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Despite the importance of limited proteolysis in biological
systems it is often difficult to rationalize why a proteinase
hydrolyses a particular bond, given a simple sequence
specificity alone. Understanding of the structural properties
limiting the proteolysis represents a first step on the
pathway to control and manipulation of this phenomena.
An expanded set of nick-sites in proteins of known tertiary
structure, cut by both narrow and broad specificity pro-
teinases, has been generated yielding a robust data set of
strictly limited sites. A critical evaluation of an expanded set
of conformational parameters revealed a strong correlation
with limited proteolytic sites, although they are only modest
predictors in isolation. The overall predictive power is
significantly improved when the conformational para-
meters are combined in a weighted predictive scheme that
permits their relative importance to be compared via a
Metropolis search protocol. A subset of the parameters
performs equally well demonstrating the key determinants
of susceptibility. The derived predictive algorithm has been
made available via the internet. Its utility for predicting
other surface-correlated features is also discussed.
Keywords: molecular recognition/proteinase/limited proteo-
lysis/prediction/nick-sites

Introduction
Limited proteolysis, the specific fission of only one or a few
peptide bonds in a folded protein chain, underpins many
important biological functions such as zymogen activation, the
blood coagulation cascade and pro-hormone and neuropeptide
processing (Ottensen 1967; Neurath and Walsh, 1976; Bond
and Beynon, 1987; Price and Johnson, 1989). Generally, the
details of the catalytic reaction by which this hydrolysis takes
place are well understood, particularly for the serine proteinases
(Blow, 1976; Kraut, 1977) where hydrolysis is achieved
through nucleophilic attack upon the carbonyl carbon of the
peptide bond. However, the global molecular recognition
processes are not well understood. Specifically, it is unclear
how a proteinase of known sequence specificity recognizes
such a limited subset out of the many putative sites of
proteolysis in a folded polypeptide chain. For example, trypsin
will completely degrade most proteins in denaturing conditions,
cleaving at nearly every lysine-X, arginine-X bond (with the
partial exception of proline at X). Thus, about 5–10% of the
peptide bonds in a typical protein ought to be susceptible to
proteolytic attack. However, in native (or near-native) condi-
tions trypsin will cut only a limited number of such bonds (or
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on occasions none at all) in a native protein fold. The structure
and dynamics of the substrate protein must therefore play a
role in limiting the proteolysis.

Much of our understanding of the proteinase catalytic
mechanism is derived from X-ray crystallographic studies of
not only the enzymes, but also complexes with small protein
inhibitors, such as BPTI. These protein–protein complexes
provide a paradigm for the transition state of the reaction,
with the inhibitor reactive site loop bound into the enzyme
active site in the manner of a ‘perfect’ substrate. This canonical
conformation is conserved throughout diverse families of small
protein inhibitors of serine proteinases although the overall
fold and amino acid sequence of these inhibitors are not
(Laskowski and Kato, 1980; Bode and Huber, 1992). Using
this canonical conformation of the inhibitor reactive site loops
as a template it has been shown that limited proteolytic sites
are quite different in structure from the idealized inhibitor
loops, and they must therefore undergo a conformational
change in order to enter the proteinase active site (Hubbard
et al., 1991). From modelling experiments it is expected that
minimally this must involve a local unfolding step of 10
residues or more prior to recognition and cleavage (Hubbard
et al., 1994). Hence, the position of the putative limited
proteolytic site (nick-site) with respect to the rest of the
substrate tertiary structure, and the inherent flexibility and
opportunity for local unfolding must help determine its proteo-
lytic susceptibility. Indeed, the implicit assumption that limited
proteolytic sites are at exposed and flexible regions makes
limited proteolysis an invaluable structural probe for investig-
ation of protein structure and function (Price and Johnson,
1989; Fontanaet al., 1997b).

For predictive purposes, specific proteolytic processing sys-
tems have been studied by a number of workers. One such
study (Monsalveet al., 1990) observed that proteolytic pro-
cessing sites in seed proteins are found at sequence sites with
a very high probability to form aβ-turn. Similarly, a simple
scheme to predictΩ-loops from protein amino acid sequences
was developed and subsequently applied to the prediction of
prohormonal cleavage sites (Bek and Berry, 1990). However,
for more general proteolytic systems, it would be a useful first
step to be able to predict which sites were most susceptible to
limited proteolytic attack for proteins whose tertiary structure
is already known. Prior to this it should be established which
protein features are responsible for proteolytic susceptibility
and their relative importance and weighting. Typically limited
proteolytic sites are found at flexible loop regions (as indicated
by crystallographic temperature factors or B-values) that are
also exposed to the solvent (Fontanaet al., 1986; Novotny´
and Bruccoleri, 1987; Fontana, 1989; Hubbardet al., 1991)
and are notably absent in regions of regular secondary structure,
especially β-sheets (Fontana, 1989; Hubbardet al., 1994;
Fontana et al., 1997a,b). They protrude from the protein
surface (Hubbardet al., 1991) and would be expected to be
found at regions where the local packing does not inhibit the
local unfolding that is deemed necessary.



S.J.Hubbard et al.

Previous studies (Hubbardet al., 1991, 1992) considered
some of these features and demonstrated their correlation with
a small number of tryptic proteolytic sites. A simple prediction
scheme was derived from this analysis and was successfully
applied to the prediction of limited proteolytic sites of the
apo- and holo-forms of the biotin-binding protein avidin
(Ellison et al., 1995). Here, we extend these conformational
parameter sets to include Ooi numbers, secondary structure
parameters and hydrogen bonding. Furthermore, the data set
of limited proteolytic sites has been expanded to include sites
cut by proteinases other than trypsin and stricter criteria for
the definition of ‘limited’ proteolysis have been applied.
A rigorous comparison of the predictive power of these
conformational parameters sets has been undertaken. Finally,
these conformational parameters have been combined into a
predictive algorithm which has been made available to the
biological community via the internet.

Materials and methods
Dataset
A list of known limited proteolytic sites was generated by an
extensive search of the literature, adding to the previous set
of tryptic sites (Hubbardet al., 1991). Sites were further
selected according to whether the tertiary structure of the
protein (or very close homologue) was known to high reso-
lution, the precise bond cleaved had been determined without
ambiguity, and whether the proteolysis itself could truly be
deemed ‘limited’. For this purpose, second-order rate constants
k2 were estimated from the literature, from a half-lifet1/2 read
from a graph or gel time series, thus:

ln 2
k2[E] 5

t1/2

Additionally, digests where the substrate protein could be
expected to be largely unfolded or non-native (under high
concentrations of denaturing agents or high temperatures) were
ignored unless the protein was reported to retain its fold under
these circumstances (e.g. by means of retention of activity or
structural evidence). Similarly, sites were only included if the
structure of the correct apo-/holo-form of the protein was
available where this was known to affect the proteolytic
susceptibility.

The full list of nick-sites used in this study is given in
Table I along with estimates ofk2 and the temperatures at
which the reaction took place. One reaction was included
which took place above 37°C as the substrate protein was a
thermophile which is stable and functional at this temperature.

Calculation of conformational parameters
Calculations were performed on the co-ordinated entries listed
in Table I taken from the Brookhaven Databank (Bernstein
et al., 1977). The following conformational parameters, and
their sub-types, were calculated for each protein.

Solvent accessibility
The accessible surface area of each individual residue in each
protein was calculated using the method of Lee and Richards
(1977) using a 1.4 Å probe and the atomic radii data set of
Chothia (1976). Where present and appropriate, heteroatoms
(excluding water and similar solvent molecules) were con-
sidered for the calculation of atomic accessibilities. Absolute
residue accessibilities were calculated simply as the sum of
the atomic accessible areas for each residue. Summed residue
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accessible surfaces were also expressed as relative percentage
accessibilities of the exposed state, taking the latter from
extended tripeptides of Ala-X-Ala for each amino acid type
X. Nick-sites are already known to correlate with solvent
exposure (Novotny´ and Bruccoleri, 1987; Vitaet al., 1988;
Fontana, 1989; Hubbardet al., 1991).

Protrusion index
The residue protrusion index was calculated by the method of
Taylor et al. (1983) whereby an equimomental ellipsoid is
calculated about the molecular centre of mass approximating
the protein shape. Successive similar ellipsoidal shells are
assigned containing increasing 10-percentiles of the protein
atoms. Atoms are then assigned a score of 0 to 9 signifying
the outermost ellipsoidal shell in which each atom lies: 0 for
the core through to 9 for the outer, ‘protruding’ atoms.
Calculations were performed using either solelyα-carbon
atoms or using all atoms and averaging over each residue to
obtain a final residue score. Both methods were compared.

Residue-averaged temperature factors
In the absence of more detailed solution data on protein
flexibility, atomic temperature factors were used as a measure
of mobility, as they have been previously shown to be correlated
with limited proteolytic susceptibility (Vitaet al., 1988;
Fontana, 1989; Hubbardet al., 1991). Four residue-averaged
measures were considered usingα-carbons only, backbone
atoms, side chain atoms and all the atoms in a given residue.

Ooi numbers
Since nick-sites might be expected to be located at regions of
weak packing, Ooi numbers were calculated for each residue
as a simple and fast measure (Nishikawa and Ooi, 1986). The
residue Ooi number is simply the number of otherα-carbon
atoms within a fixed radius of the residue’sα-carbon. Two
cut-off radii values were compared: 8 and 14 Å.

Secondary structure parameters
As nick-sites are not prevalent in regions of regular secondary
structure (Fontana, 1989; Hubbardet al.,1994; Fontanaet al.,
1997a,b) particularlyβ-strands, this was formulated in a simple
manner by three scores, one for each of the three secondary
structure states helix, strand or coil. An additional penalty
score for cysteine residues participating in a disulphide bridge
was also applied, subtracted from other secondary structure
scores at that residue position. States were assigned to each
residue using the method of Kabsch and Sander (1983) where
residues were classed as either helix (H), strand (E) and all
others coil. Multiple combinations of the four values were
compared, ranging from 0.0 to 1.0. The optimal combination
was defined using a Metropolis search procedure, discussed
later, yielding optimal weights for the four standard states of
helix 0.5, strand 0.0, coil 1.0 and disulphide penalty 0.4, based
on their ability to discriminate nick-sites from residues in
general. This reflects the implausibility of locating nick-sites
in β-structure and their rarity inα-helix shown by modelling
experiments and prior observation (Hubbardet al. 1994;
Fontana 1989).

Main chain hydrogen bonding
As noted for loop-closure modelling experiments on putative
tryptic sites of elastase, the true nick-site region makes rela-
tively few main chain hydrogen bonds to other regions of the
protein (Hubbardet al., 1994) indicating that local unfolding
regions are constrained by the fewest intramolecular inter-
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Table II. Proteinase primary sequence specificity requirements

Proteinase Amino acid specificity

Trypsin P1 5 Arg, Lys, P19Þ Pro
Chymotrypsin P1 5 Trp, Tyr, Phe, Leu, Met
Subtilisin P1 Þ Arg, Lys
Proteinase K P1 Þ Arg, Lys, Asp, Glu
Elastase P1 5 Ala,Val., Leu, Ile, Gly, Ser
Thermolysin P19 5 Leu, Phe, Ile, Val., Met, Ala
Arg-C P1 5 Arg
V8-proteinase P1 5 Glu

actions. Non-local hydrogen bonding was quantified by count-
ing the number of backbone–backbone hydrogen bonds in a
given loop region made to residues outside of the loop. In
addition, where possible and appropriate, hydrogen bonds to
heteroatom polar groups were also added to the sum for each
loop region. Hydrogen bonds were calculated using a distance
cut-off of below 3.5 Å and an angular cut-off of above 90° at
the amide hydrogen (except for heteroatoms). This was evalu-
ated for loop lengths of 6, 8, 10 and 12 residues with the
putative nick-site situated in the centre of the loop at the 3rd,
4th, 5th and 6th position respectively.

Assessment of conformational parameters
Residue scores were calculated for each conformational para-
meter for each protein. The residue parameters were then
smoothed using a fixed window lengthn, assigning averaged
scores to the putative P1 residue in a Pn/2 to Pn/29 window
(Schechter and Berger, 1967). Values ofn ranging from 4 to
20 in steps of 2 were evaluated. This encompasses the
minimal segment length likely to be necessary for proteolytic
recognition (the P2-P29 region centred about the scissile peptide)
and the minimum number of residues deemed necessary for
local unfolding and subsequent cleavage (Hubbardet al.,
1994). Residues at the N- and C-termini were smoothed by
averaging over the reduced number of residues lying within
the smoothing window. The smoothed scores were then normal-
ized to lie within the range 0.0 and 1.0 to give a residue
prediction scoreNx(i) for each parameterx at each residue
position i. For Ooi numbers and the non-local hydrogen
bonding term, normalized scores were also inverted by subtrac-
tion from unity to favour more weakly packed and hydrogen
bonded residue positions. Mean values were then calculated
for three subsets of the data set residues; all residues, putative
nick-sites (those satisfying the primary sequence requirements
of the attacking proteinase) and the nick-sites themselves. The
primary sequence requirements of the proteinases considered
in this study are listed in Table II.

Individual conformational parameters were assessed via two
simple functions designed to show how well each feature
discriminates the true nick-sites from residues in general and
other putative (but uncut) nick-sites. These functions are
shown below:

Pnicksites2Pall Pnicksites2Pputative
DFall 5 andDFnick 5

σall σputative

whereP is the normalized score for any given parameter,P
is the mean parameter score for a given subset of residues and
σ the standard deviation of a given mean value. This yields
two ‘discrimination factor’ scores (DFall andDFnick) that vary
according to how much outside a given distribution the mean
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Fig. 1. Origins of optimization parameters for nick-site prediction. Three
hypothetical distributions of amino acid scores are illustrated, for all
residues, lysine/arginines and for nick-sites. Each distribution may be
characterized by a mean values Pmeanand a standard deviationσ. A
discrimination factorD may be evaluated for the deviation of the nicksite
mean score from either of the other two distributions.

nick-site score lies. The origins of these functions are illustrated
in Figure 1 which shows hypothetical distributions of normal-
ized parameter scores.

Additionally, the individual parameter scores were sorted
for each protein in the data set and a mean rank valueRmean
calculated for each parameter for every window size under
consideration.

Prediction of limited proteolytic sites
Predictions were made by first calculating the normalized
residue scores for each of the six selected conformational
parameters described above. Normalized scoresNx for each
parameterx were then combined to give a final prediction
scoreP(i) at each residue positionI, using a weight for each
parameterwx:

x 5 nf

Σ wxNx(i)
x 5 1

P(i) 5 wherenf 5 number of valid features
nf

In practice, the number of valid feature scores was either 5 or
6 depending on whether temperature factors were available
for that protein. The relative importance of each parameter
was adjusted via a weighting scheme. Weights were originally
set between 0.0 and 1.0 and then normalized so their mean
was set to unity, thus:

x 5 nf

Σ wx

x 5 1
5 1.0

nf

Assessment of prediction scores and prediction optimization
Predictions were assessed via the same discrimination factors
DFall and DFnicks and mean rankRmean as for the individual
conformational parameters although the weighted prediction
scores were used instead of the individual parameter score.
However, in order to optimize the prediction, these simple
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Fig. 2. Distributions of normalized parameter scores for amino acids in the narrow specificity data set. Distributions of scores for amino acids in the narrow
specificity data set are shown for the individual conformational parameters after having been normalized so that their sum is 1 over the range of prediction
scores 0 to 1. The white bars represent all residues in the dataset, the grey bars putative sites only, and the black bars the actual nick-site residues. Plots are
shown for (A) relative accessibility, (B) protrusion index calculated on Cα-atom positions, (C) mean residue temperature factors, (D) Ooi numbers with an
14 Å cut-off, (E) secondary structure parameters and (F) non-local hydrogen bonds outside a loop of 12 residues.

functions were converted to a simple ‘energy’ functionEtotal
via:

E1 5 2ln DFall

E2 5 2ln DFnick

1
E3 5 2ln ( )Rmean21

Etotal 5 E1 1 E2 1 E3

To assess the relative predictive merits of the parameters,
predictions were optimized using a simple Metropolis optimiza-
tion procedure, where all smoothing windows and feature
weights were allowed to change and the resulting prediction
‘energy’ monitored. Smoothing windows were allowed to vary
from 4 to 20 in steps of 2 and weights from 0.0 to 1.0 in steps
of 0.1. At each Metropolis step, either one of the window
lengths or weights selected at random was increased or
decreased, and the resultant prediction ‘energy’ recalculated.
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The new windows/weights were accepted according to the
Metropolis probability criteria:

Pa 5 e2(∆E/α) where ∆E 5 Enew2Eold

A Metropolis step was accepted if the probabilityPa exceeded
a random number cast between 0.0 and 1.0. When the energy
decreasesPa always exceeds 1 and the step is accepted. Values
for α where found to work well around 0.08. A total of 20
optimizations were run for each of the two nick-site data sets,
each for 50 000 steps, taking the lowest energy over the 20
runs as the most optimal.

Results

Choice of conformational parameters
The calculated conformational parameters, and their sub-types
scores were assessed for their power to discriminate nick-sites
from residues in general and from other putative, but uncut,
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Table III. Conformational parameter statistics for nick-sites prediction

Parameter Energy Etotal Optimal DFall DFnicks Mean rank
window

Absolute accessibility –0.54 12 1.37 1.27 2.00
Relative accessibility –0.54 12 1.37 1.27 2.00
Protrusion Index (α-carbons) 1.53 6 0.91 0.87 4.67
Protrusion Index (all atoms) 1.66 12 0.95 0.91 5.50
B-values (α-carbon only) –0.23 8 1.71 1.42 2.92
B-values (backbone) –0.36 4 1.70 1.42 2.67
B-values (sidechain) –0.26 4 1.63 1.27 2.58
B-values (all atoms) –0.45 4 1.67 1.34 2.42
Ooi numbers (8 Å) –0.15 8 1.06 1.11 2.00
Ooi numbers (14 Å) –0.96 4 1.34 1.31 1.67
Secondary structure set (optimised) 1.02 12 0.87 0.93 3.25
Hydrogen bonding (6 residues) 1.27 12 0.86 0.96 3.92
Hydrogen bonding (8 residues) 0.74 12 0.98 1.10 3.25
Hydrogen bonding (10 residues) 0.46 14 1.04 1.12 2.83
Hydrogen bonding (12 residues) 0.38 14 0.99 1.05 2.50

Table IV. Mean parameter weights and windows from Metropolis
optimization analyses

Parameter Weights Window size

Mean s.d. Mean s.d.

Accessibility 0.84 0.16 14.0 0.0
Protrusion 0.01 0.02 9.6 5.3
B-values 1.00 0.00 4.4 1.0
Ooi numbers 0.48 0.17 6.2 1.5
Secondary structure 0.49 0.18 13.2 2.4
Hydrogen bonding 0.36 0.22 17.4 2.5

nick-sites. The data for the optimal window lengths, as judged
by the lowest energyEtotal , are listed in Table III for
the narrow specificity data set. For all the conformational
parameters investigated (including all sub-types) the mean
nick-sites parameter score is significantly above that of all
residues, and indeed above that of putative sites, as judged by
the positive discrimination factor scores. This is significant,
as all the putative sites cut by narrow specificity proteinase
(e.g. lysine/arginine for trypsin, glutamate for V8-proteinase)
are likely to be at the surface and at flexible regions anyway.
Thus, all the parameters studied here possess some additional
predictive power for limited proteolytic sites above that of the
inherent physical properties of the amino acids in question.
This was also seen to be the case for the smaller number of
broad specificity sites listed in Table I (data not shown). The
DFnicks scores were typically higher for this second data set
as many more residue positions (including some hydrophobic
ones) match the broader specificity requirements and con-
sequently the mean parameter scores for the putative res-
idues drop.

Figure 2 illustrates the normalized distributions of parameter
scores for the optimal windows for the six selected parameters.
The true nick-site residues cluster towards the right-hand-
side of the distributions, demonstrating their suitability for
prediction parameters. However, as is evident from the mean
ranks and the distributions shown in Figure 2, the individual
parameters are not perfect predictors. Indeed, the mean rank
scores obtained for the parameters tested on the broad specifi-
city data set ranged from 8.0 to 25.0. Some nick-sites clearly
possess scores for some parameters that are down in the middle
or lower end of the distribution scores.
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The optimal smoothing window lengths tended to lie within
four and 12 residues for most of the parameters tested against
the narrow specificity sites and between six and eight for the
broad sites (data not shown). The longer window lengths
obtained for the narrow sites were probably due to the nature
of the specificity of these proteinases, which cut at residues
that would be expected to be at the surface. Hence, better
discrimination is obtained by averaging over a large window
compared with an isolated exposed/flexible residue. This is
consistent with results from modelling experiments where at
least 10–12 residues were shown to be involved in the
local unfolding required for limited proteolysis (Hubbard
et al., 1994).

Some parameters performed better than others. The discrim-
ination factors for temperature factors and accessibility were
the highest and those for protrusion index and secondary
structure parameters the lowest. In particular, the protrusion
index appears to be the weakest predictor of the parameters
studied, most probably due to the ellipsoidal approximation to
protein shape used in the calculation leading to distorted values
for particularly non-ellipsoidal proteins.

Based on theEtotal data presented in Table III, the following
parameter types were selected for the multiple parameter
optimization trials: relative accessibility,α-carbon protrusion
index, all atom B-values, 14 Å Ooi numbers, secondary
structure parameters (helix5 0.5, strand5 0.0, coil 5 1.0,
disulphide penalty5 0.4), and 12-residue window non-local
backbone hydrogen bonding.

Optimization of prediction parameters

The relative importance of the six parameters was further
assessed via Metropolis optimization of the parameters using
the prediction algorithm. The quality of nick-site prediction
was significantly improved by combining the parameters. Even
without optimizing the parameter weights and smoothing
windows, in 9 of the 12 narrow data set proteins one of the
nick-site residues was the top scoring position satisfying
primary sequence requirements. For the narrow specificity data
set, the Metropolis runs typically converged quickly within
2000 steps and found a set of weights and smoothing windows
that further improved the prediction quality as judged by the
prediction energyEtotal. The simulations always converged to
a solution where a true nick-site was ranked as the top scoring
residue for all 12 proteins in the narrow specificity data set.
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Table V. Linear correlation coefficients between prediction parameters

Accessibility Protrusion B-values Ooi Secondary Hydrogen
numbers structure bonding

Accessibility 1.0 0.75 0.48 0.87 0.23 0.35
Protrusion – 1.0 0.46 0.85 0.16 0.24
B-values – – 1.0 0.45 0.08 0.15
Ooi numbers – – – 1.0 0.29 0.39
Secondary structure – – – – 1.0 0.82
Hydrogen bonding – – – – – 1.0

Table VI . Optimized predictions of narrow and broad specificity nick-sites

Optimized energy Parameter smoothing top scores/windows Parameter weights DFall DFnick Mean

a b c d e f a b c d e f rank max

narrow Etotal 14 6 4 6 14 12 0.7 0.0 0.9 0.3 0.6 0.2 1.87 1.71 1.00 12/12
narrow Etotal 8 - 4 12 - 18 0.7 - 0.8 0.6 - 0.8 1.83 1.65 1.00 12/12
(4 parameters)

broad Etotal 14 6 8 4 6 12 0.8 0.2 0.5 0.2 0.7 0.8 1.73 1.71 2.62 3/8
broad Etotal 6 - 12 8 - 12 0.4 - 0.2 0.1 - 0.6 1.71 1.71 2.75 3/8
(4 parameters)

Parameters: a, accessibility; b, protrusion index; c, temperature factors (B-values); d, Ooi numbers; e, secondary structure parameters; f, non-local hydrogen
bonding.

However, the same optimal solution was achieved from slightly
different combinations of weights and windows for the six
parameters. The mean values of these weights and windows
for the lowest energy state over each of the 20 runs are listed
in Table IV for the narrow specificity set. These data represent
the relative discriminatory potential of the six parameters. As
noted before, the protrusion index is a particularly weak
predictor with a mean weight of only 0.01. Correspondingly,
temperature factors were always the top weighted parameter
and are therefore the most significant predictors, closely
followed by accessibility. Consistent optimal window lengths
were also apparent for some parameters.

The data in Table IV strongly suggested that not all the
parameters were strong predictors of proteolytic susceptibility.
There is clearly some overlap between the various parameters
and indeed, the features are generally highly correlated as
shown in Table V. For example, the hydrogen bonding function
embodies some features of secondary structure by definition.
Hence, the prediction optimizations were re-run with a reduced
set of four parameters, removing the protrusion index and the
secondary structure term. The results of these and the full six
parameter optimizations are shown in Table VI and the data
is represented graphically in Figure 3. Using both six and four
parameters, a set of windows and weights were found that
predict a nick-site residue to be top scoring for every protein
in the narrow (high) specificity data set yielding a 100%
successful prediction. Although the same success was not
achieved with broader sites, the overall prediction was good,
and no real loss of predictive quality was achieved using
only four parameters. For the broad specificity nick-sites,
accessibility and hydrogen bonding parameters dominate more
than the temperature factors and secondary structure para-
meters, although they are both still important.

The prediction problem is considerably more challenging
for the broad specificity proteinases due to the increased
number of putative residues (for example, almost all residues
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are deemed to match the subtilisin primary specificity). Despite
this, the top-scoring nick-site for each protein is predicted to
be in the top 6% of all putative sites and the majority of the
very top scoring residues lie within a few residues of one of
the true nick-sites. This is well illustrated in Figure 4 by the
prediction profiles for the broad data set. In all cases, the nick-
sites lie close to the top of profile peaks. Indeed, for 1AVE,
1OPA, 1YPI and 8TLN the nick-sites are located in the tallest
peak and the 2CST nick-site is the highest scoring putative
site. Nevertheless, the ability to predict the precise site of
limited proteolysis in every example seems beyond the scope
of this approach and is likely due to the subtleties in primary
and secondary subsite recognition as well as steric (local)
unfolding factors.

For both data sets, different combinations of window and
weight sets produced the same energy minimum. However,
common trends were evident. The final weights from the
Metropolis runs showed that for the narrow specificity sites,
the most important parameters were accessibility, temperature
factors, Ooi numbers, secondary structure and hydrogen bond-
ing. Similarly, accessibility, temperature factors and hydrogen
bonding were consistently highly weighted for the broad sites.
The protrusion index was almost always the most lowly
weighted term for both data sets. The optimal window lengths
also showed consistencies. The accessibility window converged
to 14 for the six parameter optimizations for both narrow and
broad specificity sites and the window sizes for hydrogen
bonding ranged between 12–18 for the lowest energy solutions.
However, the window lengths changed when the optimization
was reduced to only four parameters. This might reflect the
fact that the system was over-determined with six parameters
and the optimal weights and windows found at this level were
affected by noise from superfluous parameters.

The prediction protocol optimized on the narrow specificity
data set was tested on the broad specificity data set. Unsurpris-
ingly, as shown in Table VII, the prediction scores obtained
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Fig. 3. Distributions of prediction scores for amino acids in the nicksite data sets after optimization. Distributions of amino acid prediction scores after Monte
Carlo optimization for (A) the narrow specificity proteinase data set and (B) the broad specificity proteinase data set, both using the full six parameters. The
same profiles are shown in (C) for the narrow specificity data set and (D) the broad specificity data set, using the reduced set of 4 parameters. The white bars
represent all residues in the data set, the grey bars putative sites, and the black bars the nicksite residues.

were slightly inferior to the most optimal weights and windows
for broad specificity proteinases. Nevertheless, the prediction
is still almost as good, particularly when considering the
increased difficulty in predicting broad specificity and the
narrow specificity weights and windows may be applied
universally to nick-site prediction. This applies when using
four or six parameters.

The ability of the algorithm was also tested by a jack-
knifing procedure where the protein under consideration is
removed from the data set, the weights and parameters were
re-optimized without it, and then the prediction is reapplied
to that protein. When applied to the narrow specificity data
set the overall quality of prediction was only slightly inferior.
With six parameters nine out of 12 narrow specificity nick-
sites were ranked as top scoring with a mean rank of 1.50. This
improved slightly with the reduction to only four parameters
yielding a mean rank of 1.3.

These results suggest that the algorithm is a useful predictor
of proteolytic susceptibility and that it is worthwhile finding
the most optimal parameters to accomplish this. To confirm
the validity of the approach, the probability of achieving a
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perfect 12 out of 12 prediction was calculated by conducting
a systematic search of parameter space for the four parameter
narrow specificity data set. This was estimated to be only a
0.2% chance. Similarly, randomly chosen weights and windows
would only correctly predict a true nick-site for seven out of
12 proteins.

Discussion

A critical analysis of protein conformational parameters has
demonstrated their ability to distinguish limited proteolytic
sites from other putative cleavage sites for proteins of known
structure for proteinases of both narrow (e.g. trypsin) and
broad (e.g. subtilisin, thermolysin) specificity. The results
confirm earlier conclusions that nick-sites are found at exposed,
protruding and flexible regions of protein structure (Fontana
et al., 1986; Novotny´ and Bruccoleri, 1987; Vitaet al., 1988;
Fontana, 1989; Hubbardet al.,1991, 1994) which are typically
loops or turns, rarely in or near helices, but apparently never
in extendedβ-structure. Similarly, substantial segments of
contiguous residues local to the scissile peptide must possess
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Fig. 4. Prediction profiles for proteins cut by broad specificity proteinases. The prediction profiles for the eight proteins from the broad specificity data set are
shown, using the weights and window from the Monte Carlo optimization runs. Limited proteolytic sites are indicated by filled circles on the profiles. The
proteins shown are 1AVE, avidin; 1HCY, haemocyanin; 1HPL, lipase; 1OPA, cellular retinol-binding protein II; 1YPI, triose phosphate isomerase; 2CST,
aspartate aminotransferase; 5RSA, ribonucelase; 8TLN, thermolysin.

the requisite properties needed to allow local unfolding for
subsequent limited proteolytic cleavage.

The protrusion index is a relatively weak predictor as it is
an approximation to true protein shape. Large proteins might
more usefully be broken down into constituent subunits and/
or domains which are more likely to be globular or, altern-
atively, the protrusion index can be eliminated entirely without
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compromising the algorithm unduly. As there is some overlap
in the parameters as shown by the correlation coefficients
in Table V, the chief determinants of limited proteolytic
susceptibility may be divided into three groups:

1. Exposure—as characterized by accessibility and Ooi num-
bers. Although not an absolute requirement, a nick-site is
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Table VII. Comparison of predictions for broad specificity nick-sites

Protein code Number of putative Top scoring nick-site ranking
nick-sites

narrow specificity optimized parameters broad specificity optimized parameters
Full 6 Reduced 4 Full 6 Reduced 4
parameter set parameter set parameter set parameter set

1AVE 41 2 2 1 1
1HPL 165 3 3 4 4
1HCY 579 14 11 6 7
1OPA 36 2 2 1 2
1YPI 216 9 10 2 2
2CST 149 2 1 1 1
5RSA 109 11 15 2 1
8TLN 294 3 2 4 4

more likely to be situated in a region close to the protein
surface so that local unfolding is more easily accomplished.

2. Flexibility—as characterised by X-ray crystallographic
temperature factors, which give a measure of the dynamic
properties along the protein chain, obviously critical for
local unfolding and adaptation to the enzyme’s active
site.

3. Local interactions—as characterized by secondary structure
and hydrogen bonding. A good candidate for local unfolding
and adaptation must not be tied down by interactions such
as disulphide bridges or hydrogen bonding (such as within
regular secondary structure).

Undoubtedly, the key determinant is the ability to unfold
locally and adapt to the enzyme’s active site. The question
remains as to which parameters are the best indicators of this
ability. Despite the importance of these three features, an over-
reliance on any one may lead to a false prediction. For example,
as pointed out by Fontana and co-workers (1997a,b) many
putative nick-sites on a protein surface are not cleaved.
Similarly, although important, temperature factors are an imper-
fect measure of the true segmental mobility. This is because
they report on static disorder, as well as thermal motions.
They are also distorted by intermolecular crystal packing
interactions, which reduce the flexibility of those residues
involved, manifesting in reduced temperature factors. This is
the case for the region containing several of the ribonuclease
(5RSA) nick-sites from residues 18–24 which make inter-
molecular contacts in the crystal. This serves to damp down
the apparent mobility of this segment and affect the associated
thermal factors. However, it may be possible to partially address
this problem of crystal-masked flexibility by accounting for
packing affects and modifying atomic B-values (Scheriff
et al., 1985).

Similarly, protein–ligand interactions can profoundly effect
the proteolytic susceptibility of a protein, stabilizing or destabil-
izing it (Fontana, 1989; Jamisonet al., 1994; Ellisonet al.,
1995). If the incorrect apo- or holo-protein structure is unavail-
able the prediction will be affected. In the case of the retinol-
binding proteins (1OPA) this is likely to affect the prediction
profoundly as the retinol (or analogous ligand) stabilizes the
protein and reduces its susceptibility to proteolysis (Jamison
et al., 1994). Although there exists a large amount of X-ray
and limited proteolysis data, the only structure available for
these proteins in the apo-form is the cellular retinol-binding
protein II (1OPA). Several other limited proteolytic systems
were excluded from this study as only the holo-form crystal
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structure was available which was resistant to limited proteo-
lysis. Indeed, the prediction algorithm applied to these systems
yields rather poor predictions. Use of the incorrect apo- or
holo- crystal form had a more deleterious effect on the
prediction than use of an alternative structure from another
species, as these proteins were generally well predicted. For
example, Gly28 in aspartate aminotransferase (2CST) is the
highest scoring putative thermolysin site despite the fact that
theS.Solfataricusstructure is not yet available and the chicken
heart homologue structure is used instead.

Another factor not considered is the ‘steric fit’. Some sites
may be geometrically more disposed to local unfolding and
subsequent docking. Although this can be assessed (Hubbard
et al.,1994) it is compute-intensive and difficult to integrate into
the prediction algorithm. Furthermore, the steric accessibility to
the active site cleft can vary between proteinases of the same
primary specificity such as kallikrein and trypsin (Chen and
Bode, 1983).

Put into a biochemical context, limited proteolysis is not a
discrete process where every bond is either susceptible or
resistant. Dynamics, and hence kinetics, must play a role in
whether a particular cleavage will be observed, determined
not only by the enzyme and substrate ratio, but also by the
diverse range of conditions under which the experiments were
conducted. In some cases, several bonds might be accessible
to proteolysis in native state conditions, whilst under slightly
different (retarding) experimental conditions, only a single site
may be observed to be cleaved at a slow rate. This site might
score lowly, although it is the highest of the putative sites for
a given proteinase. Hence, the ranking of sites is also of great
importance. However it is rare that all rate constants for all
susceptible sites in a given protein and the true ‘rank’ order
of limited proteolysis are experimentally determined. Thus,
not unreasonably, we select the top-scoring nick-site in each
protein for the calculation of mean ranking since the true
‘first cut’ site is rarely unequivocally determined. A further
complication arises due to the nature of the data. Because the
proteolysis has in some way been limited, there may well be
more susceptible sites in the substrate proteins than have been
measured experimentally. As there is no way for this to be
ratified without re-performing all the experiments under a vast
array of differing conditions we have simply divided sites into
either nick-sites or ‘not nicksites’ which may not be universally
true. These points are highlighted by the range of reaction
temperatures and the second-order rate constants estimated
from the literature; the latter ranging over several orders of
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magnitude from 0.002 to 0.2µM–1.min–1 (Table I). Clearly,
these rates are strongly dependent on experimental conditions
and it would be folly to try and correlate prediction scores
with rate constants given such non-standard experimental
conditions. It therefore remains a challenge for the future to
distinguish further the true ‘susceptibility’ of each peptide
bond and account for kinetic factors. This would require the
ability to predict the energy barrier for each protein segment
to unfold locally. Studies in our laboratory are currently
underway to achieve this goal.

Despite the limitations discussed here, this approach remains
successful for proteinases of different specificity with the
prime determinants of susceptibility remaining the same:
flexibility, exposure and the ability to unfold locally. It should
be stressed, however, that the algorithm is not a definitive
prediction tool and the results should be interpreted carefully
and with caution given the limitations described here.

This approach also has potential for application to other
surface-correlated features of proteins. Properties such as
antigenicity are surface-correlated (Thorntonet al., 1986) as
are post-translational modifications such as glycosylation and
phosphorylation. The latter represent additional examples of
the constraints placed by tertiary structure on the modification
of sequence patterns, for example byN-glycosylation in the
case of Asn-X-Ser/Thr motif or by cleavage in the case of
proteolysis. The potential of this generic approach to these
kind of prediction problems is being evaluated in our laboratory.

Software availability
Nickpred, the program used in this work is available to the
biological community via the World Wide Web and via
email. Information on the WWW version is located at: http://
sjh.bi.umist.ac.uk/nickpred.html. For more information on the
Email version, send mail to nickpred@sjh.bi.umist.ac.uk. with
the word HELP in the body of the mail, on a line on its own.
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