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Assessment of conformational parameters as predictors of limited
proteolytic sites in native protein structures

S.J.Hubbard!, R.J.Beynon and J.M.Thorntor? on occasions none at all) in a native protein fold. The structure
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and Molecular Biology, University College, Gower Street, mechanism is derived from X-ray crystallographic studies of
London WC1E 6BT, UK not only the enzymes, but also complexes with small protein
To whom correspondence should be addressed inhibitors, such as BPTI. These protein—protein complexes

provide a paradigm for the transition state of the reaction,
with the inhibitor reactive site loop bound into the enzyme
active site in the manner of a ‘perfect’ substrate. This canonical
conformation is conserved throughout diverse families of small
protein inhibitors of serine proteinases although the overall
fold and amino acid sequence of these inhibitors are not
(Laskowski and Kato, 1980; Bode and Huber, 1992). Using
this canonical conformation of the inhibitor reactive site loops
as a template it has been shown that limited proteolytic sites
are quite different in structure from the idealized inhibitor
loops, and they must therefore undergo a conformational
change in order to enter the proteinase active site (Hubbard
et al., 1991). From modelling experiments it is expected that
minimally this must involve a local unfolding step of 10
residues or more prior to recognition and cleavage (Hubbard
et al., 1994). Hence, the position of the putative limited
proteolytic site (nick-site) with respect to the rest of the
substrate tertiary structure, and the inherent flexibility and
opportunity for local unfolding must help determine its proteo-
Iytic susceptibility. Indeed, the implicit assumption that limited
proteolytic sites are at exposed and flexible regions makes
limited proteolysis an invaluable structural probe for investig-
ation of protein structure and function (Price and Johnson,
1989; Fontanat al., 1997b).

For predictive purposes, specific proteolytic processing sys-
Introduction tems have been studied by a number of workers. One such
o ) S study (Monsalveet al., 1990) observed that proteolytic pro-
Limited proteolysis, the specific fission of only one or a few cessing sites in seed proteins are found at sequence sites with

peptide bonds in a folded protein chain, underpins many very high probability to form g-turn. Similarly, a simple
important biolo_gical functions such as zymogen activation, th%cheme to predid®-loops from protein amino acid sequences
blood coagulation cascade and pro-hormone and neuropeptiggas developed and subsequently applied to the prediction of
processing (Ottensen 1967; Neurath and Walsh, 1976; Bongrohormonal cleavage sites (Bek and Berry, 1990). However,
and Beynon, 1987; Price and Johnson, 1989). Generally, th@er more general proteolytic systems, it would be a useful first
details of the catalytic reaction by which this hydrolysis takesstep to be able to predict which sites were most susceptible to
place are well understood, particularly for the serine proteinasesmited proteolytic attack for proteins whose tertiary structure
(Blow, 1976; Kraut, 1977) where hydrolysis is achievedis already known. Prior to this it should be established which
through nucleophilic attack upon the carbonyl carbon of theprotein features are responsible for proteolytic susceptibility
peptide bond. However, the global molecular recognitionand their relative importance and weighting. Typically limited
processes are not well understood. Specifically, it is unclegsroteolytic sites are found at flexible loop regions (as indicated
how a proteinase of known sequence specificity recognizelsy crystallographic temperature factors or B-values) that are
such a limited subset out of the many putative sites oflso exposed to the solvent (Fontagiaal., 1986; Novotriy
proteolysis in a folded polypeptide chain. For example, trypsirand Bruccoleri, 1987; Fontana, 1989; Hubbatdal., 1991)

will completely degrade most proteins in denaturing conditionsand are notably absent in regions of regular secondary structure,
cleaving at nearly every lysine-X, arginine-X bond (with the especially B-sheets (Fontana, 1989; Hubbaed al., 1994;
partial exception of proline at X). Thus, about 5-10% of theFontanaet al., 1997a,b). They protrude from the protein
peptide bonds in a typical protein ought to be susceptible tgurface (Hubbardt al., 1991) and would be expected to be
proteolytic attack. However, in native (or near-native) condi-found at regions where the local packing does not inhibit the
tions trypsin will cut only a limited number of such bonds (or local unfolding that is deemed necessary.

Despite the importance of limited proteolysis in biological
systems it is often difficult to rationalize why a proteinase
hydrolyses a particular bond, given a simple sequence
specificity alone. Understanding of the structural properties
limiting the proteolysis represents a first step on the
pathway to control and manipulation of this phenomena.
An expanded set of nick-sites in proteins of known tertiary
structure, cut by both narrow and broad specificity pro-
teinases, has been generated yielding a robust data set of
strictly limited sites. A critical evaluation of an expanded set
of conformational parameters revealed a strong correlation
with limited proteolytic sites, although they are only modest
predictors in isolation. The overall predictive power is
significantly improved when the conformational para-
meters are combined in a weighted predictive scheme that
permits their relative importance to be compared via a
Metropolis search protocol. A subset of the parameters
performs equally well demonstrating the key determinants
of susceptibility. The derived predictive algorithm has been
made available via the internet. Its utility for predicting
other surface-correlated features is also discussed.
Keywords molecular recognition/proteinase/limited proteo-
lysis/prediction/nick-sites
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Previous studies (Hubbaret al., 1991, 1992) considered accessible surfaces were also expressed as relative percentage
some of these features and demonstrated their correlation witiccessibilities of the exposed state, taking the latter from
a small number of tryptic proteolytic sites. A simple prediction extended tripeptides of Ala-X-Ala for each amino acid type
scheme was derived from this analysis and was successfully. Nick-sites are already known to correlate with solvent
applied to the prediction of limited proteolytic sites of the exposure (Novothyand Bruccoleri, 1987; Viteet al., 1988;
apo- and holo-forms of the biotin-binding protein avidin Fontana, 1989; Hubbaret al., 1991).
(Ellison et al., 1995). Here, we extend these conformationalp i,sion index
parameter sets to include Ooi numbers, secondary structu
arameters and hydrogen bonding. Furthermore, the data . Lo
(F;f limited proteolyt)i/c sitges has beegr]w expanded to include site aylor et al. (1983) whereby an equimomental elllpsqld IS
cut by proteinases other than trypsin and stricter criteria fop2iculated about the molecular centre of mass approximating

the definition of ‘limited’ proteolysis have been applied. the protein shape. Successive similar ellipsoidal shells are

A rigorous comparison of the predictive power of theseassigned containing increasing 10-percentiles of the protein

conformational parameters sets has been undertaken. Final%oms' Atoms are then assigned a score of 0 to 9 signifying

these conformational parameters have been combined into le outermost ellipsoidal shell in which each atom lies: 0 for

predictive algorithm which has been made available to th e core through to 9 for the outer, ‘protruding’ atoms.
biological community via the internet. alculations were performed using either sol@lycarbon

atoms or using all atoms and averaging over each residue to
Materials and methods obtain a final residue score. Both methods were compared.

Dataset Residue-averaged temperature factors

A list of known limited proteolytic sites was generated by an!n the absence of more detailed solution data on protein
extensive search of the literature, adding to the previous séiexibility, atomic temperature factors were used as a measure
of tryptic sites (Hubbardet al., 1991). Sites were further ©Of mobility, as they have been previously shown to be correlated
selected according to whether the tertiary structure of th&vith limited proteolytic susceptibility (Vitaet al., 1988;
protein (or very close homologue) was known to high resofontana, 1989; Hubbaret al., 1991). Four residue-averaged
lution, the precise bond cleaved had been determined withot€asures were considered usiagcarbons only, backbone
ambiguity, and whether the proteolysis itself could truly be@toms, side chain atoms and all the atoms in a given residue.
deemed ‘limited’. For this purpose, second-order rate constantSoi numbers

k, were estimated from the literature, from a half-life read
from a graph or gel time series, thus:

e residue protrusion index was calculated by the method of

Since nick-sites might be expected to be located at regions of
weak packing, Ooi numbers were calculated for each residue

In 2 as a simple and fast measure (Nishikawa and Ooi, 1986). The
Ko[E] = residue Ooi number is simply the number of otloecarbon
tip atoms within a fixed radius of the residuesscarbon. Two

Additionally, digests where the substrate protein could befut-off radii values were compared: 8 and 14 A
expected to be largely unfolded or non-native (under highSecondary structure parameters
concentrations of denaturing agents or high temperatures) Weygs nick-sites are not prevalent in regions of regular secondary
ignored unless the protein was reported to retain its fold undeg,cture (Fontana, 1989; Hubbagtlal., 1994; Fontanat al.,
these circumstances (e.g. by means of retention of activity 0{g974 b) particularl-strands, this was formulated in a simple
structural evidence). Similarly, sites were only included if the,anner by three scores, one for each of the three secondary
structure of the correct apo-/holo-form of the protein wasgyyctyre states helix, strand or coil. An additional penalty
available where this was known to affect the proteolyticscore for cysteine residues participating in a disulphide bridge
susceptibility. o o o _was also applied, subtracted from other secondary structure
The full list of nick-sites used in this study is given in gcqres at that residue position. States were assigned to each
Table | along with estimates df, and the temperatures at yasjque using the method of Kabsch and Sander (1983) where
which the reaction took place. One reaction was includedesidues were classed as either helix (H), strand (E) and all
which took place above 37°C as the substrate protein was gners coil. Multiple combinations of the four values were
thermophile which is stable and functional at this temperaturecompared’ ranging from 0.0 to 1.0. The optimal combination
Calculation of conformational parameters was defined using a Metropolis search procedure, discussed
Calculations were performed on the co-ordinated entries listetiter, yielding optimal weights for the four standard states of
in Table | taken from the Brookhaven Databank (Bernsteirhéelix 0.5, strand 0.0, coil 1.0 and disulphide penalty 0.4, based
et al., 1977). The following conformational parameters, andon their ability to discriminate nick-sites from residues in
their sub-types, were calculated for each protein. general. This reflects the implausibility of locating nick-sites
Solvent accessibility in B-structure and their rarity i-helix shown by modelling

. o . . xperiments and prior observation (Hubbaet al. 1994;

The accessible surface area of each individual residue in ea

) . . ntana 1989).
protein was calculated using the method of Lee and Richards ] ]
(1977) using a 1.4 A probe and the atomic radii data set oMain chain hydrogen bonding
Chothia (1976). Where present and appropriate, heteroatorndss noted for loop-closure modelling experiments on putative
(excluding water and similar solvent molecules) were con4ryptic sites of elastase, the true nick-site region makes rela-
sidered for the calculation of atomic accessibilities. Absolutetively few main chain hydrogen bonds to other regions of the
residue accessibilities were calculated simply as the sum girotein (Hubbardet al., 1994) indicating that local unfolding
the atomic accessible areas for each residue. Summed residwgions are constrained by the fewest intramolecular inter-
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Table Il. Proteinase primary sequence specificity requirements ® Pm::n F,)nizfﬁve Pnreﬁ::s“es
@ L |
Proteinase Amino acid specificity 8 All residues
[0 :
Trypsin R = Arg, Lys, P# Pro 5 i ;
Chymotrypsin R = Trp, Tyr, Phe, Leu, Met 4] \ putative
Subtilisin R # Arg, Lys S \biolaitae
Proteinase K P+ Arg, Lys, Asp, Glu 5 !
Elastase P= Ala,Val,, Leu, lle, Gly, Ser - ' nicksites
Thermolysin R = Leu, Phe, lle, Val., Met, Ala [O) :
Arg-C P, = Arg 'g
V/8-proteinase P= Glu S
c
actions. Non-local hydrogen bonding was quantified by count- 0 prediction score 1’
ing the number of backbone—backbone hydrogen bonds in a
given loop region made to residues outside of the loop. In Pricksies _ pa icksites  [yputative
addition, where possible and appropriate, hydrogen bonds to DFa"= mean _ ~ fmean DFnick= Rean - Rean
heteroatom polar groups were also added to the sum for each G G

loop region. Hydrogen bonds were calculated using a distance
cut-off of below 3.5 A and an angular cut-off of above 90° atFig. 1. Origins of optimization parameters for nick-site prediction. Three
the amide hydrogen (except for heteroatoms). This was evallypothetical distributions of amino acid scores are illustrated, for all
ated for |OOp Iengths of 6, 8, 10 and 12 residues with théesmues,_Iysme/arglnlnes and for nick-sites. Each dlstr!bqtlon may be

. . . . . tharacterized by a mean valuegcE,and a standard deviatian A
putative nick-site situated in the centre of the loop at the 3 giscrimination factoD may be evaluated for the deviation of the nicksite

4th 5 and 8" position respectively. mean score from either of the other two distributions.
Assessment of conformational parameters

Residue scores were calculated for each conformational paraick-site score lies. The origins of these functions are illustrated
meter for each protein. The residue parameters were then Figure 1 which shows hypothetical distributions of normal-

smoothed using a fixed window length assigning averaged ized parameter scores.

scores to the putative,;Residue in a R, to Py’ window Additionally, the individual parameter scores were sorted
(Schechter and Berger, 1967). Valuesnofanging from 4 to  for each protein in the data set and a mean rank vBRlyg,

20 in steps of 2 were evaluated. This encompasses thealculated for each parameter for every window size under
minimal segment length likely to be necessary for proteolyticconsideration.

recognition (the P’ region centred about the scissile peptide) pregiction of limited proteolytic sites

%réilthuenf@llgi'? urgngu?ubtfsreoggi?'dcl:ggvgegm(?_'dubnggte ds;ary redictions were made by first calculating the normalized
9 q 9 ” residue scores for each of the six selected conformational

;92:2' 'Eesgd:ﬁhit rtgg Ele daﬂdmcb'éerrmir;ie;\.’grzssrlnpnome.czhb arameters described above. Normalized scdgfor each
veraging ov u d Idues lying Withith 5 .ameterx were then combined to give a final prediction

the smoothing window. The smoothed scores were then norma]:- : . o ; :
ized to lie within the range 0.0 and 1.0 to give a residue coreP(7) at each residue positian using a weight for each

prediction scoreN,(i) for each parametex at each residue parametey:

position i. For Ooi numbers and the non-local hydrogen X =Nt

bonding term, normalized scores were also inverted by subtrac- Z Wy Ny (i)

tion from unity to favour more weakly packed and hydrogen_ =1 )

bonded residue positions. Mean values were then calculatédi) = wheren; = number of valid features
for three subsets of the data set residues; all residues, putative My

nick-sites (those satisfying the primary sequence requirementa practice, the number of valid feature scores was either 5 or
of the attacking proteinase) and the nick-sites themselves. Tt& depending on whether temperature factors were available
primary sequence requirements of the proteinases consider@gt that protein. The relative importance of each parameter
in this study are listed in Table II. was adjusted via a weighting scheme. Weights were originally

Individual conformational parameters were assessed via tweet between 0.0 and 1.0 and then normalized so their mean
simple functions designed to show how well each featurevas set to unity, thus:

discriminates the true nick-sites from residues in general and X =nf
other putative (but uncut) nick-sites. These functions are Z W
shown below: X=1
PrickresPar ProraresPouan - 10
DFa" _ nicksites all andDFnick _ nicksites putative g
Gall Oputative Assessment of prediction scores and prediction optimization

whereP is the normalized score for any given parameRr, Predictions were assessed via the same discrimination factors
is the mean parameter score for a given subset of residues abdF,; and DF,;.,s and mean ranlR .., as for the individual

o the standard deviation of a given mean value. This yieldzonformational parameters although the weighted prediction

two ‘discrimination factor’ scoreddF,, andDF,;) that vary  scores were used instead of the individual parameter score.
according to how much outside a given distribution the mearHowever, in order to optimize the prediction, these simple
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Fig. 2. Distributions of normalized parameter scores for amino acids in the narrow specificity data set. Distributions of scores for amino acids in the narrow
specificity data set are shown for the individual conformational parameters after having been normalized so that their sum is 1 over the range of prediction
scores 0 to 1. The white bars represent all residues in the dataset, the grey bars putative sites only, and the black bars the actual nick-site residues. Plots a
shown for @A) relative accessibility,B) protrusion index calculated onocatom positions, ) mean residue temperature factoi3) Ooi numbers with an

14 A cut-off, E) secondary structure parameters aRjirfon-local hydrogen bonds outside a loop of 12 residues.

functions were converted to a simple ‘energy’ functigg,y;  The new windows/weights were accepted according to the

via: Metropolis probability criteria:
E, = —In DFy P,=e @)  where AE = Epey—Eqq
E, = —In DF,;
2 nick 1 A Metropolis step was accepted if the probabiRyexceeded
E. = —In a random number cast between 0.0 and 1.0. When the energy
3 Rmear— 1 decreasePR, always exceeds 1 and the step is accepted. Values

E . —E +E, +E for a where found to work well around 0.08. A total of 20
total = =1 =2 T8 optimizations were run for each of the two nick-site data sets,

To assess the relative predictive merits of the parametergach for 50 000 steps, taking the lowest energy over the 20

predictions were optimized using a simple Metropolis optimiza-runs as the most optimal.

tion procedure, where all smoothing windows and feature

weights were allowed to change and the resulting prediction, g its

‘energy’ monitored. Smoothing windows were allowed to vary ) .

from 4 to 20 in steps of 2 and weights from 0.0 to 1.0 in stepschoice of conformational parameters

of 0.1. At each Metropolis step, either one of the windowThe calculated conformational parameters, and their sub-types

lengths or weights selected at random was increased actores were assessed for their power to discriminate nick-sites

decreased, and the resultant prediction ‘energy’ recalculatedkom residues in general and from other putative, but uncut,
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Table Ill. Conformational parameter statistics for nick-sites prediction

Parameter Energyal Optimal DRy DFpicks Mean rank
window
Absolute accessibility -0.54 12 1.37 1.27 2.00
Relative accessibility -0.54 12 1.37 1.27 2.00
Protrusion Indexq-carbons) 1.53 6 0.91 0.87 4.67
Protrusion Index (all atoms) 1.66 12 0.95 0.91 5.50
B-values @i-carbon only) -0.23 8 1.71 1.42 2.92
B-values (backbone) -0.36 4 1.70 1.42 2.67
B-values (sidechain) -0.26 4 1.63 1.27 2.58
B-values (all atoms) -0.45 4 1.67 1.34 2.42
Ooi numbers (8 A) -0.15 8 1.06 111 2.00
Ooi numbers (14 A) —-0.96 4 1.34 1.31 1.67
Secondary structure set (optimised) 1.02 12 0.87 0.93 3.25
Hydrogen bonding (6 residues) 1.27 12 0.86 0.96 3.92
Hydrogen bonding (8 residues) 0.74 12 0.98 1.10 3.25
Hydrogen bonding (10 residues) 0.46 14 1.04 1.12 2.83
Hydrogen bonding (12 residues) 0.38 14 0.99 1.05 2.50

The optimal smoothing window lengths tended to lie within
four and 12 residues for most of the parameters tested against
the narrow specificity sites and between six and eight for the
Parameter Weights Wwindow size broad sites (data not shown). The longer window lengths
obtained for the narrow sites were probably due to the nature

Table IV. Mean parameter weights and windows from Metropolis
optimization analyses

Mean s.d. Mean s.d. of the specificity of these proteinases, which cut at residues

Accessibility 0.84 0.16 14.0 0.0 that would be expected to be at the surface. Hence, better
Protrusion 0.01 0.02 9.6 53 discrimination is obtained by averaging over a large window
B-values 1.00 0.00 4.4 1.0 compared with an isolated exposed/flexible residue. This is
go' ”Ug‘befst . 0(-)4239 0(-)1178 %22 1-254 consistent with results from modelling experiments where at
econdary STUCLIre ; ; ' ; least 10-12 residues were shown to be involved in the
Hydrogen bonding 0.36 0.22 17.4 25 . ) o .

local unfolding required for limited proteolysis (Hubbard

et al., 1994).

nick-sites. The data for the optimal window lengths, as judged Some parameters performed better than others. The discrim-
by the lowest energyEy, , are listed in Table Il for ination factors for temperature factors and accessibility were
the narrow specificity data set. For all the conformationalthe highest and those for protrusion index and secondary
parameters investigated (including all sub-types) the meastructure parameters the lowest. In particular, the protrusion
nick-sites parameter score is significantly above that of alindex appears to be the weakest predictor of the parameters
residues, and indeed above that of putative sites, as judged kyudied, most probably due to the ellipsoidal approximation to
the positive discrimination factor scores. This is significant,protein shape used in the calculation leading to distorted values
as all the putative sites cut by narrow specificity proteinasdor particularly non-ellipsoidal proteins.
(e.g. lysine/arginine for trypsin, glutamate for V8-proteinase) Based on thé&,, data presented in Table Ill, the following
are likely to be at the surface and at flexible regions anywayparameter types were selected for the multiple parameter
Thus, all the parameters studied here possess some additiomgtimization trials: relative accessibilitg-carbon protrusion
predictive power for limited proteolytic sites above that of theindex, all atom B-values, 14 A Ooi numbers, secondary
inherent physical properties of the amino acids in questionstructure parameters (helix 0.5, strand= 0.0, coil = 1.0,
This was also seen to be the case for the smaller number @fisulphide penalty= 0.4), and 12-residue window non-local
broad specificity sites listed in Table | (data not shown). Thebackbone hydrogen bonding.
DF,icks Scores were typically higher for this second data set. .. . . -
as many more residue positions (including some hydrophobibptlmlzatlon of prediction parameters
Ones) match the broader Speciﬁcity requirements and Con-[he relative importance of the six parameters was further
sequently the mean parameter scores for the putative regssessed via Metropolis optimization of the parameters using
idues drop. the prediction algorithm. The quality of nick-site prediction
Figure 2 illustrates the normalized distributions of parametetvas significantly improved by combining the parameters. Even
scores for the optimal windows for the six selected parametergvithout optimizing the parameter weights and smoothing
The true nick-site residues cluster towards the right-handwindows, in 9 of the 12 narrow data set proteins one of the
side of the distributions, demonstrating their suitability for nick-site residues was the top scoring position satisfying
prediction parameters. However, as is evident from the meaprimary sequence requirements. For the narrow specificity data
ranks and the distributions shown in Figure 2, the individualset, the Metropolis runs typically converged quickly within
parameters are not perfect predictors. Indeed, the mean ra@k00 steps and found a set of weights and smoothing windows
scores obtained for the parameters tested on the broad specifiat further improved the prediction quality as judged by the
city data set ranged from 8.0 to 25.0. Some nick-sites clearlprediction energ\E,,. The simulations always converged to
possess scores for some parameters that are down in the middlesolution where a true nick-site was ranked as the top scoring
or lower end of the distribution scores. residue for all 12 proteins in the narrow specificity data set.
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Table V. Linear correlation coefficients between prediction parameters

Accessibility Protrusion B-values Ooi Secondary Hydrogen
numbers structure bonding

Accessibility 1.0 0.75 0.48 0.87 0.23 0.35
Protrusion - 1.0 0.46 0.85 0.16 0.24
B-values - - 1.0 0.45 0.08 0.15

Ooi humbers - - - 1.0 0.29 0.39
Secondary structure - - - - 1.0 0.82
Hydrogen bonding - - - - - 1.0

Table VI. Optimized predictions of narrow and broad specificity nick-sites

Optimized energy Parameter smoothing top scores/windows Parameter weights al DFnick Mean

a b c d e f a b c d e f rank  max
narrow Eqg) 14 6 4 6 14 12 0.7 0.0 0.9 0.3 0.6 0.2 1.87 171 100 12/12
narrow B 8 - 4 12 - 18 0.7 - 0.8 0.6 - 0.8 183 165 1.00 12/12
(4 parameters)
broad By 14 6 8 4 6 12 08 02 05 02 07 08 173 171 262 3/8
broad gy 6 - 12 8 - 12 04 - 02 01 - 0.6 171 171 275 3/8

(4 parameters)

Parameters: a, accessibility; b, protrusion index; c, temperature factors (B-values); d, Ooi numbers; e, secondary structure parameters; f, non-local hydroger
bonding.

However, the same optimal solution was achieved from slightlyare deemed to match the subtilisin primary specificity). Despite
different combinations of weights and windows for the sixthis, the top-scoring nick-site for each protein is predicted to
parameters. The mean values of these weights and windovi® in the top 6% of all putative sites and the majority of the
for the lowest energy state over each of the 20 runs are listedery top scoring residues lie within a few residues of one of
in Table IV for the narrow specificity set. These data representhe true nick-sites. This is well illustrated in Figure 4 by the
the relative discriminatory potential of the six parameters. Agrediction profiles for the broad data set. In all cases, the nick-
noted before, the protrusion index is a particularly weaksites lie close to the top of profile peaks. Indeed, for 1AVE,
predictor with a mean weight of only 0.01. Correspondingly, LOPA, 1YPI and 8TLN the nick-sites are located in the tallest
temperature factors were always the top weighted paramet@eak and the 2CST nick-site is the highest scoring putative
and are therefore the most significant predictors, closelgite. Nevertheless, the ability to predict the precise site of
followed by accessibility. Consistent optimal window lengthslimited proteolysis in every example seems beyond the scope
were also apparent for some parameters. of this approach and is likely due to the subtleties in primary

The data in Table IV strongly suggested that not all theand secondary subsite recognition as well as steric (local)
parameters were strong predictors of proteolytic susceptibilityunfolding factors.
There is clearly some overlap between the various parameters For both data sets, different combinations of window and
and indeed, the features are generally highly correlated aseight sets produced the same energy minimum. However,
shown in Table V. For example, the hydrogen bonding functiorcommon trends were evident. The final weights from the
embodies some features of secondary structure by definitiodMetropolis runs showed that for the narrow specificity sites,
Hence, the prediction optimizations were re-run with a reducethe most important parameters were accessibility, temperature
set of four parameters, removing the protrusion index and théactors, Ooi numbers, secondary structure and hydrogen bond-
secondary structure term. The results of these and the full sixg. Similarly, accessibility, temperature factors and hydrogen
parameter optimizations are shown in Table VI and the datdonding were consistently highly weighted for the broad sites.
is represented graphically in Figure 3. Using both six and fouThe protrusion index was almost always the most lowly
parameters, a set of windows and weights were found thateighted term for both data sets. The optimal window lengths
predict a nick-site residue to be top scoring for every proteiralso showed consistencies. The accessibility window converged
in the narrow (high) specificity data set yielding a 100%to 14 for the six parameter optimizations for both narrow and
successful prediction. Although the same success was nbroad specificity sites and the window sizes for hydrogen
achieved with broader sites, the overall prediction was goodyonding ranged between 12—-18 for the lowest energy solutions.
and no real loss of predictive quality was achieved usingHowever, the window lengths changed when the optimization
only four parameters. For the broad specificity nick-siteswas reduced to only four parameters. This might reflect the
accessibility and hydrogen bonding parameters dominate moffact that the system was over-determined with six parameters
than the temperature factors and secondary structure parand the optimal weights and windows found at this level were
meters, although they are both still important. affected by noise from superfluous parameters.

The prediction problem is considerably more challenging The prediction protocol optimized on the narrow specificity
for the broad specificity proteinases due to the increasedata set was tested on the broad specificity data set. Unsurpris-
number of putative residues (for example, almost all residuemgly, as shown in Table VII, the prediction scores obtained
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Fig. 3. Distributions of prediction scores for amino acids in the nicksite data sets after optimization. Distributions of amino acid prediction scores after Monte
Carlo optimization for A) the narrow specificity proteinase data set aByithe broad specificity proteinase data set, both using the full six parameters. The
same profiles are shown i€) for the narrow specificity data set anD)(the broad specificity data set, using the reduced set of 4 parameters. The white bars
represent all residues in the data set, the grey bars putative sites, and the black bars the nicksite residues.

were slightly inferior to the most optimal weights and windows perfect 12 out of 12 prediction was calculated by conducting
for broad specificity proteinases. Nevertheless, the prediction systematic search of parameter space for the four parameter
is still almost as good, particularly when considering thenarrow specificity data set. This was estimated to be only a
increased difficulty in predicting broad specificity and the 0.2% chance. Similarly, randomly chosen weights and windows
narrow specificity weights and windows may be appliedwould only correctly predict a true nick-site for seven out of
universally to nick-site prediction. This applies when using12 proteins.

four or six parameters.

The ability of the algorithm was also tested by a jack-
knifing procedure where the protein under consideration i
removed from the data set, the weights and parameters wefe critical analysis of protein conformational parameters has
re-optimized without it, and then the prediction is reapplieddemonstrated their ability to distinguish limited proteolytic
to that protein. When applied to the narrow specificity datasites from other putative cleavage sites for proteins of known
set the overall quality of prediction was only slightly inferior. structure for proteinases of both narrow (e.g. trypsin) and
With six parameters nine out of 12 narrow specificity nick-broad (e.g. subtilisin, thermolysin) specificity. The results
sites were ranked as top scoring with a mean rank of 1.50. Thisonfirm earlier conclusions that nick-sites are found at exposed,
improved slightly with the reduction to only four parametersprotruding and flexible regions of protein structure (Fontana
yielding a mean rank of 1.3. et al., 1986; Novotriyand Bruccoleri, 1987; Vitet al., 1988;

These results suggest that the algorithm is a useful predictdfontana, 1989; Hubbast al., 1991, 1994) which are typically
of proteolytic susceptibility and that it is worthwhile finding loops or turns, rarely in or near helices, but apparently never
the most optimal parameters to accomplish this. To confirmin extendedp-structure. Similarly, substantial segments of
the validity of the approach, the probability of achieving acontiguous residues local to the scissile peptide must possess
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Fig. 4. Prediction profiles for proteins cut by broad specificity proteinases. The prediction profiles for the eight proteins from the broad specificity data set are
shown, using the weights and window from the Monte Carlo optimization runs. Limited proteolytic sites are indicated by filled circles on the profiles. The
proteins shown are 1AVE, avidin; 1HCY, haemocyanin; 1HPL, lipase; 10PA, cellular retinol-binding protein Il; 1YPI, triose phosphate isomerase; 2CST,
aspartate aminotransferase; 5RSA, ribonucelase; 8TLN, thermolysin.

the requisite properties needed to allow local unfolding forcompromising the algorithm unduly. As there is some overlap

subsequent limited proteolytic cleavage. in the parameters as shown by the correlation coefficients
The protrusion index is a relatively weak predictor as it isin Table V, the chief determinants of limited proteolytic

an approximation to true protein shape. Large proteins mightusceptibility may be divided into three groups:

more usefully be broken down into constituent subunits and/

or domains which are more likely to be globular or, altern-1. Exposure—as characterized by accessibility and Ooi hum-

atively, the protrusion index can be eliminated entirely without  bers. Although not an absolute requirement, a nick-site is
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Table VII. Comparison of predictions for broad specificity nick-sites

Protein code Number of putative Top scoring nick-site ranking
nick-sites

narrow specificity optimized parameters broad specificity optimized parameters
Full 6 Reduced 4 Full 6 Reduced 4
parameter set parameter set parameter set parameter set

1AVE 41 2 2 1 1

1HPL 165 3 3 4 4

1HCY 579 14 11 6 7

10PA 36 2 2 1 2

1YPI 216 9 10 2 2

2CST 149 2 1 1 1

5RSA 109 11 15 2 1

8TLN 294 3 2 4 4

more likely to be situated in a region close to the proteinstructure was available which was resistant to limited proteo-
surface so that local unfolding is more easily accomplishedlysis. Indeed, the prediction algorithm applied to these systems
2. Flexibility—as characterised by X-ray crystallographic yields rather poor predictions. Use of the incorrect apo- or
temperature factors, which give a measure of the dynamibolo- crystal form had a more deleterious effect on the
properties along the protein chain, obviously critical for prediction than use of an alternative structure from another
local unfolding and adaptation to the enzyme’s activespecies, as these proteins were generally well predicted. For
site. example, Gly28 in aspartate aminotransferase (2CST) is the
3. Local interactions—as characterized by secondary structutgighest scoring putative thermolysin site despite the fact that
and hydrogen bonding. A good candidate for local unfoldingthe S.Solfataricustructure is not yet available and the chicken
and adaptation must not be tied down by interactions sucheart homologue structure is used instead.
as disulphide bridges or hydrogen bonding (such as within Another factor not considered is the ‘steric fit. Some sites
regular secondary structure). may be geometrically more disposed to local unfolding and
Undoubtedly, the key determinant is the ability to unfold SuPsequent docking. Although this can be assessed (Hubbard
locally and adapt to the enzyme's active site. The questiofit -1994) itis compute-intensive and difficult to integrate into
remains as to which parameters are the best indicators of thj3€ Prediction algorithm. Furthermore, the steric accessibility to
ability. Despite the importance of these three features, an ovel'€ active site cleft can vary between proteinases of the same
reliance on any one may lead to a false prediction. For exampl@'iMmary specificity such as kallikrein and trypsin (Chen and
as pointed out by Fontana and co-workers (1997a,b) many©de, 1983). _ . .
putative nick-sites on a protein surface are not cleaved, Putinto a biochemical context, limited proteolysis is not a
Similarly, although important, temperature factors are an imperdiScréte process where every bond is either susceptible or
fect measure of the true segmental mobility. This is becausgSistant. Dynamics, and hence kinetics, must play a role in
they report on static disorder, as well as thermal motionsWhether a particular cleavage will be observed, determined
They are also distorted by intermolecular crystal packing?©t Only by the enzyme and substrate ratio, but also by the
interactions, which reduce the flexibility of those residuesdiverse range of conditions under which the experiments were
involved, manifesting in reduced temperature factors. This igonducted. In some cases, several bonds might be accessible
the case for the region containing several of the ribonucleast® Proteolysis in native state conditions, whilst under slightly
(5RSA) nick-sites from residues 18-24 which make inter-different (retarding) experimental conditions, only a single site
molecular contacts in the crystal. This serves to damp dowfay be observed to be cleaved at a slow rate. This site might
the apparent mobility of this segment and affect the associategfOre lowly, although it is the highest of the putative sites for
thermal factors. However, it may be possible to partially addresd given proteinase. Hence, the ranking of sites is also of great
this problem of crystal-masked flexibility by accounting for importance. However it is rare that all rate constants for all
packing affects and modifying atomic B-values (Scheriff susceptible sites in a given protein and the true ‘rank’ order
et al., 1985). of limited proteolysis are experimentally determined. Thus,
Similarly, protein—ligand interactions can profoundly effect hot unreasonably, we select the top-scoring nick-site in each
the proteolytic susceptibility of a protein, stabilizing or destabil-protein for the calculation of mean ranking since the true
izing it (Fontana, 1989; Jamiscet al., 1994; Ellisonet al., ‘first cut’ site is rarely unequivocally determined. A further
1995). If the incorrect apo- or holo-protein structure is unavail-complication arises due to the nature of the data. Because the
able the prediction will be affected. In the case of the retinol-roteolysis has in some way been limited, there may well be
binding proteins (1OPA) this is likely to affect the prediction more susceptible sites in the substrate proteins than have been
profoundly as the retinol (or analogous ligand) stabilizes theneasured experimentally. As there is no way for this to be
protein and reduces its susceptibility to proteolysis (Jamisomatified without re-performing all the experiments under a vast
et al., 1994). Although there exists a large amount of X-rayarray of differing conditions we have simply divided sites into
and limited proteolysis data, the only structure available foreither nick-sites or ‘not nicksites’ which may not be universally
these proteins in the apo-form is the cellular retinol-bindingtrue. These points are highlighted by the range of reaction
protein 1l (LOPA). Several other limited proteolytic systemstemperatures and the second-order rate constants estimated
were excluded from this study as only the holo-form crystalfrom the literature; the latter ranging over several orders of
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magnitude from 0.002 to O.QM‘l.min‘l (Table 1). Clearly, Hermodson,M.A., Ericsson.L.H., NeurathH. and WalshK.A. (1973)

; i iochemistry12, 3146-3153.
these rates are strongly dependent on experimental conditio 3jaki JN. and Light A, (1985Anal. Biochem. 148 111-120.

and it would be folly to try and correlate prediction scoresy,y "Fenwick,C. and English.A.M. (199&)org. Chim. Acta242, 261-269.
with rate constants given such non-standard experiment&lubbard,S.J., Campbell,S.F. and Thornton,J.M. (1a81Mol. Biol, 220,
conditions. It therefore remains a challenge for the future to 507-530.

distinguish further the true ‘susceptibility’ of each peptide HulebazrgvS-J-' Thornton,J.M. and Campbell,S.F. (1982pday Discuss 93,
bond and account for kinetic factors. This would require theHubbard’S.J” Eisenmenger.F. and Thornton,J.M. (19@yein Sci, 3

ability to predict the energy barrier for each protein segment 757_7gs.
to unfold locally. Studies in our laboratory are currently Iriarte,A., Hubert,E., Kraft,K. and Martinez-Carrion,M. (198%)Biol. Chem,
underway to achieve this goal. 259, 723-728.

Despite the limitations discussed here, this approach remain]§gnafifggs" Newcomer,M.E. and Ong,D.E. (198#)u. Rev. Biochegn6,

successful for proteinases of different specificity with theyanschw. and Sander,C. (198Bjppolymers 22, 2577-2637.
prime determinants of susceptibility remaining the samekraut,J. (1977)Ann. Rev. Biochemd46, 331-358.
flexibility, exposure and the ability to unfold locally. It should Laskowski,M.,Jr. and Kato,l. (198@nnu. Rev. Biochen9, 593-626.

be stressed, however, that the algorithm is not a definitivéeoer;Eé g”g R(iggalfgSA'FF-eM- L(lgzlez) '\P"‘é' BAi?eI" ggdﬂ%—“ﬁg}n WR. GossNH
prediction tool and the results should be interpreted carefuII)VI and Norton R.S. (1994iochim. Biophys. Actal 207 93-101.

and ‘{Vith caution given the "mitatic_ms describgd here- Monsalve,R.I., Mefhedez-Arias,L., Lpez-Otin,C. and Rodriguez,R. (1990)
This approach also has potential for application to other FEBS Lett 263 209-212.
surface-correlated features of proteins. Properties such &gurath,H. and Walsh,K.A. (1976)oc. Natl Acad. Sci. USA’3, 3825-3832.

antigenicity are surface-correlated (Thorntenal., 1986) as Ne;;gﬁgggﬂ' Jekel,P.A. and Beintema,J.J. (199@) J. Biochem. 206,

are post-translational modifications such as glycosylation angishikawa K. and Ooi.T. (1986). Biochem. 100, 1043-1047.
phosphorylation. The latter represent additional examples afiovotny,J. and Bruccoleri,R.E. (198 BEBS Lett, 211, 185-189.
the constraints placed by tertiary structure on the modificatio®ttensen,M. (1967Annu. Rev. Biochem36, 55-76.

case of Asn-X-Ser/Thr motif or by Cleavage in the case of Proteglyt|c80Enzymes: A Practical ApproaclOxford, UK, IRL Press,
pp. 163-180.

proteolysis. The potential of this generic approach to thesichards,F.M. and Vithayathil,P.J. (1959)Biol. Chem, 234, 1459-1464.
kind of prediction problems is being evaluated in our laboratoryRupley,J.A. and Scheraga,H.A. (19@ijpchemistry2, 421-431.

. - Schechter,l. and Berger,A. (196 Biochem. Biophys. Res. Commug7,
Software availability 157-162. 9 (1965 Py m

Nickpred, the program used in this work is available to theSheriff,S., Hendrikson,W.A.,_ Stenkamp,R.E., Sieker,L.C. and Jensen,J.H.
biological community via the World Wide Web and via _ (1985)Proc. Natl Acad. Sci. USA2 1104-1107.

. . . . . ., Stephen,A. (1993) PhD Thesis, University of Manchester Institute of Science
email. Information on the WWW version is located at: http:// ™ ;4 Technology, Manchester, UK.

sjh.bi.umist.ac.uk/nickpred.html. For more information on thesun,a-Q., Umit Yiksel,K. and Gracy,R.W. (1993). Biol. Chem. 268
Email version, send mail to nickpred@sijh.bi.umist.ac.uk. with 26872-26878.
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