1,0,0 +2H−1,2)

+ pqg(x)(8ζ2H1+2/3H1,0−12H2,0 +16H1,0,0+8H1,2+8H1,1,0−20H1,1,1))

+ CFnf (+62−71x+155/2x2− (22−24x+4x2)ζ2− (40−112x+96x2)ζ3

− (10−47x+98x2 +16ζ2x2)H0− (7+80x−104x2)H0,0+4(6−4x+x2)H2

+16(1+x)H−1,0+16(1+2x2)H−2,0+(1+36x−48x2)H1+(6−36x+60x2)H1,0

−4xH1,1−x2 (44H0,0,0+8H2,1−24H3)−8pqg(−x)(ζ2H−1−H−1,0,0 +2H−1,−1,0)

− pqg(x)(4ζ2(H0+3H1)+20H1,1+22H0,0,0 +28H2,0−8H3+4H1,0,0−12H1,2

−12H1,1,0 +4H1,1,1))

+ n2
f ((112−392x+833x2)/27−4/9(34−56x+53x2)H0+ pqg(x)(58/9H1−4ζ2

+4/3(H0,0−H2 +H1,0+H1,1))) (A.4)

As already discussed in Ref. [13], the second moment ofc(2)
φ,g + c(2)

φ,q directly enters the NNLO
Higgs decay rate to hadrons in the heavy-top limit, and agrees with the result of Ref. [34], see
also Ref. [35]. We expect that these coefficient functions will be useful also for other theoretical

studies. They can be employed, for instance, to extend the large-x results of Ref. [28] toP(2)T
qg .
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Appendix B

Since the exact expressions of the NNLO splitting functionsare rather lengthy and complex, it
is useful to have at one’s disposal compact but accurate approximate representations which also
can be transformed readily to Mellin space at all (complex) values ofN. In this final appendix
we therefore provide parametrizations of all NNLO timelikesplitting functions in QCD which are
built up, besides powers ofx, only from the+-distribution and the end-point logarithms

D0 = 1/(1−x)+ , L1 = ln(1−x) , L0 = lnx .

The non-singlet splitting functionsP(2)T±
ns [12] can be represented by

P(2)T+
ns (x) ∼= +1174.898D0+1295.625δ(1−x)−707.67L1+1658.7−4249.4x

−1075.3x2+593.9x3−L0L1[56.907+519.37L0+559.1xL0]+1327.5L0

−189.37L2
0−352/9L3

0 +128/81L4
0

+ nf (−183.187D0−173.935δ(1−x)+5120/81L1−198.1+466.29x

+181.18x2−31.84x3−39.113xL0−L0L1[50.758−85.72x−28.551L0

+23.102xL0]−168.89L0−176/81L2
0+64/27L3

0)

+ n2
f (−D0− (51/16+3ζ3−5ζ2)δ(1−x)+x(1−x)−1L0(3/2L0+5)+1

+(1−x)(6+11/2L0+3/4L2
0)) 64/81 (B.1)

and

P(2)T−
ns (x) ∼= +1174.898D0+1295.622δ(1−x)−707.94L1+1981.3−4885.7x

−577.42x2+407.89x3+L0L1[4563.2+1905.4L0−5140.6x+1969.5xL0]

−34.683xL4
0+1625.5L0−38.298L2

0−1024/27L3
0−140/81L4

0

+ nf (−183.187D0−173.9376δ(1−x)+5120/81L1−217.84+511.92x

+209.19x2−85.786x3+92.453xL0+L0L1[71.428+30.554L0

−23.722x−18.975xL0]−188.99L0−784/81L2
0+128/81L3

0)

+ n2
f (−D0− (51/16+3ζ3−5ζ2)δ(1−x)+x(1−x)−1L0(3/2L0+5)+1

+(1−x)(6+11/2L0+3/4L2
0)) 64/81 . (B.2)

Then2
f parts ofP(2)T±

ns (which are identical and equal to their spacelike counterparts in Ref. [10]),
the+-distribution contributions (up to a numerical truncationof the coefficients involvingζi ), and
the rational coefficients of the (sub-)leading regular end-point terms are exact in Eqs. (B.1) and
(B.2). The remaining coefficients have been determined by fits to the exact results at 10−6 ≤ x≤
1−10−6, and finally the coefficients ofδ(1−x) have been adjusted very slightly using the lowest
integer moments. The difference between the NNLO ‘valence’and ‘minus’ splitting functions is
equal to that in the spacelike case; a parametrization can befound in Eq. (4.24) of Ref. [10]).
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Corresponding representations of the pure-singlet and gluon-gluon splitting functions [13] are

P(2)T
ps (x) ∼= {nf (−5.926L3

1−9.751L2
1−8.65L1−106.65−848.97x+368.79x2

−61.284x3+96.171L0L1 +656.49L0+425.14L2
0+47.322L3

0

+9.072L4
0+479.87x−1+324.07x−1L0−128/9x−1L2

0−256/9x−1L3
0)

+ n2
f (1.778L2

1+16.611L1+87.795−57.688x−41.827x2+25.628x3

−7.9934x4−2.1031L0L1 +57.713L0+9.1682L2
0−1.900L3

0

+0.019122L4
0+26.294xL0−128/81x−1)}(1−x) (B.3)

and

P(2)T
gg (x) ∼= +2643.521D0+4425.451δ(1−x)−3590.1L1−28489+7469x

+30421x2−53017x3+19556x4−L0L1 (186.4+21328L0)+12258L0

+13528L2
0+3281.7L3

0+191.99L4
0+5685.8xL3

0+14214.4x−1+10233x−1L0

+3651.1x−1L2
0 +3168x−1L3

0 +576x−1L4
0

+ nf ( −412.172D0−528.719δ(1−x)+319.97L1+248.95+260.6x

+272.79x2+2133.2x3−926.87x4+L0L1 (1266.5−29.709L0+87.771L1)

+4.9934L0+482.94L2
0+155.1L3

0+18.085L4
0+485.18xL3

0−804.13x−1

−5.47x−1L0 +2368/9x−1L2
0 +448/9x−1L3

0)

+ n2
f ( −16/9D0+6.4628δ(1−x)−77.19+153.27x−106.03x2+11.995x3

−L0L1 (115.01−96.522x+62.908L0)−69.712L0−44.8L2
0−5.037L3

0

+472/243x−1+368/81x−1L0 +32/27x−1L2
0 ) . (B.4)

In Eqs. (B.3) and (B.4) the small-x leading terms are exact up to truncations of irrational numbers.
The same holds for the coefficients ofL1, L2

1 andL3
1 in Eq. (B.3) and that ofD0 in Eq. (B.4), where

the coefficient ofδ(1−x) has been minimally adjusted using the lowest moments.

The new NNLO off-diagonal quantities (18) and (19) can finally be parametrized as

P(2)T
qg (x) ∼= nf (100/27L4

1+350/9L3
1+263.07L2

1+693.84L1+603.67−882.48x

+4723.2x2−4745.8x3−175.28x4−L0L1(1809.4+107.58x)

−885.5xL4
0+1864L0+1512L2

0 +361.28L3
0+42.328L4

0+1141.7x−1

+675.83x−1L0−64x−1(L2
0+L3

0))

+ n2
f (−100/27L3

1−35.446L2
1−103.609L1−113.81+341.26x−853.35x2

+492.1x3+14.803x4+L0L1(966.96−1.593L1−709.1x)−333.79xL3
0

+619.75L0+255.62L2
0+21.569L3

0−2.8986x−1−3.1752x−1L0

−32/27x−1L2
0) (B.5)

+ n3
f (4+6(L0+L1)+(1−2x+2x2)

(

3.8696+4(L0+L1)+3(L0+L1)
2))4/9

where then3
f part is exact, and
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P(2)T
gq (x) ∼= +400/81L4

1+520/27L3
1−220.13L2

1−152.6L1+272.93−7188.7x

+5693.2x2+146.98x3+128.19x4−L0L1(1300.6+71.23L1)+543.8xL3
0

+4.4136L0−0.71252L2
0−126.38L3

0−30.061L4
0+5803.7x−1

+4776.5x−1L0 +1001.89x−1L2
0 +3712/3x−1L3

0 +256x−1L4
0

+ nf (80/81L3
1+1040.81L2

1−16.914L1−871.3+790.13x−241.23x2

+43.252x3−4.3465xL3
0+55.048L0L1−492L0−343.1L2

0−48.60L3
0

+6.0041x−1+141.93x−1L0 +2912/27x−1L2
0 +1280/81x−1L3

0) . (B.6)

The coefficients of the leading small-x terms are exact in Eqs. (B.5) and (B.6), up to a truncation
of irrational numbers. The same holds for the coefficients ofL2

0, L3
0 andL4

0 in Eq. (B.6). The
coefficients of the large-x terms are also partially exact.

Except for values ofxvery close to zeros of the splitting functions, the parametrizations. (B.1) –
(B.6) deviate from the exact expressions by less than one part in a thousand, which should be amply
sufficient for foreseeable numerical applications. Also the complex-N moments of the splitting
functions can be readily obtained to a perfectly sufficient accuracy using the above representations.
The Mellin transform of Eqs. (B.1) – (B.6) involve only simple harmonic sums (see, e.g, the
appendix of Ref. [38]) of which the analytic continuations in terms of logarithmic derivatives of
Euler’sΓ-function are well known.
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