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ABSTRACT: Quantitative mass spectrometry-based proteomics of complex
biological samples remains challenging in part due to the variability and charge
competition arising during electrospray ionization (ESI) of peptides and the
subsequent transfer and detection of ions. These issues preclude direct
quantification from signal intensity alone in the absence of a standard. A deeper
understanding of the governing principles of peptide ionization and exploitation
of the inherent ionization and detection parameters of individual peptides is thus
of great value. Here, using the yeast proteome as a model system, we establish the
concept of peptide F-factor as a measure of detectability, closely related to
ionization efficiency. F-factor is calculated by normalizing peptide precursor ion
intensity by absolute abundance of the parent protein. We investigated F-factor
characteristics in different shotgun proteomics experiments, including across
multiple ESI-based LC−MS platforms. We show that F-factors mirror previously
observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity
and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and
ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in
complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-
free workflows. Data are available via ProteomeXchange with identifier PXD003472.
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■ INTRODUCTION

Building on advances in modern mass spectrometry,
proteomics as a science has arguably come of age.1 As a
valuable tool in the modern postgenomic era, it seeks to
characterize the complete set of protein molecules encoded and
expressed by a genome in a cell or tissue under defined
conditions. In other words, it should be truly genome-wide, and
this is reportedly now readily achievable (e.g., refs 2−5).
Equally important, for protein characterization to be truly
informative, such an analysis should be quantitative. Indeed,
there are now many instrument platforms that support high-
coverage quantitative proteomics capable of generating
estimates of both relative and absolute abundance of individual
proteins in a complex mixture.3,6,7 Ideally, such quantitative
information should be absolute, i.e., yield a measure of
concentration or copies per cell, as this empirically supports
more thorough and biologically relevant analyses including
determining the stoichiometry of protein complexes, biomarker
assays, and measurement of protein concentrations for kinetic

modeling.8 However, estimating absolute protein abundance
from peptide precursor ion signal requires calibration using
known quantities of an internal standard.7,9,10 Such calibration
in quantitative proteomics is essential because the relative signal
intensity arising from different peptide ions following electro-
spray ionization is not directly proportional to the amount
(moles) of starting material; proteolytic peptides derived from
the same parent protein, even when present in stoichiometric
amounts, will not generate the same number of ions and thus
their attendant MS signal will vary. Because the peptide
precursor ion intensity (MS1) is frequently used for
quantification, it is perhaps somewhat surprising that more
attention is not generally given to evaluating the detectability of
the proteolytic peptides used for quantification and the
physicochemical factors governing these processes.
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There are numerous confounding factors contributing to the
detection of peptide ions in a mass spectrometer.11 First, as
noted, the intrinsic ionization properties of peptides vary
dependent on the constituent amino acids and their order.
Equally, although not essential for quantification per se,
sufficient fragmentation should occur to allow search tools to
accurately assign a candidate identification from within a
complex mixture because in practice the MS1 peptide precursor
ion signal needs to be assigned to the parent protein for
quantification. Another confounding issue is the difference and
nonuniformity in the chromatographic system delivering
peptides to the mass spectrometer in most experiments,
where different gradients and columns can cause differential
peptide coelution and potentially lead to variation in
competition for ionization. Similarly, missed or nonspecific
cleavages by the protease employed to generate the peptides in
the first instance can induce further variance. The field has thus
invested much time and effort to the optimization of digestion
protocols to induce complete proteolytic cleavage.12−14 Bio-
logical and chemical modification can also split signal across
multiple peptide ion species, leading to challenges when
estimating protein abundance from the MS ion signal.
Hence, there is great value in understanding the issues

surrounding intrinsic peptide “flyability” (a generic term used
to cover the relative efficiencies of ionization, transfer, and
detection) for several reasons; a greater understanding of the
fundamental properties of gas-phase peptide ion chemistry,
better selection of surrogate peptides for protein quantification
experiments (because confounding, nonquantotypic peptides
will not be helpful), and for more accurate estimation of
absolute protein abundance from label-free data sets where
calibration can be achieved from stable-isotope standards or
intrinsic scaling factors.7,9,15,16 Although the mechanistic
principles of peptide fragmentation by collisional-based
dissociation have been studied extensively and are reasonably
well understood,17−21 the basic principles of peptide ionization,
particularly by electrospray and in complex mixtures, are still
not fully deciphered despite numerous previous studies.22−27 A
deeper understanding of peptide detectability has particular
relevance for quantitative proteomic strategies, which seek to
predict quantotypic peptides and their likely signal strength for
the selection of surrogate peptides or to calibrate precursor ion
signals.28−32

To address this issue, we have exploited a data set of high-
quality absolute quantifications of 349 yeast proteins derived
from targeted MS experiments; selected reaction monitoring
(SRM)33 coupled to stable isotope-labeled standards in the
form of QconCATs34,35 was used to define accurate and reliable
copies per cell abundance values.36 This data was in turn used
to normalize the peptide ion intensities captured in several
parallel label-free shotgun studies carried out on the same yeast
protein lysate.
By accounting for the major source of variance in the peptide

intensity signal, namely, differential abundance of the peptides
in the starting analyte mixture, we aim to get a closer estimate
of the intrinsic peptide detectability, which we define here as
individual peptide “flyability” factors (F-factors). F-factors are
hence a more useful metric when examining peptide properties
related to ionization efficiency because they effectively
normalize for protein abundance as a confounding feature
contributing to differences in relative ion signal intensity and
the knock-on ability to identify the peptide.11,37 Here, we
calculate F-factors for thousands of yeast peptides in data-

dependent label-free proteomics experiments and examine their
statistical properties. We show that F-factors are, to a large
degree, well conserved between experimental conditions but
less so between different instrument types. Finally, we discuss
the general implications for protein quantification via label-free
peptide ion signals.

■ MATERIALS AND METHODS

Sample Preparation and Proteolysis

S. cerevisiae (EUROSCARF accession number Y11335 BY4742;
Mat ALPHA; his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0; YJL088w::-
kanMX4) cultures were prepared as described previously.35,36,38

Briefly, four biological replicates of yeast cultures grown in
carbon-limited medium, in chemostat mode, were collected,
and the total number of harvested cells was determined using
an automated cell counter (Cellometer AUTOM10).
For protein extraction, cell pellets were resuspended in 50

mM ammonium bicarbonate containing protease inhibitors
cocktail (Roche Diagnostics Ltd., West Sussex, UK) and
subjected to 15 cycles of bead-beating. Total protein extracts
were collected, and protein concentration was determined
using a Bradford assay.
Proteins corresponding to 25 million cells (∼100 μg protein)

were digested using the procedure described in ref 38. Briefly,
yeast lysate, universal proteomics standard (UPS1; Sigma-
Aldrich), or proteomics dynamic range standard (UPS2; Sigma-
Aldrich) in 25 mM ammonium bicarbonate was denatured
using 1% (w/v) RapiGest (Waters, Manchester, UK), reduced
by the addition of 60 mM dithiothreitol, and alkylated using
180 mM iodoacetamide (final concentrations were 0.05%, 3
mM, and 9 mM, respectively). Digestion was performed by the
addition of trypsin at a 1:50 enzyme to protein ratio followed
by another aliquot after 4.5 h and overnight incubation at 37
°C. The digestion was stopped, and RapiGest was removed by
acidification with trifluoroacetic acid to a final concentration of
1% (v:v). Additionally, a 7.5 μL aliquot of acetonitrile:water
(2:1) was added to aid peptide solubilization. RapiGest and any
remaining cell debris were then removed by centrifugation
(15000g for 20 min). Digested UPS standards were diluted to a
final protein concentration of 25 fmol/μL (UPS1 containing
equimolar amounts of 48 human proteins) or ranging from 250
fmol/μL to 2.5 amol/μL (UPS2 containing 48 human proteins
spanning a concentration range of 5 orders of magnitude). Each
standard was spiked into the S. cerevisiae lysate to an
appropriate concentration to achieve 25 fmol (or 250 fmol to
2.5 amol range) standard in 500 ng yeast on column. Peptides
were stored at −20 °C prior to MS analysis.
MassPREP E. coli digestion standard (Product Number

186003196; Waters, Manchester, UK), which is a tryptic digest
of a purified E. coli cytosolic protein fraction, was solubilized in
water:acetonitrile (97:3 with 0.1% (v/v) trifluoroacetic acid),
aliquoted, and stored at −20 °C. For the MS analysis, 500 ng of
yeast and 500 ng of MassPREP E. coli standard were mixed and
injected onto the column.
Mass Spectrometry Data Acquisition and Processing

Protein digests were separated by reversed-phase liquid
chromatography and analyzed on a LTQ-Orbitrap Velos
equipped with a Nanospray Flex Ion Source or a Q Exactive
HF mass spectrometer equipped with an EASY-Spray Source.
For the LTQ-Orbitrap Velos, a nanoAcquity UPLC system
(Waters, Manchester, UK) with a 75 μm × 25 cm, 1.8 μm
particle size, C18 nanoAcquity analytical column was used. For
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the Q Exactive HF, Dionex UltiMate 3000 ultrahigh pressure
LC system (Thermo Fisher Scientific, Hemel Hempstead, UK)
with a 75 μm × 50 cm, 2 μm particle size, EASY-Spray
analytical column was used. Peptides were loaded on the
column in mobile phase A (0.1% (v/v) FA in water) and
separated with a linear gradient of 3−35% mobile phase B
(0.1% (v/v) FA in acetonitrile) at a flow rate of 300 nL/min
over varying gradient lengths (30−240 min). The instruments
were operated in a data-dependent mode and controlled by
Xcalibur software (Thermo Fisher Scientific).
For the LTQ-Orbitrap Velos, a survey scan was acquired over

the range m/z 350−2000 at a mass resolution of 30,000 (fwhm
at m/z 400) and the top 20 most intense precursor ions were
subjected to CID (normalized collision energy = 35, MS target
value = 1.00E6, MS/MS target value = 1.00E4, and maximum
ion fill time = 500 and 100 ms for MS1 and MS/MS scans,
respectively).
For the Q Exactive HF analyses, an instrument method based

on that described by Scheltema and colleagues39 was used. A
survey scan was acquired over the range m/z 350−2000 at a
mass resolution of 60,000 (fwhm at m/z 200), and the top 18
most intense precursor ions were subjected to HCD
(normalized collision energy = 28, MS target value = 3.00E6,
MS/MS target value = 1.00E5, and maximum ion fill time =
100 and 45 ms for MS1 and MS/MS scans. respectively). The
precursor ion isolation window in the quadrupole was set to 1.2
m/z units. Dynamic exclusion time was set to 20 s in all
experiments.
Raw instrument data were processed with the MaxQuant (v.

1.5.1.0) software suite.40 Peptide searches were performed
against the UniProt S. cerevisiae canonical + isoform protein
database (accessed on May 9, 2015; 6721 entries) and a
database containing 262 common laboratory contaminants
using the integrated Andromeda search engine.41 Raw data
from UPS and E. coli spike-in experiments were searched
against the same S. cerevisiae protein database and UPS fasta file
downloaded from the Sigma-Aldrich Web site (http://www.
sigmaaldrich.com/content/dam/sigma-aldrich/life-science/
proteomics-and-protein/ups1-ups2-sequences.fasta) or an addi-
tional E. coli strain K12 database (UniProt E. coli MG1655
reference proteome, 4303 entries), as appropriate. Search
parameters were as follows: peptide false discovery rate (FDR)
= 1%, protein FDR = 1%, precursor ion mass tolerance = 5
ppm (Velos) and 4.5 ppm (QEx-HF), product ion mass
tolerance = 0.5 Da and 20 ppm, respectively. Carbamidome-
thylation of cysteine residues was set as a fixed modification,
whereas protein N-terminal acetylation and methionine
oxidation were set as variable modifications. A maximum of
two missed cleavages per peptide were allowed, and matching
between runs was enabled. All other MaxQuant parameters
were left as default.

Individual peptide intensities were extracted by MaxQuant as
a value at maximum of the MS1 peptide peak with the intensity
threshold set to 500. This corresponds to the raw intensity
value listed in the MaxQuant “peptides.txt” file.

Bioinformatics Data Analysis and Visualization

The MaxQuant output file containing individual peptide
identifications and intensity information (peptides.txt) was
further processed so that only unique peptides identified in at
least three biological replicates were retained. For the purposes
of this study, raw un-normalized peptide intensity values from
the MaxQuant output were aggregated over the four replicates
acquired for all yeast samples. This was done largely as a
convenience to provide real values for all peptide instances even
when values are very low or missing in one of the replicates.
For calculations of peptide intrinsic detectability or

“flyability” factors (F-factors), absolute protein abundance
values, in copies per cell, were taken from the CoPY
project.35,36,38 To retain only the highest quality measurements
and reduce any ambiguity, this set was filtered so that only
unique protein quantifications based on two SRM-measured
peptides were included. Additionally, the individual peptide
quantification values had to agree within 2-fold or better, i.e.,
the peptide A/peptide B ratio was two or less. This resulted in
349 yeast protein abundances expressed in copies per cell with
a robust CV less than 16% calculated across four biological
replicates.
Peptide F-factors were then calculated for all peptides

identified in the label-free experiments that were contained in
one of these 349 SRM-quantified proteins. F-factors were
expressed as a ratio of raw MaxQuant-derived peptide intensity
to copies per cell of their parent protein (or fmol concentration
in the case of UPS standards) from which that peptide was
derived, according to eq 1

=F factor (intensity /abundance )i ji j (1)

where intensityji is the intensity of peptide i from protein j.
All files necessary to reproduce the main results presented

here are included as Supporting Information: Supplementary
Tables 1A and 1B contain the raw peptide intensities from MQ
from the UPS1 and UPS2 experiments. Supplementary Table 2
contains calculated F-factors for the UPS peptides. Supple-
mentary Table 3 contains absolute abundance values of the 349
yeast proteins used for peptide F-factor calculations taken from
ref 36. Supplementary Tables 4−7 contain MQ peptides.txt
output for the primary experimental data sets used in this study,
which are summarized in Table 1. The raw mass spectrometry
proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the data set
identifier PXD003472.

Table 1. Primary Experimental Datasets Used in This Study

data set instrument gradient
theoretical
peptides

peptide identifications
(FDR < 0.01)

number of F-factors
calculated

matching Q-peptides
observeda

Yeast_HF_60 QEx-HF 60 min ∼200k 16,078 3249 402
Yeast_HF_120 QEx-HF 120 min ∼200k 23,383 4142 485
Yeast_Velos_240 LTQ-

Velos
240 min ∼200k 12,581 2773 347

Yeast_Velos_50 LTQ-
Velos

30 min (50 min
run)

∼200k 3,810 983 137

aNumber of peptides identified in a given run that were also used for quantification in the QConCAT study.36.
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Definition of F-Factor-Based Peptide Classes

To investigate physicochemical properties of the peptide data
sets, we partitioned the peptides into detectability classes based
on their F-factors: “strong” flyers, “weak” flyers, and “non-
flyers”. For each of the four label-free experiments, the strong
flyers data set was defined as the top 20% across the entire
distribution and weak flyers as the bottom 20%. For
comparative purposes, the negative data set of nonflyers was
created in a similar way to that defined previously.28 An in silico
digest of the 349 yeast proteins was cross-referenced with all
four label-free experiments and the stable isotope dilution
(SIL)-SRM-MS data set, limiting potential peptides to those
within the same peptide length limits as identified in the label-
free experiments and with two or fewer missed cleavages.
Peptides observed in any of the four experiments were excluded
from the “nonflyer” set as well as any peptides that contained a
subsequence that had been observed. In addition, using the
MC:pred missed cleavage prediction tool,42 any missed

cleavage peptides with an internal missed cleavage score of
>0.6 were excluded, reasoning they would unlikely to be
observed as limit peptides. This yielded a filtered “nonflyers”
data set of 10,577 peptides from 349 proteins.

Physicochemical Properties with AAIndex and Feature
Selection

Physicochemical properties were assigned to individual
peptides using an in-house version of the AAIndex resource
(containing 544 different physicochemical properties). Both the
mean and summed feature values from the individual residues
in each sequence were used. Further features were added,
including the estimated isoelectric point and amino acid
composition, resulting overall in the computation of 1180
features. Owing to the large number of properties, a feature
selection process was implemented to identify the most
discriminating between the strong and weak flyers. Following
previous work,28 the Kullback−Leibler (KL) distance (also
referred to as information gain or relative entropy) was

Figure 1. Peptide intensity and F-factor distributions from the experiments with the UPS standards. (A) The distributions of peptide intensity values
from the UPS2 protein mix, detected on the LTQ-Orbitrap Velos instrument in a yeast background, are plotted as boxplots. Each boxplot
corresponds to one UPS protein. Additionally, the proteins are grouped by their three concentrations, lowest to highest from left to right. The
median peptide intensity is shown as a dotted line. (B) Corresponding plot for the F-factor distributions. The median F-factor is shown as a dotted
line. (C, D) Peptide intensities and F-factors between UPS1 and UPS2. In C, UPS1 raw intensities are plotted against UPS2 intensities. The three
UPS2 concentration levels appear as “lines” in the plot. In D, a corresponding scatterplot is displayed for the matched F-factors. It is visible that the
correlation between UPS1 and UPS2 greatly increases, demonstrating that the abundance differences visible in C have effectively been removed by F-
factor normalization. The red lines in C and D correspond to the regression slopes, and the gray lines are the ±95% confidence limits.
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calculated for every feature between the probability distribu-
tions of the strong and weak flyer data sets; larger KL distances
equate to superior discrimination. Features with KL > 0.7 were
then ranked and, descending down the list, features with
absolute Pearson correlation coefficients to any previously
retained feature >0.7 were excluded. This eliminated
uninteresting features that closely matched any other to
eliminate redundancy.

Methods for Peptide Hydrophobicity and Coelution Effects

In considering peptide hydrophobicity and coelution effects on
ionization efficiency/detectability, only peptides identified in at
least 3 out of 4 replicates were included; their F-factors were
calculated as the median of replicate values. Also, all miscleaved
peptides were removed, and only peptides eluting during the
gradient (3−35% solvent B) were considered. These additional
filtering steps ensured outliers in the data were removed.
For the coelution analysis, theoretical tryptic digests of the

proteomes of S. cerevisiae and E. coli were computed using
Protein Digestion Simulator (http://omics.pnl.gov/software/
ProteinDigestionSimulator.php) with the following parameters:
peptide fragment mass of 400−6000 Da, minimum peptide
length of 7 residues, fully tryptic peptides (KR not P), and no
missed cleavages. Retention times were predicted using
SSRCalc43 (see Supplementary Methods). Peptides were
classified as coeluting if another peptide was detected within
25 s in the experimental runs, in any replicate, or predicted to
elute within 25 s of another for the theoretical proteomes.

■ RESULTS AND DISCUSSION

F-Factors: a Peptide Ionization Response Metric

To evaluate F-factors as a metric of peptide ionization response
and/or detectability, we first considered the peptide ion
intensities assigned to UPS proteins,44 a popular benchmarking
standard, spiked into our standard yeast lysate as a background.
In this experiment, because all UPS proteins are either at a
single known concentration (UPS1: 25 fmol) or six different
known concentrations (UPS2: 0.0025, 0.025, 0.25, 2.5, 25, or
250 fmol), F-factors can be directly assigned by normalizing the
median peptide ion intensity across four replicates by the
known concentration. Figure 1A shows boxplots of peptide ion
intensities reported by MaxQuant following identification by
Andromeda41 using a 1% FDR for the range of detected UPS2
proteins analyzed on the LTQ-Orbitrap Velos. A total of 22
UPS2 proteins from the concentration range 2.5−250 fmol
were detected, whereas all 48 proteins were detected in case of
the UPS1 standard. Supplementary Table 2 contains all peptide
identifications, median intensity, and calculated F-factors from
the UPS experiments. From the UPS2 experiment, detected
peptide ion intensities are clustered into three broad ranges
corresponding to the three spike-in concentrations presented in
increasing order from left to right on the plot. The equivalent
F-factor plot is shown below in Figure 1B, where the
normalization process has removed much of the variation
attributable to the three UPS protein levels in the analyte. By
comparing the matched signals between proteins in the UPS1
and UPS2 standards directly, panels C and D in Figure 1 show
the correspondence in the data. The raw intensities are not
universally correlated between the two experiments, and the
three UPS2 spike-in concentrations detected are apparent as

Figure 2. Peptide intensity and F-factor distributions from the standard yeast sample LC−MS/MS experiments. (A) The aggregated peptide-level
intensity values from the LTQ-Orbitrap Velos 50 min experiment are plotted as boxplots by protein for those proteins for which copies per cell were
determined by SIL-SRM-MS (as described in the Materials and Methods). The proteins are ordered by absolute abundance along the x-axis. The
individual peptide intensities selected for the QconCAT SIL-SRM-MS study (from which absolute protein abundances were derived) are shown as
red diamonds. (B) Corresponding plot for the F-factor distributions. Matched F-factors of the QconCAT SIL-SRM-MS peptides are again shown as
red diamonds. In both A and B, the median value for all peptides is shown as a dashed black line, and the median for matched QconCAT SIL-SRM-
MS peptides is shown as a dashed red line, which is the upper of the two lines in both panels.
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three “lines” across the intensity plot when compared to UPS1
median intensities (collected at a single concentration). In
contrast, the F-factors agree very well between the UPS1 and
UPS2 runs as shown in Figure 1D. The differences are
representative of the technical variation in the experiment,
much of this likely due to the differences in chromatographic
performance in the context of a complex yeast digest
background. Globally, we observe UPS peptide F-factors
spanning a dynamic range of around 3-fold, though this is
closer to 2-fold on a per-protein basis as illustrated in Figure
1B.
The UPS experiment considers a well-characterized bench-

marking standard, but not the F-factors of a native proteome
over a large dynamic range. We therefore collected four primary
data sets obtained from nESI LC−MS/MS experimental
analysis of yeast whole cell lysate obtained from chemostat
cell culture. The lysate was identical to that used previously for
the parallel, QconCAT-based, large-scale absolute protein
quantification study.35,36,38 This yeast sample was chosen
because it is a well-characterized standard in our laboratory for
which high quality absolute abundance values have been
determined by SIL-SRM-MS.36 The resulting numbers of
peptide identifications from the label-free LC−MS/MS experi-
ments are summarized in Table 1, detailing the instrument
employed as well as the total number of peptide identifications
achieved (1% FDR) using the MaxQuant search engine
Andromeda.41 For peptide F-factors to be calculated,
MaxQuant-derived peptide intensity values were normalized
by the equivalent protein copies-per-cell value. The ranges of
peptide ion intensities assigned by MaxQuant for individual
proteins, for a single label-free experiment (LTQ Orbitrap
Velos 50 min gradient), are shown in Figure 2A; the boxplots
are ordered according to protein abundance as determined by
the SRM data (increasing from left to right on the x-axis). For
clarity, we chose to display the label-free experiment with the
fewest proteins identified, although identical trends were
observed across all runs (Supplementary Figure 1). As
expected, in general, peptide ion intensity increases with higher
protein abundance, and the median intensity for each protein
correlates well with absolute protein abundance (Spearman
correlation = 0.78−0.86 across the four label-free runs). It is
apparent from the distributions that some peptides give rise to
much higher signal intensities than others despite being in a
similar concentration range. Typically, as observed for UPS
proteins, peptide intensities from the same protein span two, or
occasionally three, orders of magnitude. Furthermore, many
peptides derived from the lower abundance proteins give
stronger signals than peptides present at much higher
concentrations. For example, peptide LVIPDILTR from the
protein YDR341C at ∼3,000 copies per cell produces a
summed ion count from the four replicates of 1.3 × 106,
whereas LQQTAFDK from protein YKL056C at ∼120,000
copies per cell has a lower summed ion count of 0.9 × 106.
Another notable feature across all data sets is the relative

position of the intensities of the surrogate Q-peptides selected
for SRM analysis, shown as red diamonds on the individual
boxplots. These peptides were selected on the basis of their
proteotypic properties,28 low predicted miscleave propensity,42

and heuristic rules intended to eliminate poorly ionizing
peptides and select good quantotypic candidates for targeted
analysis.35 As can be seen, this was generally highly successful as
most red diamonds are in the upper quartile of the peptide
intensity distributions and frequently at or close to the top,

indicating they are readily ionized and detected. Indeed, the
median value of the matched Q-peptide intensities/F-factors
(red dashed line, Figure 2A,B) exceeds the equivalent value
calculated for all peptides. In total, 137 of the 698 Q-peptides
used for the SIL-SRM-MS studies were observed in the 50 min
LTQ-Orbitrap Velos run, whereas 347, 402, and 485 were
observed in the 240 min Velos experiment and 50 and 120 min
gradient on the Q Exactive HF experiments, respectively.
Clearly, there were also cases where a Q-peptide for a given
protein had a poor F-factor or was not observed at all in the
label-free experiment; this is likely due in part to the stochastic
sampling nature of a data-dependent analysis (DDA) experi-
ment failing to select them for tandem MS and highlights the
continued advantages of a targeted approach. During the
selection of quantotypic peptides for QconCAT design, it was
sometimes the case that no strong candidate tryptic peptides
passed all of the rigorous selection filters, leaving limited
choices for selection of an internal reference peptide; equally,
we recognize that on occasion some peptides were simply poor
selections that with hindsight might not have been chosen. In
any case, the use of an identical heavy-labeled standard in the
SRM experiments ensures that even poor flyers are quantified
accurately.
Normalizing the peptide intensities to generate F-factors

removes the trend for increasing peptide intensity with protein
abundance, as illustrated in Figure 2B, for the same LTQ-
Orbitrap Velos experiment as Figure 2A. Peptides with large F-
factors give rise to disproportionally greater ion current than
would be expected based on their amount in the sample.
Equally, low F-factor values suggest a peptide “underperforms”,
resulting in disproportionately fewer ions reaching the detector.
Despite some anomalies at low and high protein abundance, it
can be seen that most F-factor distributions are broadly
centered about a common median value. Although peptide
intensities are positively correlated with protein abundance
(Kendall’s nonparametric tau-b coefficient = 0.47) their F-
factors should not be, which is indeed the case (Kendall’s tau-b
= −0.21). Therefore, the F-factor represents a useful intrinsic
measure of peptide detectability and effective ionization
efficiency that removes much of the confounding abundance
bias,11,37 notwithstanding additional caveats that we discuss
further below.
One notable feature, visible in Figure 2B, is the apparent

enrichment for low F-factors in high-abundance proteins. This
can be rationalized by considering that at very high protein
abundance, the number of peptide ions reaching the detector at
any given time may exceed the limits of the system (e.g., may
saturate an electron multiplier detector or lead to a space
charge effect inside an ion trap). In the more recent orbitrap
instruments, the space charge effect is mitigated to some extent
by the use of automatic gain control, which attempts to
optimally adjust the number of ions filling the mass analyzer at
each scan. Nevertheless, regardless of the source of the effect,
the signal of highly abundant ions could still be outside of the
linear dynamic range and outside of the upper limit of
quantification (ULOQ). Lower raw peptide ion intensities
would thus be recorded in the label-free experiments, and
consequently, F-factors would be underestimated. The high
dynamic range (over 5 orders of magnitude) in a eukaryotic
proteome45 means that MS1 quantification over the whole
protein abundance range is known to present an issue in these
types of shotgun experiments. Although we cannot exclude the
possibility that some QconCAT SRM-based values may be
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overestimates of the true protein concentration leading to
underestimated F-factors, this seems unlikely; the SIL-SRM-MS
quantification used two closely correlated internal standards, in
each case selecting the closest of four spiked-in concentrations
of stable-isotope standard to determine the absolute level.35

This phenomenon, and the counter-effect at low abundance,
is illustrated schematically in Figure 3. At low protein
abundance, fewer molecules will be present, and only peptides
that are readily ionized, transmitted, and fragmented are likely
to be observable and detected. This would lead to a bias toward
high F-factor peptides. Equally, the MS target value and
maximum ion fill time settings used to accumulate ions in trap-
based hybrid mass spectrometers could also lead to an
overestimation of the inherent F-values for some peptide
ions, for example, for peptides eluting at times where the total
ion current is below the predefined target value and ions are
accumulated until that target is reached. In either case, both of
these rationalizations would lead to apparent overestimates for
the protein-based median F-factor for low abundance proteins,
which is observed for all of the data sets considered here.
In support of these observations, we note that peptides from

the top 20% of all F-factors collated across one experiment are
disproportionately represented by proteins of low abundance
(Supplementary Figure 2C) where the fraction of peptides
detected is also low (Supplementary Figure 2D).

Conservation of F-Factors and Peptide Detectability

As shown by the kernel density plots in Figure 4A, there is a
broad distribution of F-factor values on the two LC−MS
platforms employed in this study, reflecting the wide range of
effective peptide ionization efficiencies in a typical proteomics
experiment. The distribution of F-factor values appears to be
generally well conserved in their overall shape and properties
between platforms and differing chromatography regimes,
although the F-factor values are higher for the two Q Exactive
HF data sets than from the LTQ-Orbitrap Velos. This is likely
an instrument-specific factor given the differences in ion
transmission between the platforms and the fact that the two

instruments record ion current on a different numeric scale.
However, the paired distributions of F-factors from the same
mass spectrometers collected from different LC gradient times
are similar with medians of 69 and 50 for the 50 and 240 min
gradients on the LTQ-Orbitrap Velos and 10.8 × 103 and 9.0 ×
103 for the 60 and 120 min gradients on the Q Exactive HF,
respectively. The slightly lower values observed for the longer
gradients on both platforms reflect the deeper sampling of the
proteome: as more “weak” flyers are detected, the overall
median goes down.
To compare the individual F-factors between runs, we

considered the overlapping groups of peptides identified in
paired experiments. Figure 4B shows the correlation between
peptide matched F-factors, which is strongest between runs
conducted on the same MS platform and closely mirrors the
good correspondence observed for the UPS standard proteins
shown in Figure 1. For example, the Pearson correlation
coefficient between the two Velos runs is 0.78 (r2 = 0.61) and
0.88 (r2 = 0.77) between the Q Exactive HF runs. As might be
expected, the corresponding correlations across instruments are
weaker. This data shows that there is a reduced but reasonable
correspondence between the intrinsic detectability responses
across mass spectrometric platforms using nano-ESI.
Figure 5A shows the overlap between F-factors determined

in the four shotgun experiments for 796 peptides that were
universally detected from the 349 targeted protein set. These
correspond to the expected “low hanging fruit”, i.e., peptides
from more abundant proteins that are also readily ionized,
fragmented, and detected across all platforms. Indeed, the
median abundance of parent proteins associated with the
overlap set is 57,000 copies per cell. The additional peptides
identified on the longer Velos gradient, for example, are from
lower abundance proteins with median abundance of only
16,000 copies per cell. This is of course expected and highlights
large gains in proteome coverage as a result of improved
capability of the experimental strategy employed: longer
chromatographic gradients in the case of Velos and higher

Figure 3. Schematic illustrating peptide detection effects for low- and high-abundance proteins. Three theoretical proteins are shown, each with a
range of peptides displaying different peptide ionization properties leading to different F-factors. At low protein abundance, the poorer ionizing
peptides fall below the effective detection limit (LOD) of the instrument, whereas at high protein abundance, saturation effects lower the observed
ion signal detected. In both cases, the observed protein median F-factor will be altered from its true value, leading to the effects visible in Figure 2.
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MS2 resolution and greater achievable acquisition speed on the
Q Exactive HF. To investigate further, we compared the F-
factor distributions of the common 796 peptides present on all
platforms to those unique to a particular run and gradient. As
can be seen in Figure 5B, there is a significant difference in F-
factor distributions (Wilcoxon test, p < 2 × 10−16) between the
common peptide F-factors and those unique to each of the four
platforms, which have universally lower detectabilities. We
ascribe this again to the deeper sampling of the proteome
generally possible via longer gradients or on an alternative,
theoretically more sensitive, instrument that is able to support
detection of peptides that are outcompeted for ionization or
otherwise below the detection level. Although these observa-
tions are unsurprising, they provide further evidence that F-
factors provide information on the detectability properties one
would expect, representing a good intrinsic metric.

F-Factors and Peptide Physicochemical Properties

To classify peptides by their relative detectability and effective
ionization efficiency, we split them into two groups: “strong
flyers” and “weak flyers”. Strong flyers were the top 20% of
peptides with highest F-factor values, and weak flyers were the
bottom 20%. Additionally, for comparative purposes, we
defined a negative “nonflyers” peptide group. The “nonflyers”
set consisted of tryptic peptides that could potentially be
observed but were not detected in any of the shotgun
proteomics experiments conducted in this study. Next, we
examined the physicochemical properties of the peptides in
these three groups to determine which of the properties are
important determinants of ionization efficiency. The rationale
behind this exercise was that F-factors remove the confounding
signal arising from abundance and therefore represent a better

Figure 4. Effects of chromatographic conditions and instrument platforms on effective peptide ionization. (A) F-factor distributions for the four
experiments used in this study, illustrating a broad range of peptide ionization efficiencies maintained across chromatographic conditions but globally
shifted between instrument platforms. (B) Scatterplots comparing F-factors between paired shotgun LC−MS/MS experiments for the four different
runs are shown. A fair correlation between experiments is observed, most significantly for data originating from the same instrument. The changes of
individual peptide F-factors likely reflect varying matrix effects between gradients and ion source and transmission efficiency between instruments.
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Figure 5. Correspondence between F-factors in the four LC−MS/MS experiments. (A) Overlap between high quality peptide identifications
observed in the four shotgun experiments on the yeast proteome shown as a Venn diagram, restricted to unique peptides (FDR < 0.01) mapping to
one of the 349 SIL-SRM-MS quantified proteins. (B) Boxplots showing the distribution of F-factors for the 796 common peptide set compared to
those determined uniquely by individual experiments. There is a significant difference between the paired distributions for all but the Velos 50 min
data (Wilcoxon rank; p < 0.02 Velos 240 min, p < 2 × 10−16 Q Exactive HF runs).

Table 2. Physiochemical Properties Discriminating F-Factor Classes

parameter name AAIndex or other description
KL

distance correlation type

sum of methionine residues total count of M 2.47 negative other
sum: VENT840101 bitternessa 2.45 positive hydrophobicity
sum of neutral residues total count of all bar (D,E,K,R) 1.92 positive charge
mean of basic residues length normalized count of (H,R,K) 1.75 negative charge
sum: CHAM830104 number of atoms in the side chain labeled 2 + 1b 1.17 positive structural
pI (isoelectric point) estimated isoelectric focusing point 1.14 negative charge
sum of basic residues total count of (H,R,K) 1.12 negative charge
mean: VENT840101 bitternessa 0.88 positive hydrophobicity
mean of charged residues length normalized count of (D,E,K,R) 0.88 negative charge
sum: nosheet enrichment in beta-sheet forming amino acids (I,F,T,W,Y,V) 0.84 positive structural
mean: CHAM830108 parameter of charge transfer donor capabilityb 0.81 negative charge
mean: surface length normalized count of typical accessible amino acids

(R,N,D,E,Q,G,H,K,P,S,T,Y)
0.78 negative hydrophobicity

sum of arginine residues total count of R 0.77 negative charge
mean number of aromatic
residues

total count of (H,F,W,Y) 0.76 negative hydrophobicity

aVenanzi J. Theor. Biol. 1984; 111, 447−450. bCharton and Charton J. Theor. Biol. 1983; 102, 121−134.

Figure 6. Selected physicochemical properties of strong, weak, and nonflying peptides. The plots highlight differences in physiochemical feature
distributions between different peptide flyability classes with the corresponding calculated AAIndex value46 or physical parameter on the vertical axis
of each panel. The displayed physiochemical properties are the ones showing the greatest differences between the classes and are therefore likely to
affect peptide ionization the most. (A−C) Significant features observed on the QExactive HF, and (D−F) on the LTQ Orbitrap. AAIndex codes or
features names are listed above each panel.
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measure than the raw intensities or binary classifications of
peptide proteotypic presence/absence as used in previous
studies.28−32 To compute the physicochemical properties (or
features as they would be referred to in the machine learning
field), we used the AAIndex,46 a public resource that stores
residue-level parameter sets for hundreds of amino acid
properties published in the literature.
Following the feature selection procedure, as described in the

Materials and Methods section and in more detail in ref 28, we
were able to find a number of features that distinguish between
strong and weak F-factor groups and hence are likely
determinants of peptide detectability/ionization efficiency
(Table 2). The most informative were generally related to
the number of basic residues, peptide length, and hydro-
phobicity. Many of these properties have been documented in
the literature as contributing toward peptide ionization and
fragmentation, for example, in refs 28, 29, 31, 47, and 48. Our
analysis further supports those studies and their findings.
However, the important distinction here is that these properties
were obtained based on peptide groups defined by F-factors
and thus normalized for abundance, as opposed to peptide
groups defined simply by presence/absence or other metrics
confounded by abundance. Figure 6 shows some exemplar
distributions of feature scores for differing peptide categories
from the Q Exactive HF (Figure 6A−C) and LTQ-Orbitrap
Velos (Figure 6D−F) data sets. Similar distributions for each
related feature were also observed in the other two experiments
not illustrated.
For example, Figure 6D highlights the effect of the number of

basic residues (which will be positively charged at low pH) on
F-factor values. This feature, although frequently identified as
important for ionization by proteotypic peptide predictors, has
also been coupled to fragmentation efficiency. This is generally
rationalized by the mobile proton model49,50 and the

hypothesis that the efficiency of collision-induced dissociation
is enhanced under conditions of a mobile proton environment
(where the number of ionizing protons is larger than the
number of basic residues).51 Indeed, a negative correlation
between the number of basic residues and flyer type is observed
here (Figure 6A, Table 2). The effect of net charge on peptide
flyability is further supported by considering peptide length,
where shorter peptides appear to have improved detectability
(Figure 6F). On this basis, tryptic peptides with lower average
number of basic residues and shorter length will thus be
expected to generate a more complete set of fragments for
identification by search engine algorithms;52 indeed, the
peptides classed as strong flyers (higher F-factor) have on
average a more complete ion series, as illustrated in
Supplementary Figure 3.

Peptide Hydrophobicity and Detectability

Hydrophobicity is widely reported as a determinant of ion
detectability, which is also confirmed to be the case here (Table
2), and is often used as a principal feature in machine learning
approaches to select peptide surrogates for targeted proteo-
mics.28,29 Typically, it is positively correlated with detectability,
although a recent report suggests this might not always be true,
particularly in case of MS2-based quantification.48

More generally, it is unclear whether peptide hydrophobicity
itself is an intrinsically important physiochemical property
promoting enhanced ionization or is incidentally associated for
other mechanistic reasons. Specifically, hydrophobicity may be
linked to improved evaporation from droplets during ESI
because hydrophobic peptides are more likely to be located
toward the droplet surface.22,25 Additionally, peptides eluting
later in the reversed phase gradient will be more hydrophobic
and, hence, are likely to ionize better simply due to improved
desolvation at the higher organic solvent concentrations
required for their elution.53

Figure 7. F-factor and peptide hydrophobicity across elution profiles. (A and B) Variation in F-factor and (C and D) calculated peptide
hydrophobicity observed over the analytical gradients used in the Q Exactive HF experiments of 60 and 120 min, respectively. Profiles are shown as
the concentration of acetonitrile increases, shown on the x-axis. Low and high F-factor peptides are shown as blue circles and red x’s, respectively.
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To discriminate these possibilities, we examined whether
detectability increases linearly with higher concentrations of
organic solvent. For this exercise, only peptides eluting between
3 and 35% MeCN were considered. Panels A and B in Figure 7
show that there is no strong linear relationship between F-
factor and % acetonitrile required for peptide elution in either
the 60 or 120 min chromatographic gradient. Instead, there
appears to be a weak nonlinear effect; ionization efficiency is
reduced for peptides eluting at both low and high organic
concentrations. Mechanistically, this could be explained by two
opposing processes: at very low organic concentrations, where
the surface tension of the droplet is high, ion desolvation is
hampered; at higher organic levels, desolvation is enhanced but
the increased gas phase basicity of acetonitrile makes it more

likely to interact with protons and therefore reduces their
availability to ionize peptides.
This weak, nonlinear effect is further emphasized in Figure

7C and D where the percentage of mobile phase B is plotted
against peptide hydrophobicity index in acidic pH54 for low and
high F-factor peptides. As expected, the average peptide
hydrophobicity increases across the gradient, but there is a
wide range of individual hydrophobicity values at any one time.
Additionally, a greater proportion of weak flyers is observed at
both low and high organic solvent concentrations. Although
simple peptide mixtures might display increasing signal
response with increasing retention times or organic concen-
tration (as observed for example by Cech et al.55 and Osaka and
Takayama27); in other cases, the opposite effect has been

Figure 8. Coelution profiles for yeast and yeast + E. coli samples during a 120 min gradient. (A, B) Retention time is plotted against the number of
peptides within a 25 s chromatographic window centered on a given peptide. Each point therefore represents a peptide that is eluting at a given time
(displayed on the x-axis) and is surrounded by other coeluting peptides (a number of which are displayed on the y-axis). The black traces show the
identified coeluting peptides in each run, and the gray traces show the predicted coeluting peptides (following assumptions outlined in the text). (C,
D) Peptide F-factor profiles and coelution properties. Average F-factor values are shown as a function of elution time for the (C) Yeast120 and (D)
YeastEcoli120 samples. In the panel directly below, the corresponding average number of coeluting peptides (black trace) as a function of time is
displayed.
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reported.56 Our data shows that, in a complex mixture where
thousands of peptides are present, there is no longer a simple
linear dependency. Indeed, the data presented here shows that
hydrophobicity is not a simple monotonic predictor of peptide
detectability, suggesting instead that extreme hydrophobicity
values disfavor ionization.

Peptide Coelution and Competition for Ionization

Chromatographic coelution happens when two or more
analytes cannot be separated because the difference in their
retention is smaller than the chromatographic resolution. In a
nano-ESI−MS/MS proteomics experiment, coeluting peptides
can be defined as those that are simultaneously sprayed into the
instrument. The resulting competition for ionization is
expected to have a significant effect on peptide ionization
efficiency and consequently detectability. Peptides analyzed
under different chromatographic regimes (as for example
illustrated in Figure 4B) will experience altered signal
suppression arising from changes in the number of coeluting
peptides. Therefore, to investigate the effect of coelution on
peptide detectability, we introduced competition for ionization
without changing the chromatographic gradient by spiking in
an E. coli proteome to the yeast sample. Data were then
compared to the pure yeast sample under the same chromato-
graphic conditions. The two data sets are referred to as
Yeast120 and YeastEcoli120. On the basis of the average
chromatographic peak width, we considered a peptide to be
coeluting if its retention time (calculated as an average from
four replicates) was within a 25 s time window centered on
another peptide. Alternative time windows (20, 30, and 60 s)
were also tested and yielded similar results (data not shown).
First, we considered the peptides that were successfully

identified in each run. On average, there were 89 and 105
detected and identified peptides coeluting with any given
peptide in the Yeast120 and YeastEcoli120 samples, respec-
tively. The coelution profiles are not uniform along the
gradient, and the largest number of coeluting peptides, over 130
for Yeast120 and 160 for YeastEcoli120, appear in the middle
(illustrated as the black trace in Figure 8A for Yeast120 and 8B
for YeastEcoli120). However, the real numbers of coeluting
peptides are likely to be much higher (Figure 8, gray trace)
because many peptides present in the sample are not selected
for fragmentation and are thus not identified. A theoretical
tryptic digest of the yeast proteome should contain over
140,000 unique peptides and yeast + E. coli proteomes over
220,000 (assuming only limit peptides with a minimum length
of 7 residues). We used these peptide data sets to estimate the
theoretical retention time profile for all tryptic peptides from S.
cerevisiae and E. coli proteomes based on a simple linear model
calibrated on the measured retention times in each sample (for
description, see the Materials and Methods section).
The gray traces in Figure 8 show that, when considering the

full tryptic proteome, an average of over 440 additional
undetected peptides are likely coeluting with any given peptide
in the Yeast120 sample (Figure 8A) and over 660 peptides in
YeastEcoli120 (Figure 8B). This becomes proportionally
greater when average peak widths are longer; for example, a
30 s elution window is predicted to have 600 and 900 more
undetected coeluting peptides for Yeast120 and YeastEcoli120
samples, respectively. Consequently, it is obvious that only a
fraction of all peptides present in the sample are identified. This
simple analysis highlights the well-known limitations of peptide
detection and identification that are in part dependent on MS

speed and sensitivity.57,58 Indeed, in the context of coelution, a
computational study by Schliekelman and Liu59 showed that
the number of coeluting peptides is a significant factor
determining the probability with which a peptide is detected.
Here, we can expand on these observations by considering

the direct effect of the number of coeluting peptides on the
detectability of a peptide as estimated by its F-factor. Panels C
and D in Figure 8 show the average F-factor and number of
coeluting peptides as a function of time in Yeast120 (Figure
8C) and YeastEcoli120 (Figure 8D). It can be seen that average
detectability (quantified by F-factor) initially increases with
time and drops off toward the end of the gradient. This pattern
is matched by the number of coeluting peptides. When the
number of coeluting peptides (at the start and end of the
gradient) is small, the average F-factor is lower as those
peptides with small F-factors (lower ionization efficiency) are
detected. When competition for ionization is at its highest (in
the middle of the gradient coincident with a much higher
number of coeluting peptides), the peptides with high F-factors
(better ionization efficiency) are preferentially detected. This
observation suggests that, in regions where competition for
ionization is weak, even peptides with poor ionization
properties can be detected. In contrast, in regions of the LC
gradient where competition for ionization is fierce, intrinsic
peptide detectability must be greater to outcompete coeluting
peptides and be detected. Furthermore, the average F-factor for
all peptides decreases for the YeastEcoli sample (mean fold
change = −0.27), which is consistent with a greater number of
molecules competing for the same amount of charge in the ESI
droplet.

■ CONCLUSIONS AND PERSPECTIVE
Here, we introduce the concept of peptide flyability factor (F-
factor) in bottom-up proteomics experiments, defined as the
ratio of peptide signal intensity to its parent protein absolute
abundance. We demonstrate that this is a useful metric, which
effectively removes protein abundance bias from the measured
peptide intensity and enables a better understanding of intrinsic
detectability and, by proxy, ionization efficiency in the LC-ESI−
MS experiment. Although the two are closely related, ionization
efficiency is a more fundamental property that describes the
fraction of gas-phase ions generated from the total number of
molecules introduced. Detectability, on the other hand,
depends both on ionization efficiency as well as other factors,
like ion transmission efficiency and detector response. These
and other contributing factors, such as protease cleavage
efficiency and post-translational modifications, make the precise
determination of ionization efficiency a much harder task. In
the present study, we focused on the intrinsic peptide
detectability (quantified by F-factors) rather than determi-
nation of the ionization efficiency per se. We argue that this is a
valuable approach because abundance represents the most
significant confounding factor with protein abundances
typically varying over 4 orders of magnitude in yeast60 and as
high as 10 orders in human plasma.61 We calculated F-factors
for thousands of peptides in the yeast proteome, demonstrating
that peptides derived from the same protein, and presumably at
(almost) identical concentrations, ionize and are detected in
the mass spectrometer with markedly different efficiencies. This
was apparent, for example, from the UPS data set acquired here
(UPS spiked into the yeast lysate); the average range of peptide
F-factors per protein was around one order, but the highest
approached 3 orders of magnitude. In contrast, the total
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dynamic range of the experiment (i.e., considering intensities of
all detected and identified peptides) was around 4 orders of
magnitude.
It is also important to note that other factors can potentially

further contribute to the large range of intensities, for example,
missed-cleavages, post-translational modifications, or solubility
issues. Although these factors were not explicitly considered
here, we believe they are not the most confounding; for
example, eliminating peptides predicted to be poorly digested
(i.e., containing missed cleavages) has only a modest effect on
F-factor distributions, although it does slightly increase the
median F-factor and reduce the variance (Supplementary
Figure S4).
The normalization of raw peptide intensities by their

abundance establishes F-factors as an intrinsically quantitative
property that represents a better measure of detectability and
intrinsic ionization efficiency of a tryptic peptide than its raw
intensity. Consequently, F-factors show similar distributions
across different experimental conditions and indeed, excluding
some scaling details, across instrument platforms typically
spanning 2 or 3 orders of dynamic range. In addition, F-factors
should enhance selection strategies for targeted proteomics
because the confounding issue of protein abundance is
removed. In support of this, we note that F-factors retain the
expected trends between strong flyers, peptides that tend to
ionize and be detected well, and weak flyers/nonflyers. For
example, when comparing strong, weak, and nonflyers, the
strong flyers have a lower ratio of basic residues (His, Lys, and
Arg) to their length, which intriguingly follows trends observed
for fragmentation via the mobile proton model theory.49

Similarly, F-factors support a broader investigation of the
underlying physicochemical properties that mediate peptide
electrospray ionization and other confounding issues, such as
coelution. However, many additional contributions to peptide
detectability exist that have not been explicitly considered, for
example, peptide charge state or potential post-translational
modifications, both of which will alter peptide detectability and
F-factor as well as reduce the amount of analyte present.
Finally, because F-factors show conservation across some
experimental platforms and protein abundance is similarly
conserved across species boundaries,62 the insights obtained
from our analyses are likely to be widely applicable, for
example, in selection or prediction of the best-suited peptides
for SRM experiments as well as statistical modeling and
calibration of label-free data for more accurate, absolute
quantification of proteins in complex biological samples.
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