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ABSTRACT: This study introduces a new reversed-phase liquid
chromatography retention time (RT) standard, RePLiCal (Reversed-
phase liquid chromatography calibrant), produced using QconCAT
technology. The synthetic protein contains 27 lysine-terminating
calibrant peptides, meaning that the same complement of standards
can be generated using either Lys-C or trypsin-based digestion protocols.
RePLiCal was designed such that each constituent peptide is unique with
respect to all eukaryotic proteomes, thereby enabling integration into a
wide range of proteomic analyses. RePLiCal has been benchmarked
against three commercially available peptide RT standard kits and
outperforms all in terms of LC gradient coverage. RePLiCal also provides
a higher number of calibrant points for chromatographic retention time
standardization and normalization. The standard provides stable RTs
over long analysis times and can be readily transferred between different LC gradients and nUHPLC instruments. Moreover,
RePLiCal can be used to predict RTs for other peptides in a timely manner. Furthermore, it is shown that RePLiCal can be used
effectively to evaluate trapping column performance for nUHPLC instruments using trap-elute configurations, to optimize
gradients to maximize peptide and protein identification rates, and to recalibrate the m/z scale of mass spectrometry data post-
acquisition.
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■ INTRODUCTION

The method of choice for complex “bottom-up” proteomic
sample analysis is low pH reversed phase−high-performance
liquid chromatography−electrospray ionization-tandem mass
spectrometry (RP−HPLC−ESI−MS/MS), with or without
peptide prefractionation. Optimal LC−MS instrument per-
formance is paramount to ensure that the highest quality data
are acquired and maximum information is garnered from every
experiment. Typical practice is to regularly analyze a reliable,
well-characterized standard sample that permits assessment of
instrumental performance with respect to relevant parameters
of interest, for example, chromatographic peak width, mass
spectrometric signal response, protein sequence coverage, and
so on1−3 Quality-control standards enable instrument perform-
ance to be monitored longitudinally,4 expedite troubleshooting
to maximize uptime,5 and allow comparisons to be made
between experimental conditions, instruments, analysts, and
laboratories.6−8

One key parameter in the assessment of instrument
performance in bottom-up proteomics is peptide retention
time (RT). Repeatable RT is critical in many types of
proteomics experiments, such as label-free quantification to
allow accurate mass-retention time (AMRT) realignment of
multiple data acquisitions9,10 and for the scheduling of
transitions in selected reaction monitoring (SRM) studies.11

Peptide RT has also been used in many studies (and arguably
could be used to even greater effect) as an orthogonal
identification criterion alongside product ion information to
filter false-positive identifications and improve peptide and
protein identification rates, typically through the use of
predictive models developed by machine learning algo-
rithms.12−16 Predictive programs based on fundamental
physicochemical phenomena related to peptide chromato-
graphic behavior have also been reported;17−19 however, these
models have been demonstrated to generally only perform well
under the specific conditions that they were developed.20 Such
models cannot always be applied to an individual laboratory’s
LC−MS setup, and empirical determination of RT is often
preferred. Several laboratories use enzymatic digests of one or
more readily available proteins as RT standards for
benchmarking performance.21 While this can be efficient and
cost-effective, the resultant set of peptides may not be suitable
to fully test the instrument should they fail to elute across the
whole LC gradient or be overly complicated as to hamper
straightforward interrogation, for example, as with an E. coli
digest. To address this, a number of groups have reported the
development of dedicated standards and workflows for
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benchmarking liquid chromatograph performance.22−27 Of
note is the cross-platform iRT standardization method reported
by Escher and coworkers, underpinned by a set of 11 peptides
for each of which a dimensionless elution parameter (iRT
value) is attributed.25 The iRT concept involves attributing an
analyte-specific dimensionless value to each peptide in a
scheduled SRM experiment, which is fixed relative to the
standard peptides. By measuring the RT of the standard
peptides on a different column, LC instrument, and so on, the
RT of other peptides can be determined given their iRT value.
Transfer of scheduled SRM methods between conditions thus
only requires a single recalibration using the iRT standard
peptides. The authors demonstrated high accuracy in RT
prediction, allowing 4-fold narrower scheduling time windows
than in silico prediction using SSRCalc.17,19 Consequently,
improved precision was achieved due to the increase in dwell
time per transition. A similar strategy was described by Gallien
and coworkers, although they achieved real-time rescheduling
of time windows for SRM analysis.26 If a change in expected RT
was observed for one of nine standard peptides, the time
window for targeted peptides was altered by the control
software. A concomitant reduction was observed in the number
of targets for which data was lacking due to peptides eluting
outside of the originally scheduled time period, obviating the
need for reanalysis; however, both of these RT standards are
limited in their content of extremely hydrophilic and
hydrophobic peptides and thus their ability to normalize over
the early and late phases of the chromatographic gradient. This
is particularly problematic for early eluting peptides, which
demonstrate more variability in their RTs and thus the ability to
calibrate for real-time RT scheduling at the beginning of an LC
gradient.26

Here a new peptide RT standard called RePLiCal (Reversed-
phase liquid chromatography calibrant) is described. The
standard is generated using QconCAT technology and is a
designer protein containing 27 lysine-terminating peptides.28,29

Proteolytic digestion of the protein using either Lys-C or
trypsin repeatably generates the same set of peptides,
demonstrated to elute over a wider time range than three
commercially available peptide mixtures designed for RT
calibration. The utility and benefits of RePLiCal will be
discussed.

■ EXPERIMENTAL SECTION

Peptide Selection

Candidate peptides were selected using in-house RP−nano-
ultra-high-performance liquid chromatography−nano-ESI−
mass spectrometry with elevated energy (RP−nUHPLC−
nESI−MSE)30 data from tryptic digests of E. coli and S.
cerevisiae. Peptides containing Met, Trp, Cys, and N-terminal
Gln residues and Asp-Pro, Asn-Pro, and Asn-Gly motifs were
removed from the data set. Arginine-terminating peptides were
excluded from consideration to ensure that the selected
sequences would conform to both Lys-C and trypsin cleavage
specificity once assembled into the QconCAT protein. Peptides
with good elution profiles (minimal tailing, narrow peak width
at FWHM, and 10% height) were chosen for further
consideration. Candidates from throughout the gradient were
selected. For peptides originating from S. cerevisiae, conservative
mutations were made to the amino acid sequences that have
been reported to have minimal effect on retention times, for
example, Gly to Ala, Glu to Asp.31 In addition, peptides with

Asp and Glu in positions P4, P3, P2, P1′, P2′, and P3′
(Schechter & Berger nomenclature)32 were permutated to
move the acidic side chains further from the lysine residue and
reduce the likelihood of missed cleavages in the final QconCAT
protein.33−36 Candidate peptides were BLAST37 searched
against the nonredundant protein sequences (nr) database
(searched 12/04/2012) with prokaryotic organisms excluded to
verify uniqueness as Lys-C or tryptic peptides, taking into
consideration the inability of low-energy CID to differentiate
Leu and Ile and also low resolving power instrumentation to
discriminate between Gln and Lys. Sequences that matched a
Lys-C or tryptic peptide in any eukaryotic organism were
discarded. The remaining 61 peptides were prepared by SPOT
synthesis38,39 (JPT Peptide Technologies, Berlin, Germany) to
enable evaluation of the novel sequences generated by
conservative mutation and sequence permutation. Each peptide
was resolubilized in 100 mM ammonium bicarbonate
(AmBic)/MeCN [80:20 v/v] according to the manufacturer’s
instructions to a final concentration of 1 nmol μL−1. One μL
was taken from each stock, pooled, and dried to completeness
using vacuum centrifugation before resolubilization in 100 mM
AmBic/MeCN [80:20 v/v] to a final concentration of 1 pmol
μL−1, followed by vortexing and sonication for 5 min. Peptides
were diluted 1 in 10 using 0.1% formic acid (FA) in H2O/
MeCN [97:3 v/v] and 1 μL analyzed in triplicate by RP−
nUHPLC−MSE using a nanoACQUITY LC instrument
coupled to a Synapt HDMS Q-ToF mass spectrometer
(Waters, Elstree, U.K.) (see Supporting Information). The
data were evaluated and 27 consistently observed peptides
eluting at regular time points throughout the gradient were
selected for inclusion in the QconCAT protein.

Recombinant Expression of RePLiCal and Initial
Characterization

RePLiCal was prepared by heterologous expression in E. coli
using isopropyl β-D-1-thiogalactopyranoside (IPTG) induction,
purified by affinity chromatography by virtue of a 6-His-tag, and
quantified by SDS-PAGE with reference to a bovine serum
albumin standard curve. (Full details can be found in the
Supporting Information.) The purified material was solubilized
in 25 mM AmBic and digested with either trypsin (Sigma-
Aldrich, Dorset, U.K.) or Lys-C (Roche Diagnostics, West
Sussex, U.K.) at an enzyme/substrate ratio of 1:50 [w/w]
overnight at 37 °C. Initially, the sample was analyzed by RP−
nUHPLC−MSE as previously described to check that all of the
RePLiCal peptides could be detected and to select the four
most intense product ions above m/z 400 for each peptide to
monitor in SRM assays.

Digestion of Yeast Lysate

Yeast (S. cerevisiae) was prepared as previously described.40,41

The whole cell lysate (100 μg) was solubilized in 0.1%
RapiGest SF,42 reduced with dithiothreitol (final concentration
3 mM), alkylated with iodoacetamide (final concentration 9
mM), and digested with trypsin at an enzyme:substrate ratio of
1:50 [w/w] overnight at 37 °C. The addition of trifluoroacetic
acid (TFA) to 0.5% [v/v] terminated the enzymatic reaction
and degraded the RapiGest SF following incubation at 37 °C
for 2 h. The sample was centrifuged at 13 000g, 4 °C for 15 min
and the cleared supernatant fraction retained for analysis.

LC−MS Analyses

All LC−MS analyses were performed using a nanoACQUITY
LC instrument (Waters), except for the comparison experiment
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with the Ultimate 3000 RSLC LC instrument (ThermoFisher
Scientific, Hemel Hempstead, U.K.). SRM-MS analyses were
performed using a Xevo TQMS tandem quadrupole mass
spectrometer (Waters) and nontargeted MS analyses were
done on a variety of Orbitrap-based platforms (ThermoFisher
Scientific). Full details of each experiment can be found in the
Supporting Information.

■ RESULTS AND DISCUSSION

Design of RePLiCal

The QconCAT methodology28,29 describes the synthesis of
artificial designer proteins that, upon proteolysis, generate an
ensemble of peptides. This technology was exploited here to
generate a collection of peptides suitable for the testing and
standardization of HPLC instrumentation used for bottom-up
proteomics. The resultant artificial protein, RePLiCal, is a 379
amino acid residue, 39 193.3 Da protein containing 27 peptides
designed for the calibration and standardization of HPLC
instruments and a C-terminal His-tag for purification (Figure
1). RePLiCal was specifically designed to contain only Lys-
terminating peptides, such that the same complement of
proteolytic fragments could be generated upon enzymatic
digestion using either Lys-C or trypsin, the two most
commonly employed proteases in proteomics studies.43−45

The generated peptide sequences are unique with respect to all
eukaryotic proteomes. Therefore, RePLiCal can be imple-
mented as a standard for a wide range of proteomics analyses
without interfering with the sample under consideration. Key
chemically reactive residues and motifs were avoided to aid
stability of the protein during storage and sample preparation.46

Crucially, the concatenation of the calibrant peptides into an
artificial protein presents an ideal storage environment, limiting
the selective loss of certain peptides. Hydrophobic peptides, in
particular, are known to adhere to surfaces over time, in some
cases irreversibly.47−49 Therefore, RT standards stored as
peptide mixtures can experience a loss of calibration points due
adherence of one or more of the analytes to a surface over time.
Because the peptides in RePLiCal are stored at the protein level
there is no opportunity for differential adsorption to take place:
While loss of the protein could potentially occur, the peptides
will remain in a 1:1 stoichiometry prior to digestion, meaning
that all calibration points will be available even when the
protein standard is stored for an extended time period.

Comparison of RePLiCal with Commercially Available
Peptide RT Standards

RePLiCal was directly compared with three commercially
available peptide RT standards: iRT-Kit (Biognosys AG,
Zurich, Switzerland), Peptide Retention Time Calibration
Mixture (Pierce, Rockford, IL), and MS RT Calibration Mix
(Sigma-Aldrich, Poole, U.K.). SRM assays were designed for
each RePLiCal peptide by selecting the four most intense
product ions with m/z values greater than 400 from LC−MSE

data. Three or four transitions per peptide were monitored for
the commercial RT standards as recommended by the
manufacturer. (SRM transitions can be found in the Supporting
Information, Tables S5−S8.) Figure 2 shows the chromato-
grams for 10 fmol of each of the RT standards acquired under
the same LC conditions (columns, mobile phases, gradient,
etc.). It is evident that the RePLiCal peptides elute over a RT
wider range using the 30 min LC gradient program and a trap-
elute LC configuration than the peptides from the three
commercially available kits. (Equivalent chromatograms for 10,
60, and 90 min LC gradient programs are shown in the
Supporting Information Figures S4−S6, which demonstrate the
same chromatographic behavior. All retention time data used to
construct the figures are also included in the Supporting
Information.) Crucially, the first two peptides from RePLiCal
elute before the first peptide observed from any of the other
standards assessed; indeed, RePLiCal peptide 1, VTASGD-
DSPSGK, elutes 2.4 min (2.96% B over the 30 min gradient)
before the first peptide from any of the commercially available
kits. The Sigma standard contains two peptides, RGDSPASSPK
and GLVK, which were not observed using a trap-elute LC
configuration. A direct injection configuration, that is, no
trapping column in the flow path, was tested to compare the
performance of the early eluting peptide in RePLiCal with
those in the Sigma standard. While the Sigma peptides eluted
before the RePLiCal peptides on the nanoACQUITY LC
system (Figure S7), the elution profiles were extremely poor.
Furthermore, the Sigma peptides fail to describe the linear
gradients under direct injection conditions (Figure S8); the
trendlines deviate from linearity, and the relationship between
gradient length and trendline gradient no longer correlates as
expected: The slope of the 60 min gradient trendline should be
twice that of the 30 min gradient trendline, which is not
observed. Conversely, the early eluting RePLiCal peptides

Figure 1. Structure of RePLiCal with cleavage sites for Lys-C and
trypsin denoted by vertical black lines.73 Pink indicates those peptides
observed as [M + 2H]2+ species, green block as [M + 3H]3+ species,
and yellow as both [M + 2H]2+ and [M + 3H]3+ species. Blue indicates
peptides not used for RT standardization.
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continue to chromatograph with good peak shape (Figure S7),
and all four linear gradients evaluated are well described by the
standard (Figure S8). Subsequently, the peptides were
separated using a direct injection configuration on an RSLC
LC instrument with a 30 min gradient, upon which changes in
selectivity for the peptides were observed (Figure S9).
VTASGDDSPSGK from RePLiCal now eluted earlier than
both RGDSPASSPK and GVLK from the Sigma standard.
VTASGDDSPSGK (and ALAEDEGAK) gave good chromato-
graphic performance, whereas both RGDSPASSPK and GVLK
produced poor peak shape. The data therefore indicate that
RePLiCal outperforms all three standards evaluated in terms of
characterizing the early part of a LC gradient. Additionally,
RePLiCal provides between one and seven additional peptides
that elute after the longest retained peptides in the
commercially available kits. A significant number of additional
data points for standardization are therefore obtained during
the earlier and latter parts of the gradient. A whole cell yeast
lysate tryptic digest was separated over a 90 min LC gradient to
evaluate the relationship between these additional stand-
ardization points and a complex proteome sample. Of the
2696 identified peptides, only 64 (2.37%) eluted outside of the
retention times covered by RePLiCal (Supporting Information
Table S1). This compares with 307 (11.39%), 609 (22.59%),
and 774 (28.71%) peptides for the Sigma, Biognosys and Pierce
peptides, respectively. Therefore, RePLiCal significantly
enhances the fraction of peptides in a complex proteome
sample that can be subjected to standardization. The additional
data points will also be advantageous for the iRT concept,25

which as previously noted cannot be used for peptides with
RTs before the first or after the last eluting reference peptide.50

The reference peptides encoded within RePLiCal will thus help
to extend the iRT concept by providing a greater number of
calibration points over a wider range of elution times. RePLiCal

also has a greater density of calibration points across the
chromatographic gradient than the other standards. In concert
with the additional early and late eluting peptides, the greater
density of potential calibration points provided by RePLiCal is
undoubtedly advantageous in terms of instrument stand-
ardization and realignment of data in label-free quantification
studies. In addition, the high number of reference peptides
provided by RePLiCal, which are interspersed consistently
throughout the gradient, should allow more effective
implementation of the dynamic scheduled SRM analysis
described by Gallien and coworkers.26 Furthermore, the
inclusion of standard peptides that elute significantly earlier
in the gradient will allow faster reaction to RT changes between
runs and thus more efficient real-time correction of time-
scheduled SRM experiments, where two recently detected
reference peptides are required to adjust the scheduled time
window for subsequent peptide analysis. These earliest eluting
peptides from RePLiCal are particularly important given that
RTs early in the gradient are known to be more variable.26

Comparison of Empirical and Predicted RTs of RePLiCal
Peptides

A number of algorithms have been described that predict
peptide RTs on C18 columns under low-pH RP condi-
tions;14,17−19,51,52 however, none of the models accounts for all
phenomena resulting from the interaction of peptides with C18
stationary phases, such as the stabilization of helical structures
recently demonstrated to be a key contributing factor to the
elution of peptides from RP material; such RT prediction
algorithms are thus prone to error.53 Failure to predict RT
accurately would detrimentally affect scheduled SRM analyses
or the normalization for AMRT of peptides between experi-
ments or experimental systems. The BioLCCC model was used
to predict the behavior of RePLiCal peptides to assess the
hypothesis that prediction of the elution order and RTs of the

Figure 2. Comparison of chromatograms on a 30 min LC gradient (3−40% 0.1% FA in MeCN) with nESI−SRM−MS data acquisition for RePLiCal
and three commercially available retention time standards; iRT-Kit (Biognosys), Peptide Retention Time Calibration Mixture (Pierce), and MS RT
Calibration Mix (Sigma). The numerical annotations represent the elution order as provided by the manufacturer. Peptides 1 and 2 from the MS RT
Calibration Mix were not observed. These peptides, RGDSPASSPK and GLVK, are very hydrophilic and are not trapped efficiently.
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RePLiCal peptides would differ significantly from that observed
experimentally. BioLCCC was chosen for comparison due to
the ability of the in silico predictor to be programmed to match
the experimental conditions under which RePLiCal was
analyzed.18 Figure 3 shows that correlation between predicted
and experimental RTs is reasonably strong (R2 = 0.9212);
however, for accurate prediction of unknown RTs, the equation
for the regression line should be y = x. This was not observed

(y = 1.1154x − 2.3091) and poor prediction of RTs was
achieved using the BioLCCC model, with an average of a 1.81
min error in the predicted RT. The scatter of data points
around the regression line also demonstrates that prediction of
elution order is incorrect; for example, peptide x is predicted to
elute in position y, thus suggesting that selectivity of separation
is also poorly predicted. The observed discrepancies between
the predicted and empirical data emphasize the need for reliable

Figure 3. Comparison of predicted RTs of RePLiCal peptides using BioLCCC and the average experimentally determined values (n = 3) over a 30
min gradient (3−40% 0.1% FA in MeCN).

Figure 4. Comparison of the retention times of RePLiCal peptides on different length LC gradients (3−40% 0.1% FA in MeCN) using the 30 min
gradient as a reference (n = 3). Error bars represent ±2 standard deviations.
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standards to assess LC conditions and performance exper-
imentally across multiple platforms.

Transferability of RePLiCal Across Gradients and LC
Instrumentation

Figure 4 shows the retention times of the 27 RePLiCal peptides
using four different length gradients (10, 30, 60, and 90 min, all
3−40% 0.1% FA in MeCN). Using the 30 min gradient as the
reference, a high degree of proportionality in the transfer of
RTs across gradients was observed. The linear relationship in
RTs for the RePLiCal peptides for each individual gradient
shows that the peptides are suited to characterizing the
gradient, which itself was linear. The linearity observed for each

of the gradients assessed means that, in principle, it should be
possible to predict RTs of peptides on a new gradient simply by
knowing their RT relative to the RePLiCal peptides on a
reference gradient. By establishing the linear relationship
between the reference and new gradient by a single analysis
of RePLiCal, large-scale transfer of RTs of other peptides can
be performed. Such an approach is particularly advantageous
for adjusting scheduled SRM assays for different LC conditions
on the same instrument (vide infra) or transporting assays
between different LC instruments.11 The ability of RePLiCal to
permit the transfer of assays between different LC instruments
was confirmed by analysis on platforms from two different
manufacturers (Figure 5). Again, good linearity was observed,

Figure 5. Comparison of the retention times of RePLiCal peptides on two different nano LC instruments (Thermo RSLC and Waters
nanoACQUITY) using two different LC gradient lengths (3−40% 0.1% FA in MeCN) (n = 3). Error bars represent ±2 standard deviations.

Figure 6. Comparison of trapping column performance using the intensities of the three earliest eluting peptides in RePLiCal.
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although slight changes in selectivity were evident, particularly
during the latter part of the gradient; however, the changes in
RT due to differential selectivity are minor and do not cause a
significant deviation from perfect linearity, suggesting a
negligible effect on transferring RTs from one instrument to
another. Interestingly, changing the length of the chromato-
graphic gradient results in a slight difference in selectivity of
retention, as evidenced by changes in elution order of the
RePLiCal peptides (Figure 4). For two pairs of peptides,
AGLEFGTTPEQPEETPLDDLAETDFQTFSGK (22) and
VVSLPDFFTFSK (23), and TQLIDVEIAK (14) and LTV-
LESLSK (15), a change in elution order was observed for the
90 min gradient. Rationalization of this observation can be
provided by the linear solvent strength (LSS) theory (eq
1)54−56

= − ϕk k Slog log 0 (1)

where k is the retention factor at a given organic solvent volume
fraction ϕ (in this study, % MeCN/100) in the mobile phase
and k0 is the retention factor with a pure aqueous mobile phase.
The S parameter is a constant for a particular peptide at a given

ϕ value and essentially measures the rate of change of the
retention factor as a function of changing organic solvent
composition of the mobile phase.57 This model can therefore
been used to explain differences in selectivity for peptide
separations as a function of gradient slope, that is, the rate of
change of organic solvent, with peptides whose S curves
intersect, showing reversals in retentivity either side of a critical
concentration of organic solvent. The rate at which this critical
concentration is reached, that is, the slope of the gradient,
determines which of the two peptides is the first to elute from
the column.55 Therefore, it can be concluded that the peptides
TQLIDVEIAK (14) and LTVLESLSK (15) and AGLEFG-
TTPEQPEETPLDDLAETDFQTFSGK (22) and VVSLPD-
FFTFSK (23) have S curves that intersect and thus
demonstrate differential selectivity as a function of gradient
slope. Practically, this is unlikely to be a problem as the
observed deviation from the linear relationship between
different gradients was minor. Good prediction of retention
times on different gradients is thus eminently possible even
when these two pairs of RePLiCal peptides are employed as
reference points.

Figure 7. nLC−nESI−SRM−MS chromatogram of 5 fmol of RePLiCal spiked into 1 μg of a whole cell yeast lysate tryptic digest separated over a 30
min gradient (3−40% 0.1% FA in MeCN).

Table 1. Average RT, Peak Widths and Associated RSDs from 60 Injections of RePLiCal on 30 min LC Gradient (3−40% 0.1%
FA in MeCN)

peptide
no. peptide sequence

average
RT/min

RSD
RT/min

average peak width
(FWHM)/s

RSD peak width
(FWHM)/s

1 VTASGDDSPSGK 12.55 1.14 5.17 3.00
2 ALAEDEGAK 13.75 0.93 5.41 8.98
3 ASADLQPDSQK 14.65 0.83 8.00 1.96
4 SSYVGDEASSK 14.67 0.82 7.72 2.63
5 AAAPEPETETETSSK 14.97 0.80 7.61 1.82
6 IVPEPQPK 15.89 0.71 6.13 13.03
7 GAIETEPAVK 16.90 0.69 7.11 3.63
8 FHPGTDEGDYQVK 17.60 0.66 6.35 5.51
9 VGYDLPGK 19.08 0.59 5.50 15.10
10 SAGGAFGPELSK 20.22 0.57 9.76 11.39
11 TASEFESAIDAQK 20.88 0.53 5.22 10.20
12 GVNDNEEGFFSAK 22.42 0.51 6.25 15.30
13 VGLFAGAGVGK 23.12 0.49 7.39 4.82
14 TQLIDVEIAK 23.90 0.44 6.34 1.51
15 LTVLESLSK 24.17 0.45 8.19 4.02
16 LAPDLIVVAQTGGK 25.10 0.40 6.20 12.61
17 LTIAPALLK 25.64 0.41 7.44 8.68
18 ILTDIVGPEAPLVK 26.51 0.39 6.25 6.18
19 LTIEEFLK 28.56 0.47 7.26 8.55
20 TSAESILTTGPVVPVIVVK 29.62 0.29 6.92 23.49
21 ISSIDLSVLDSPLIPSATTGTSK 30.55 0.31 7.61 2.76
22 AGLEFGTTPEQPEETPLDDLAETDFQTFSGK 31.72 0.32 8.34 5.27
23 VVSLPDFFTFSK 32.23 0.39 8.10 5.61
24 AVTTLAEAVVAATLGPK 33.34 0.49 8.53 13.53
25 IAFFESSFLSYLK 34.13 0.55 8.66 24.25
26 SSIPVFGVDALPEALALVK 34.82 0.30 6.37 12.74
27 FLSSPFAVAEVFTGIVGK 36.66 0.42 8.72 5.63
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Testing of trapping column performance using RePLiCal

Many nano LC instruments used in proteomics experiments are
operated in a trap-elute configuration, whereby peptides are
loaded onto a short, larger internal diameter trapping column
and then eluted onto a narrower, longer analytical column. The
trapping column allows peptides to be loaded from the sample
loop at higher flow rates than would be possible using the
analytical column, helping to minimize band broadening. It can
also serve to desalt samples, binding peptides while unwanted
salts (and other nonbinding constituents present in the
mixture) end up in the column effluent and are directed to
waste. For this configuration to be effective peptides must
partition into the stationary phase so that they are not eluted to
waste; this is of particular concern for very hydrophilic peptides
that are less likely to be retained. The inclusion of two very
hydrophilic peptides in RePLiCal, VTASGDDSPSGK (1) and
ALAEDEGAK (2), can allow trapping column performance to
be tested. Figure 6 shows the signal intensities and RTs of these
two peptides relative to the next eluting peptide, SSYVGD-
EASSK (3), on the same LC system with both a faulty trapping
column and one that is functioning optimally. It is evident that
the signal intensities for VTASGDDSPSGK and ALAEDEGAK
are significantly decreased relative to SSYVGDEASSK (both
<1% relative intensity) compared with when the trapping
column is working effectively, under which conditions the
relative intensities of VTASGDDSPSGK and ALAEDEGAK are
∼10 and 40%, respectively, compared with SSYVGDEASSK.
Suboptimal peak widths for all three peptides are also observed
(as would be expected). Chromatographic peak width in
addition to relative signal intensity can thus be monitored as a
measure of optimal trapping performance, providing multiple
metrics by which trapping column efficiency can be assessed
and the necessity for replacement defined.
Detection of RePLiCal in a Complex Matrix

RePLiCal peptides were spiked into a tryptic digest of a whole
cell yeast lysate and analyzed by nLC−nESI−SRM−MS to test
the utility of this novel standard in proteomics experiments
(Figure 7). All 27 RePLiCal peptides were detectable with good
signal-to-background ratio (≥29:1) when spiked at 5 fmol in a
background of 1 μg of yeast tryptic peptides. The fact that
RePLiCal is readily detectable in a complex matrix when added
to the sample in minimal amounts (5 fmol is equivalent to
∼200 pg and represents a 0.02% increase in protein load on
column) means that it can be used without itself increasing the
complexity of the sample significantly. A greater quantity of
RePLiCal would be required to ensure detection in nontargeted
data-dependent acquisition (DDA) and data-independent
acquisition (DIA) experiments, but sufficient amounts are still
unlikely to increase the complexity of the sample loaded on
column by >0.5%.
Repeatability of RePLiCal Performance over Extended
Analysis Times

60 consecutive injections of 50 fmol RePLiCal in 1 μg of yeast
tryptic peptides were loaded onto the LC column and analyzed
using a 30 min LC gradient (>2 days instrument time with
trapping, washing, and re-equilibration steps) to assess the
repeatability of RePLiCal performance. Table 1 shows that the
relative standard deviations (RSDs) of the RTs were <1.2% for
all peptides, demonstrating that even over prolonged analysis
times high repeatability in RT measurement is obtained.
Furthermore, all but two of the peptides showed a <6% RSD in
the peak width (FWHM), showing that the vast majority of the

standards gave very consistent peak shapes. The two peptides
that gave values exceeding 20%, TSAESILTTGPVVPVIVVK
(20) and IAFFESSFLSYLK (25), were longer retained species,
thus giving more scope for band broadening, which will, in part,
account for the more variable peak widths. Nonetheless, all
peptides retained good peak shapes with the variation in their
widths in absolute terms being on the order of a few seconds.
The repeatability of these experiments thus provides confidence
that RePLiCal can be used to monitor LC performance
longitudinally and that deviation from precise measurements in
terms of RTs and peak widths will give rapid feedback on
problems with LC instrumentation. The peak areas for the
majority of the RePLiCal peptides also showed good precision,
with 23 having RSDs of <20% (median of 7.91%). The four
peptides with greater RSDs were those with the lowest average
signal intensities (Supporting Information Table S2), and
therefore would be expected to demonstrate greater injection-
to-injection variability. These four peptides are also among the
seven latest eluting species and thus represent the more
hydrophobic peptides in RePLiCal. Several groups have shown
that hydrophobic peptides are prone to adsorption to surfaces
during storage;47−49,58−60 therefore some of the variability
observed in the peak areas is likely to be due to loss over the
duration of the experiment via this mechanism.

Comparison of Formic Acid and Acetic Acids As Ion-Pairing
Agents

Typically, low-pH RP−LC−MS is performed using FA as the
ion-pairing agent due to its volatility and hence compatibility
with ESI; however, acetic acid is used by several groups as an
alternative.61−63 For comparison, proteolyzed RePLiCal was
analyzed on 10, 30, 60, and 90 min gradients using either 0.1%
FA or 0.5% acetic acid to compare performance using the
different ion-pairing agents. Identical elution orders were seen
with both acids, indicating that no ion-pairing agent-dependent
changes in selectivity occurred (Supporting Information Figure
S10). Comparison of the peak widths (FWHM) showed no
statistically significant differences at the 1% confidence level
using the Mann−Whitney U test. These observations
demonstrate that RePLiCal can be used as a standard
irrespective of whether FA or acetic acid is used as the ion-
pairing agent.

Prediction of RTs Using RePLiCal

As previously discussed, RePLiCal can, in theory, be
implemented for RT prediction of a target peptide with
reference to the known RT on the same or potentially different
gradient characterized by RePLiCal by calculating the
regression fit. In a practical sense, one might envisage RT
measurement of a set of peptides on a long discovery-type LC
gradient and then analysis of these peptides in a targeted
manner by scheduled SRM, which typically employs shorter LC
gradients and often requires a different LC−MS system.
Determination of the RTs for these peptides for implementa-
tion of scheduled SRM would thus be required, a time-
consuming step, particularly when methods for large numbers
of peptides are being developed.11 The elution times of
RePLiCal and 100 peptides from moderate-to-high abundance
proteins in yeast40,41,64 targeted using transitions selected from
SRMAtlas65 (Supporting Information Table S9) were deter-
mined on a 30 min LC gradient to demonstrate the utility of
RePLiCal in predicting RTs on different gradients. Sub-
sequently, the RTs of the RePLiCal peptides were recorded
on a 60 min LC gradient (using the same LC instrument and
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columns) and a linear regression linking the two gradients was
calculated. Using this linear regression, the RTs of the 100 yeast
peptides were predicted and scheduled SRM methods using
time windows of 1.5, 2, 2.5, and 3 min were created for the 60
min LC gradient. Each method was run in hexaplicate with
detection of a peptide being regarded as the full elution profile
of the peak being within the time window in all six analyses.
Using a very narrow 1.5 min (0.93% B) time window, this
criterion was only satisfied for 64% of the peptides; however,
lengthening the time window to 2 min led to successful
detection of 94% of the peptides. Further widening of the time
windows to 2.5 and 3 min allowed successful detection of 99
and 100% of the peptides, respectively. Normalization of two
different LC gradients using RePLiCal thus allows successful
prediction and scheduling of RT windows for a large number of
peptides whose RTs have been determined using a different LC
gradient or chromatographic system, thereby allowing efficient
transfer between discovery and targeted proteomics experi-
ments.

Optimization of LC Gradient to Maximize Peptide and
Protein Identification Rates

Despite the fast acquisition speeds of state-of-the-art mass
spectrometers used for discovery proteomics,66,67 many
peptides in complex proteolytic digests are not selected for
tandem mass spectrometry in typical top n DDA experiments
(where n = the number of MS/MS events before the
instrument returns to acquiring a full scan mass spectrum)
due to high degrees of coelution and bias against lower
intensity signals.68 To address this problem, Moruz and
coworkers proposed the implementation of nonlinear LC
gradients to more evenly distribute the elution times of
peptides. The likelihood of peptide coelution is thus reduced
and the percentage of ions in a given MS scan selected for MS/
MS increased, improving the chances of lower intensity
peptides being selected during DDA and hence identified.69

Having first acquired data for the sample of interest using a
linear gradient, a nonlinear slope was optimized by determining
even distributions of either MS1 features or predicted RTs for
the proteome of interest using the program ELUDE.14 The
development of such optimized nonlinear gradients led to
increases in peptide identifications by between, on average, 2
and 10% under different chromatography conditions; however,
this approach necessitates that samples are analyzed twice, that
is, with linear and nonlinear gradients. This may not be possible
in sample-limited situations and puts an additional burden on
instrument usage time. It was hypothesized that RePLiCal
could be used to optimize nonlinear gradients as effectively as a
whole proteome sample, given that the peptides fully describe a
linear LC gradient. The analysis could be performed once, and
the optimized nonlinear gradients applied for all subsequent
experiments, only requiring reoptimization when a change to
the LC system takes place, for example, when a new column is
fitted. RePLiCal was therefore analyzed on three linear
gradients (3−40% B) over 30, 60, and 90 min and used to
generate “in-silico-optimized” and “custom distribution” non-
linear gradients (the latter being recently introduced by Moruz
and Kal̈l and involving the generation of an even distribution of
inputted retention times).70 Subsequent analysis of a whole cell
yeast lysate tryptic digest using each of these two nonlinear
gradients demonstrated increased identifications at both the
peptide and protein levels compared with a comparable
standard linear gradient (Table 2). As would be expected for

a DDA experiment, there is an inverse relationship between
gradient length and percentage increase in identifications: As
the gradient length increases there is less coelution and hence a
greater percentage of the peptide ions recorded in a given full
scan mass spectrum will be selected for MS/MS. Nevertheless,
even for the longest gradient considered, the nonlinear
gradients provided a noticeable increase of over 10% in peptide
identifications and nearly 5% in protein identifications, with the
“in-silico-optimized” gradient consistently outperforming the
“custom distribution”. This difference in performance can be
attributed to the former using chemical information, that is, the
peptide sequence, as part of the optimization rather than simply
evenly distributing a series of retention times, therefore
providing a more refined nonlinear gradient to be used for a
whole proteome sample.
The closest like-for-like comparison with the work of Moruz

and coworkers is for the “in-silico-optimized” gradient. In this
study, a 14.5% increase in peptide identifications was observed
for a 90 min gradient, whereas Moruz and coworkers saw only a
5.3% increase when using a 120 min gradient (albeit with a
HeLa cell tryptic digest). This suggests that RePLiCal is more
effective at optimizing nonlinear LC gradients than using the
sample of interest itself, which is particularly advantegeous in
sample-limited circumstances. Consistent with the observation
of Moruz and coworkers, different populations of peptides were
identified in this study using the three different gradients
(Figure 8a). The data also showed a similar trend at the protein
level, although the overlap between conditions was greater than
that observed at the peptide level as the differentially identified
peptides generally lead to the identification of the same
proteins (Figure 8b).69 The data thus support the proposal that
the combination of linear and nonlinear gradients allows more
comprehensive proteome coverage in shotgun proteomics
experiments,70 and preference should be given to nonlinear
“in-silico-optimized” LC gradients for maximal protein (and
peptide) identification rates over a single run.

Table 2. Average Numbers of Peptide and Protein
Identifications (at a 1% FDR and requiring identification in
all three technical replicates) from 1 μg of a Whole Cell
Yeast Lysate Tryptic Digest Using a Linear and Two
Nonlinear LC Gradients (3−40% 0.1% FA in MeCN)a

gradient

type
time/
min

average
peptide

identifications

%
increase

in
peptides

average
protein

identifications

%
increase

in
proteins

linear 30 2573 583
custom
distribution

30 2994 16.4 661 13.4

in silico
optimized

30 3228 25.5 674 15.6

linear 60 4481 910
custom
distribution

60 4960 10.7 972 6.8

in silico
optimized

60 5219 16.5 998 9.7

linear 90 6066 1166
custom
distribution

90 6676 10.1 1223 4.9

in silico
optimized

90 6948 14.5 1237 6.1

aPercentage increases in identifications are relative to the linear
gradient.
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Recalibration of m/z Scale Using RePLiCal

Consistent elution of RePLiCal peptides throughout the LC
gradient prompted an investigation as to whether these
peptides can also be used as lock masses to correct the m/z
scale of high-resolution, accurate mass MS data. This approach
has been previously demonstrated to improve total protein
identifications in shotgun proteomics experiments.23 RePLiCal
was spiked into a whole cell yeast lysate tryptic digest and
analyzed using a calibrated linear ion trap-Orbitrap mass
spectrometer on a 270 min gradient. Searching the raw data
enabled the identification of 8903 peptides at a 1% FDR, which
were attributed to a total of 1083 proteins. The raw data were
then miscalibrated by 0.125 m/z units using the middle eluting
peptide from RePLiCal, TQLIDVEIAK, as the reference point.
The miscalibrated data were then split into 27 sections, each
containing a single RePLiCal peptide at the midpoint of the
section in the time dimension. The exact m/z of the RePLiCal
peptide was used to lock-mass-correct the data in the truncated
section of the LC gradient, following which the 27 sections of
the chromatogram were recombined and searched using the
same database search parameters as for the raw data. At a 1%
FDR, 8903 peptides were identified, leading to the
identification of 1083 proteins, with high overlap with the
data premiscalibration (1082 common proteins, 8810 common
peptides). While an improvement in protein identifications was
not observed as described by Mirzaei and coworkers (this may
be a function of the quality of the initial instrument m/z scale

calibration), the use of RePLiCal essentially allowed the
rebuilding of the acquired raw data following miscalibration.
This orchestrated scenario replicates the drifting or complete
loss of calibration during an analysis and demonstrates the
utility of RePLiCal to prevent data loss. This enables more
efficient use of instrument time as reanalysis is not required and
prevents complete loss of data in sample-limited situations. The
addition of a standard such as RePLiCal in this situation is
particularly advantageous for poorly characterized samples
where knowledge of the expected endogeneous peptides, which
could be used for m/z scale recalibration, is not available.

■ CONCLUSIONS
A retention time standard, RePLiCal, generated using
QconCAT technology and complementing existing standards
for mass spectrometry71 and ion mobility72 instrumentation,
has been presented. It was demonstrated that RePLiCal can
more effectively standardize nUHPLC instrumentation than
three commercially available standards through greater cover-
age of the LC gradient, particularly at the start and end.
Furthermore, RePLiCal can be used to identify poor trapping
column performance due to the presence of two very
hydrophilic peptides that are only trapped effectively when
instrument performance is optimal. The standard has been
analyzed on two different nUHPLC instruments and on a
variety of gradient lengths and has performed stably and in a
predictable manner, permitting transfer of peptide RTs between
LC systems. RePLiCal has also been used effectively to generate
nonlinear gradients to maximize peptide and protein
identifications in nontargeted proteomics experiments, and
the individual peptides have proven useful as evenly distributed
reference points throughout the LC gradient to recalibrate the
m/z scale postacquisition. It is envisaged that this standard
could be used to benchmark RP LC instrument performance
across laboratories, particularly given that the same peptides are
generated by both Lys-C and trypsin digestion. Finally, given
that the RePLiCal peptide sequences were designed so that
they are not naturally occurring in any eukaryotic organism, this
standard can be introduced into the vast majority of proteomics
samples, permitting standardization across almost all proteo-
mics experiments.
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