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Ion Mobility-Mass Spectrometry to Evaluate the Effects
of Protein Modification or Small Molecule Binding
on Protein Dynamics

Lauren J. Tomlinson and Claire E. Eyers

Abstract

Ion mobility-mass spectrometry (IM-MS) of intact protein complexes under native conditions is a powerful
tool for the analysis of protein complexes and protein–ligand interactions, permitting insight into ligand-
induced changes in protein conformation. Here we describe a procedure for analyzing the effects of
phosphorylation and/or inhibitor binding on protein kinase conformational flexibility using Protein Kinase
A (PKA) as a model system. By calculating the protein collision cross section (CCS) before and after
inhibitor binding, and additionally by performing collision-induced unfolding (CIU), we can establish the
effects of protein modification or small molecule binding on protein dynamics.
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1 Introduction

Ion mobility-mass spectrometry (IM-MS) of intact protein com-
plexes under native electrospray ionization (ESI) conditions is
advancing the structural analysis of proteins, protein complexes,
and protein–ligand interactions. The benefits of rapidly obtaining
information on protein dynamics and conformational flexibility
from small amounts of (partially) purified material means that
IM-MS is confidently being implemented alongside more tradi-
tional structural techniques such as X-ray crystallography and
nuclear magnetic resonance (NMR) to gain insight into the struc-
tural alterations associated with protein modification, protein–
ligand binding, and protein complex formation [1–5].

Many elegant IM-MS studies are now being published that
evaluate the effect of different types of ligands on protein complex
formation and protein dynamics, including small molecules [6–13],
RNA and DNA oligomers [14, 15], and (proteo)glycans [16, 17].
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There are four primary forms of ion mobility that are coupled
with MS: drift-tube ion mobility spectrometry (DTIMS), traveling
wave ion mobility spectrometry (TWIMS), trapped ion mobility
(TIMS), and differential-mobility spectrometry (DMS), a version
of which is field-asymmetric ion mobility spectrometry (FAIMS)
[18, 19]. DTIMS and TWIMS (and more recently TIMS) are
preferentially used in the investigation of protein–ligand interac-
tions, as they can be used to define analyte rotationally average
collision cross section (CCS) values permitting direct comparison
of conformers, e.g., before and after ligand binding. If required,
CCS values can also be correlated with data obtained using software
programs, such as MOBCAL [7].

Protein kinases are important drug targets, in large part
because of their rate-limiting roles in numerous diseases [20]. Con-
sequently, understanding the structural implications upon binding
of small (and large) molecule drugs to these proteins, and the effect
of regulatory post-translational modifications, such as phosphory-
lation, is important. Investigating protein conformational dynamics
and the effects on stability is particularly relevant as the field moves
toward development of, arguably more specific, “type II” small
molecule allosteric inhibitors that bind regions of the protein out-
side of the relatively conserved ATP-binding site [21, 22].

Here we present a method of utilizing IM-MS to assess the
structural effects of phosphorylation and ligand binding on cAMP-
dependent protein kinase (PKA) [7, 23]. The described method is
readily transferable to the investigation of phosphorylation and
ligand-induced changes in other proteins, including other mem-
bers of the protein kinase superfamily.

2 Materials

Prepare all solutions usingHPLC-grade water. All protein solutions
should be kept at 4 !C unless otherwise stated.

2.1 Buffer Exchange 1. Ammonium Acetate: 50 mM. Weigh out 0.39 g ammonium
acetate and dissolve in 100 mL HPLC-grade water to make
50 mM ammonium acetate buffer. Prechill to 4 !C.

2. HPLC-MS water.

3. Amicon spin filter columns.

4. Bench top centrifuge.

5. Gel loading tips.

2.2 Inhibitor Assay 1. Protein(s) of interest: exemplified here are different forms of
the catalytic subunit of PKA (PKAc)—wild-type (WT; hyper-
phosphorylated), λ protein phosphatase (λPP)-treated PKAc,
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catalytically inactive K72H PKAc, and the non-PKI-binding
R133A PKAc variant.

2. Inhibitors: Prepare all stocks of inhibitors (staurosporine
(STS), H89 and AT13148) by diluting to 10 mM final concen-
tration in DMSO.

2.3 Ion Mobility-
Mass Spectrometry

1. Ion mobility-mass spectrometer: Waters G2-Si Synapt.

2. API Calibration (NaCsl) Solution Kit (Waters).

3. TW120–4 Thin-Wall Capillary (4 " 1.2 mm), 10 G.

4. Capillary puller: Sutter P-1000 Puller (see Note 1).

5. Ceramic capillary cutter.

6. Platinum (Pt) wire (0.125 mm " 5 m), one per capillary, cut to
4 cm lengths.

7. Protein calibrants for CCS determination: β-lactoglobulin A,
avidin, transthyretin, concanavalin A, and serum albumin
(Sigma-Aldrich) prepared as 5–10 μM in 200 mM ammonium
acetate (see Note 2).

3 Methods

3.1 IM-MS Setup 1. Prepare the capillaries for nano electrospray ionization (nESI)
using the capillary puller and the program as shown in Table 1
(see Note 1).

2. To calibrate the ToF, infuse the Lockspray Flow Control with
NaCsl. Start infusing at 20 μL/min, decreasing to 10 μL/min
once a strong signal is visible.

3. Calibrate using NaCsl over a m/z range of 500–8000 in reso-
lution mode (see Note 3).

3.2 Protein Buffer
Exchange

1. Prepare the protein solution for IM-MS analysis by buffer
exchanging into 50 mM ammonium acetate (see Note 4)
using amicon 0.5 mL spin filter columns (see Note 5). Dilute
the required amount of protein solution (seeNote 6) in ammo-
nium acetate to the capacity of the amicon spin filter (see

Table 1
Sutter P-1000 Puller settings

Line Heat Pull Vel. Delay Pressure Ramp

1 " 1 489 0 20 120 235 491

2 " 1 489 0 18 120 Delay mode X

Safe heat X

Jaw temp. 19 !C

3 " 1 489 0 18 120
4 " 1
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Note 7). Centrifuge at 14,000 " g for 10 min, in a precooled
bench top centrifuge at 4 !C. Discard the flow through. Repeat
the dilution and centrifugation step twice (see Note 8).

2. Following the final buffer exchange spin, invert the filter in to a
new low-bind centrifuge tube and spin for 3 min at 14,000" g,
4 !C.

3. Determine the concentration of the final protein solution in
ammonium acetate using a NanoDrop spectrophotometer (see
Note 9).

3.3 IM-MS Analysis 1. Cut off ~2 cm from the back end of the capillary using a
ceramic capillary cutter (see Note 10).

2. Place the capillary in the secure clasp holder. Using gel-loading
tips, add between 1–3 μL (2–5 μM) of protein sample (either
protein CCS calibrant or protein of interest) directly in to the
nESI capillary.

3. Spin down the clasp holder containing the capillary for a few
seconds in a microfuge to ensure that all of the protein solution
has reached the end of the capillary tip.

4. Remove the capillary from the clasp and place the piece of
platinum wire inside the capillary (see Note 11). Affix the
metal clasp and the protective rubber insert to the outside of
capillary and mount onto the source stage of the Synapt G2-Si
instrument.

5. Use the camera function to position the capillary, so that it is in
the optimal position (see Note 12).

6. Increase the nano flow gas to 0.05 bar and the sampling cone to
20 V.

7. Set the instrument to TOF/MS mode and increase the capil-
lary voltage to ~1.1–1.6 kV until a stable signal is observed (see
Note 13).

8. Determine the optimal TriWave settings for the protein of
interest by adjusting the Wave Velocity (m/s) andWave Height
(V) (see Note 13).

9. Once a good signal is established, and TriWave settings opti-
mized, ensure the ‘Add Drift Time’ function button is ticked
and acquire data over the required m/z range (see Note 14).
See Fig. 1 for native MS and IM-MS data for the exemplar
hyperphosphorylated PKAc, before and after treatment with λ
protein phosphatase (PKA λPP), as well as two protein variants:
K72H PKAc which is catalytically inactive and therefore not
phosphorylated, and R133A PKAc which is unable to bind PKI
(the inhibitor of PKA).
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Fig. 1 Structural analysis of variants of the PKA catalytic subunit (PKAc) by
IM-MS. (a) ESI mass spectrum of PKAc obtained under native conditions; charge
states are indicated. (b) TWCCSN2!He for the [M+13H]

13+ form of untreated WT
PKAc (PKA), PKAc following treatment with Mn2+#λ protein phosphatase (PKA
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3.4 Calibration
of the TWIMS for CCS
Determination

1. To determine CCS values for the protein of interest, the drift
time through the instrument must first be calibrated under the
optimal MS acquisition parameters used for the protein. Cali-
brate the drift time using the CCS Calibration setting on the
Intellistart program. Acquire IM-MS data as described in Sub-
heading 3.3.

2. Open the data file in the MassLynx software using the 2:
TOFMS (500:8000) ES+ function.

3. Extract the peak of interest from Total Ion Chromatogram
(TIC) to open spectrum.

4. Right click across the peak in the spectrum view to open
another chromatogram window.

5. In the chromatogram window, click edit and copy the chro-
matogram list. Paste these values (drift times and the
corresponding intensities) in to Microsoft Excel or a similar
program of choice.

6. Refer to the Collision Cross Section (CCS) database (https://
depts.washington.edu/bushlab/ccsdatabase/) provided by
the Bush Lab [24] to determine the native-like ion value for
CCS (He)/nm2 of the chosen CCS calibrants.

7. Calculate the reduced cross section Ω’ of the protein calibrants
using Eq. 1:

Ω0 ¼ Ω
√u
q

ð1Þ

where μ is the reduced mass and q is the charge state.

8. Plot (Ω0) versus (tD0) and fit a straight line using Eq. 2 to
convert the drift time scale to a CCS (He) scale:

Ω0 ¼ Ω
qffiffiffi
u

p
!

tD0A
!
exp Cð Þ ð2Þ

where A is the determined slope of the fit and C is the
intercept.

9. Plot the converted nonlinear scale against the corresponding
intensity values.

!

Fig. 1 (continued) PP), and the K72H and R133A variants. The hyperphosphory-
lated PKAc had a TWCCSN2!He value of 29.4 nm2. TWCCSN2!He value increased
by 1.5% following treatment with λPP. Half-height width of the CCS distribution
reduced from 2.2 nm2 (28.4–30.6 nm2) to 1.8 nm2 (28.8–30.6 nm2) with
addition of λPP. Two overlapping conformations of PKA are indicated in red
and green. (Reproduced from Byrne et al. 2016 with permission from the
Biochemical Journal)
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10. Using OriginPro9 (or similar), plot the CCS values calculated
in step 9 (x-axis) against the intensity values for each
conformer (y-axis).

11. Normalize the inputted data by clicking on Analysis–Mathe-
matics–Normalize Columns–Normalize to [0,1] and plot the
best fit line. This can then be used to determine the CCS value
for all similar analytes according to their measured drift times
under the same conditions (Fig. 1).

3.5 Evaluating
the Effect of Inhibitor
Addition on Protein
Conformation

1. Mix the protein solution (in ammonium acetate) with the
required concentration of inhibitor, to achieve a molar ratio
~1:10 protein:inhibitor. Leave the mixture at room tempera-
ture for ~10 min to facilitate binding prior to IM-MS analysis.

2. Prepare a capillary and collect IM-MS data as described in
Subheading 3.4.

3. Calculate the CCS value of the different charge states of the
ligand-bound protein (Fig. 2) according to the procedure out-
lined in Subheading 3.5 (see Note 15).

3.6 Collision-
Induced Unfolding

1. Determine the lowest charge state of suitable intensity for CIU
analysis following IM-MS data acquisition of the protein as
described in Subheading 3.4.

2. Isolate this single charge state in the quadrupole for further
investigation.

3. Increase the CID trap energy gradually from ~20 to 41 V,
acquiring IM-MS data (as detailed in Subheading 3.4) in
two-volt intervals.

4. Repeat steps 2–4 for each observed charge state.

3.7 CIU Data
Analysis

1. Open the CIU data files in the MassLynx software using the 2:
TOFMS (500:8000) ES+ function.

2. Extract the peaks of interest from Total Ion Chromatogram
(TIC) to open the spectra.

3. Right click across the peak in the spectrum view to open
another chromatogram window.

4. In the chromatogram window, click edit and copy the chro-
matogram list. Paste these values (drift times and the
corresponding intensities) in to Microsoft Excel or similar
program of choice.

5. Copy data for all the acquired voltage settings in to
OriginPro9.

6. Normalize the inputted data by clicking on Analysis–Mathe-
matics–Normalize Columns–Normalize to [0,1].

7. Copy all and add to matrix.

8. Create a CIU plot by going to Plot-Contour-Color (Fig. 3).
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4 Notes

1. The program in Table 1 should be used as a starting guide and
adapted to achieve the optimal capillary shape. See manufac-
turer’s instructions for the use of other puller models. The fine
end of the capillary tip should be ~0.4 cm in length.

2. In order to determine CCS values, it is an absolute requirement
that the drift time through the instrument be calibrated under
the same conditions as used for the analyte protein (and ligand

Fig. 2 Small-molecule inhibitor binding to PKAc. (a) Native ESI mass spectra. (b) TWCCSN2!He values in the
presence of DMSO vehicle or with tenfold molar excess of staurosporine (STS), H89, or AT13148. CCS
distributions are presented for [M+11H]11+ (red dotted line), [M+12H]12+ (blue line), and [M+13H]13+ (black
line). (Reproduced from Byrne et al. 2016 with permission from the Biochemical Journal)
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complex). It is ideal to use protein calibrants that are of a similar
mass to the one under investigation. We typically use
β-lactoglobulin A, avidin, transthyretin, concanavalin A, and
serum albumin. It should be noted that determination of CCS
values are not an absolute requirement to evaluate ligand-
induced protein conformational changes, but they are required
to undertake cross-comparison studies using different techni-
ques, or for analyses undertaken on different instruments, or
under different conditions.

3. The ToF should be calibrated to achieve an acceptable toler-
ance of 1 ppm or below. If the mass accuracy is greater than
1 ppm, calibration should be repeated.

Fig. 3 Collision-induced unfolding of PKAc variants. CIU profiles of PKAc wild-type (WT), λPP-treated, K72H
and R133A. PKAc is more stable and requires higher collision energy to begin unfolding at'36 V. λPP-treated
PKA starts to unfold at'31 V. Both PKAc variants are less stable than PKAc WT and begin unfolding at'32 V.
(Reproduced from Byrne et al. 2016 with permission from the Biochemical Journal)
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4. While we recommend 50 mM ammonium acetate as a starting
concentration, this should be evaluated for your protein of
interest, with ranges of 25–250 mM ammonium acetate typi-
cally being employed.

5. Use spin filter columns with a molecular weight cutoff appro-
priate to the protein of interest.

6. The amount of protein subjected to buffer exchange will be
dependent on the starting concentration and the relative sta-
bility of the protein during buffer exchange. The final concen-
tration of protein required for analysis is ~1 mg/mL or greater;
this should be taken into consideration when deciding on the
amount of protein required for this step.

7. Amicon spin filters should be pre-equilibrated with the
required concentration of ammonium acetate prior to use.

8. Ammonium acetate buffer should be kept cold on ice through-
out the buffer exchange step.

9. We recommend using a NanoDrop for protein concentration
determination as this requires very little material. If a Nano-
Drop spectrophotometer is not available, determine protein
concentration using a standard Bradford assay or similar.

10. Extreme care should be taken when cutting the capillary to
ensure a clean cut, and that no glass enters the capillary which
may cause the capillary to block. Both ends of the capillary
should be checked under a microscope prior to use.

11. Ensure the platinum wire goes to the tip of the capillary with-
out pushing through the tip.

12. The optimal position of the nESI capillary with respect to the
instrument orifice is instrument dependent. Using the camera
as a guide, the position of the capillary should be adjusted to
~1 cm away from the orifice such that signal is optimized.

13. To determine optimal spectra, adjust the wave height and
velocity settings until the peak observed in the drift time spec-
tra is at the center of the x-axis.

14. We typically acquire over a TOF MS range of 500–8000 m/z
for ~10 min, using a scan time of 5 s.

15. Evaluation of the effects of ligand binding on protein confor-
mation requires comparison of the CCS values for the same
protein charge states ( ligand.
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