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ABSTRACT

Motivation: High-resolution mass spectrometers generate large

data files that are complex, noisy and require extensive processing

to extract the optimal data from raw spectra. This processing

is readily achieved in software and is often embedded in

manufacturers’ instrument control and data processing environ-

ments. However, the speed of this data processing is such that it is

usually performed off-line, post data acquisition. We have been

exploring strategies that would allow real-time advanced processing

of mass spectrometric data, making use of the reconfigurable

computing paradigm, which exploits the flexibility and versatility

of Field Programmable Gate Arrays (FPGAs). This approach has

emerged as a powerful solution for speeding up time-critical

algorithms. We describe here a reconfigurable computing solution

for processing raw mass spectrometric data generated by

MALDI-ToF instruments. The hardware-implemented algorithms for

de-noising, baseline correction, peak identification and deisotoping,

running on a Xilinx Virtex 2 FPGA at 180MHz, generate a mass

fingerprint over 100 times faster than an equivalent algorithm written

in C, running on a Dual 3GHz Xeon workstation.

Contact: D.Coca@sheffield.ac.uk

1 INTRODUCTION

The phenomenal advances in proteomics that have been made

in recent years are readily attributed to advances in mass

spectrometry (MS), notably soft ionization modes and tandem

instrumentation, coupled with new tools for processing spectral

data and database searching. The sensitivity and selectivity of

the current generation of mass analysers is notable, and useable

mass spectra can be recovered from vanishingly small amounts

of material. Perhaps the simplest MS method in proteomics is

that of peptide mass fingerprinting (PMF). PMF is a protein

identification technique in which a protein is proteolyzed using

an endopeptidase of defined specificity (usually trypsin) and the

masses of the ensuing limit peptide fragments are measured.

The proteins are identified by matching the measured molecular

masses of these peptide fragments against theoretical peptide

mass profiles generated from protein sequence database.

PMF is readily delivered at high sensitivity through routine

instrumentation such as MALDI-ToF mass spectrometers

and although tandem MS approaches can recover more

information from single peptides, PMF still plays an important

role. Indeed, as more genomes are sequenced, and cross-species

matching methods are developed, PMF may assume greater

importance for many sub-proteome studies.
PMF involves two basic operations. The first is processing

of the raw mass spectrum to derive a mass fingerprint,

generating a data set in which the only variable is the mass of

each peptide (relative intensities of different ions are not

routinely used in PMF). When the mass spectrum has been

processed, the list of masses are first filtered to remove spurious

masses such as those derived from trypsin or matrix clusters,

and the remaining peptide masses constitute the fingerprint

that is used to search the protein databases for a possible

match. A correlation score is computed between the data-

base entries and the unknown peptide fragment mass list.

The matches with the highest score form the final candidate

protein list to be returned to the user.

At present, the time required for processing of the raw mass

spectrum and the subsequent database search can exceed that

of acquisition of the mass spectrometric data, especially

by MALDI-ToF, which boasts acquisition rates of up to 200

spectra/s. If PMF is to remain as a key method in proteomics,

one compelling gain would be a system in which the raw spectra

are processed and searched against the protein database in

the same time frame as acquisition—this would give ‘real-time

PMF’ (RTPMF). However, for the goal of RTPMF to be

realized, there remains the need for substantial acceleration of

these two stages (spectrum processing and database searching).
A very effective approach to speed up the computations is based

on the development of dedicated hardware processors that are

optimized to perform specific algorithms. The acceleration,

compared with the standard sequential microprocessor, is achieved

by concurrent implementation of different arithmetic and logic

operations that make up a computational loop and by concurrent

execution of several computation loops. A major drawback

of this approach used to be the prohibitive costs associated

with manufacturing a dedicated integrated circuit (ASIC).*To whom correspondence should be addressed.
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However, the hardware implementation has become a
much more cost effective solution due to the availability
of high-density field programmable gate arrays (FPGAs) and of
high-level system design and development tools, which make

possible the implementation of very complex hardware designs
with almost the same ease as the software implementation.
An FPGA is a large-scale integrated circuit that can be

programmed (and re-programmed) after it has been manufac-
tured. Early attempts to use FPGA devices in bio-computation
were made to accelerate gene sequence analysis (Fagin et al.,

1993). FPGAs, which are well suited for high-performance,
high-bandwidth and parallel processing applications, have been
successfully employed to speed up DNA sequencing algorithms

(Hughey 1996; Guerdoux-Jamet et al., 1997; Wozniak 1997;
Lavenier, 1998; Guccione et al., 2002; Simmler et al., 2004).
FPGAs were also used in the attempt to accelerate search of

substrings similar to a template in a proteome (Marongiu et al.,
2003). More recently, FPGAs have been used to accelerate
sequence database searches with MS/MS-derived query
peptides (Anish et al., 2005). This hardware-based solution

can reportedly locate a query within the human genome about
32 times faster than a software implementation running on
a 2.4GHz processor. A hardware sequence alignment tool

implemented in FPGA is also available (Oliver et al., 2005).
In addition to developing approaches for real-time database

searching, we have implemented FPGA solutions for proces-

sing of raw mass spectra. This article describes the design and
hardware implementation of a mass spectrum processor which
performs all computational tasks involved in the generation of

a mass signature from a raw spectrum namely, smoothing,
peak detection and the coalescence of natural isotopomers into
a single mass (‘deisotoping’). The mass spectrum processor,
which is implemented on a Xilinx XC2V8000 FPGA and runs

at 180MHz, achieves more than 100-fold speed-up compared
with a C software implementation running on a dual 3GHz
Xeon Server with 4GBytes of memory.

2 METHODS

A MALDI-ToF mass spectrum of a typical tryptic digest of a protein

generates pairs of mass-to-charge (m/z) and abundance values.

Typically, the number of points in the spectrum ranges from a few

thousand to a few hundred thousand. The determination of experi-

mental peptide masses (the so called peptide mass fingerprint) requires

relatively complex processing of the raw mass spectrum in order to

discriminate between spectral peaks that correspond to digested

peptides and the associated isotopomer peaks and the spurious peaks

caused by noise and sample contamination.

To create the raw data used to evaluate the FPGA implementation,

single proteins and complex protein mixtures were diluted with 50mM

ammonium bicarbonate and digested with trypsin at a ratio of protein:

enzyme of 50:1. One protein that was used was an artificial QconCAT

protein chosen designed so that all tryptic fragments fell within the

range 1000–2500m/z (Beynon et al., 2005; Pratt et al., 2006). Digestion

was carried out at 37�C for 24 h after which time, 1ml digested material

was spotted onto a MALDI target. This was mixed with 1ml �-cyano
hydroxycinnamic acid matrix and analysed using a Micromass

M@LDI mass spectrometer (Waters, Manchester, UK) typically over

the m/z range 800–4000.

The FPGA spectra processor was designed to implement, with some

variations, the algorithm proposed by Samuelsson et al. (2004).

The major difference is the method used by the FPGA processor to

implement aggregation of natural isotopomers (due primarily to the

natural abundance of 13C and 15N)—the algorithm implemented in

FPGA uses Poisson distributions to approximate the isotopic patterns

for every peptide (Breen et al. 2000).

The algorithm described in Samuelsson et al. (2004) has several steps.

First the baseline and noise levels are estimated over an arbitrary

interval adjusted by user parameters, (! and V) which divides the raw

spectrum. The data points in the spectrum are classified compared with

the level of noise and the baseline into noise, baseline and signal points.

Then, peaks are constructed from a group of data points where at least

one point has to be signal. In the next step the constructed peaks are

grouped into clusters that are further processed to identify the

monoisotopes.

The deisotoping algorithm proposed by (Breen et al., 2000), was

preferred for FPGA implementation. Here Poisson modelling is applied

to determine monoisotopic masses (deisotoped peaks) from isotopically

resolved groups (clusters). The abundances of the higher isotopic

contributions for a monoisotopic peak are computed using Poisson

distribution models that have been shown to match very well theoretical

distributions (Breen et al., 2000).

A good test of such an algorithm is in the deconvolution of the

overlapping mass spectra of a peptide containing an asparagine residue

(‘amide’) and its cognate acid product in which the side chain amide

residue has been deamidated. The two mass spectra overlap by 1Da,

and effective deconvolution would be able to apportion the signal into

the relative proportions of acid and amide.

The block diagram of the hardware processor is depicted in Figure 1.

The implementation has two major functional blocks: a peak detection

unit, which identifies all significant spectral peaks and a peptide

identification unit that generates the final list of peptide masses and

associated abundances.

The peak detection unit implements smoothing, baseline and noise

level estimation in order to discriminate between signal and noise peaks.

The first block implements a Savitzky–Golay smoothing filter (Savitzky

et al., 1964) with a user-defined window that can be chosen according to

the instrument resolution (number of data points recorded per 1Da).

The smoothing operation is optional; the user can specify if the data is

pre-processed or not. The Savitzky–Golay smoothing operation is

implemented as a convolution of the filter coefficients with the

abundance input stream. A delay equal to the filter latency (DELAY

A in Fig. 1) is applied to the mass values data stream in order to

preserve synchronicity between the mass and abundance values. The

number of coefficients depends on the chosen window size. The

maximum window size allowed is 43 which correspond to 43� 43

coefficients. The coefficient matrix is loaded into the FPGA memory

before processing operation starts. The smoothing operation is

implemented as a single channel parallel filter using a Xilinx Logicore

block (Xilinx, 2004). Smoothing improves the shapes of peaks which

helps peak detection but slightly degrades the abundance values. Minor

corrections can however be implemented to compensate the small

diminution in abundance. Figure 2 shows the effect of smoothing a

segment of real data with a Savitzky–Golay filter that has a polynomial

order of 11 and window (or frame) size of 23.

The Y, Z, W computation block computes the minimum (Z),

maximum (Y) abundances and their difference (W¼Y�Z) over a

small sliding window of maximum length of !¼ 16 points, as described

in Samuelsson et al., (2004). It has a structure similar to that of a

median filter that sorts in ascending order its input data stream over its

filter length. Instead of computing the median, the maximum and

minimum values are found.

The baseline and noise estimation block uses Y,Z,W values to

compute the baseline (Ybase) and noise level (Ynoise) over a larger

moving window of length ��! points, where � is a user-defined
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parameter (Samuelsson et al., 2004). The (Ynoise) and (Ybase) values

are used to compute the signal-to-noise ratio (Sn) for every data point in

the spectrum. This is compared with a threshold (�1), which can be set

by the user. Each abundance value is classified as noise, support or

signal depending on whether the associated Sn value is Sn51, 15Sn5�1
or Sn4�1, respectively. The outputs of the baseline and noise estimation

block are a 2-bit classification flag (flag¼ 1-noise, flag¼ 2-support and

flag¼ 3-signal) and the estimated baseline (32 bits) calculated for each

abundance value. This data stream is aligned with the original

mass-abundance pairs of the input spectrum (Fig. 1).

The peak construction state machine generates a list of valid peaks

based on the 2-bit classification flag. A peak is defined as the set of

mass/abundance data pairs that are either support or signal (flag¼ 2 or

flag¼ 3) and are bounded by noise (flag¼ 1). The mass and abundance

associated with each identified signal peak are calculated as the centred

mass and the (baseline subtracted) peak maximum, respectively. The

effect of the baseline subtraction is shown in Figure 3. The resulting

peak list is written in a dual port RAM block for further analysis.

The peptide identification unit consists of a clustering and a

deisotoping unit. The peaks in a cluster correspond to the isotopes of

one or more singly charged chemical compounds, separated by the mass

of a neutron. Clustering involves grouping together peaks so that the

m/z distance between two successive peaks is between 1� �2 and 1þ �2
where �2 is another user selectable value, typically set to 0.2

(Samuelsson et al., 2004).

The first block of the clustering unit (‘Cluster flag computation’)

computes the distance between all consecutive signal peaks from a

distance of 1þ �2 starting with the lowest mass value m1. To speed up

computations, there are p circuits that compute mass differences

m2�m1, . . . , mpþ1�m1 between m1 and the following p consecutive

mass values m15m25. . .5mp5mpþ1 in parallel. In our design, p is an

adjustable parameter, which is selected according to mass spectrometer

resolution, to be equal to the maximum number of signal peaks that are

registered within a window of 1þ �2. The parallel processing of these

peaks is implemented by a FIFO (first in first out queue) structure

of length p. The data flow through this circuit is depicted in Figure 4.

Fig. 1. Block diagram of the mass spectra processor implemented in FPGA.

Fig. 2. Raw (dotted line) and Savitsky–Golay smoothed (solid) mass

spectrum segment.
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This is the only example of explicit algorithm parallelization. The main

approach used to speed-up computations is through instruction

pipelining. This technique is particularly suited for mass spectra

processing where the same sequence of operations is applied to a long

data stream.

In the current configuration, for each mass value that is being

processed, the clustering unit generates a p-bit cluster flag f. Typically

about 50–100 samples per m/z unit are taken, so the FIFO length is

greater or equal to the number of possible peaks in 1.2m/z distance.

Assuming that at least three measurement points define a signal peak,

and there are 100 measurements in a unit of m/z, the maximum number

of constructed peaks in one m/z unit is 33 and in 1.2m/z unit is 40.

In the current design, p is 32.

If the distance between m1 and mk is within the range 1� �2, the k-1bit

of this word is set to 1 indicating that mk is a potential isotopomer of m1.

The mass values, abundance values and associated cluster flags are

concatenated and stored in RAM (A) at consecutive memory locations

(increasing mass) as a 32þ 32þ 32þ 12 bit word (32 for mass, 32 for

abundance, 32 cluster flag and 12 bits reserved for further processing)

as shown in Figure 5. These records are processed to group signal peaks

into clusters. If all the bits of the f1 flag corresponding to m1 are zero

this indicates that m1 has no isotopes. If the kth bit of this word is 1 this

indicates that the peak corresponding to the mkþ1 mass value is part of

the cluster having m1 as the monoisotopic ion. Next, by analysing the

index fk associated with mk, it is possible to identify other peaks that

belong to the same cluster. The process continues until the cluster flag

associated with the last signal peak added to the cluster has only

zero entries.

Clustering is implemented as a state machine that sequentially

analyses the data stored in the first dual port RAM(A) and generates

clusters that are stored in the second dual-port RAM(B). Each RAM

block was configured to have 432 Kbits storage space (4Kb address

space and 108 bits word length) which can store 4096 peaks. The cluster

flag associated with the latest signal peak added to the cluster is used to

compute the memory address of the next peak to be included in the

cluster from RAM(A). The peaks identified as belonging to one cluster

are stored at consecutive memory locations in RAM(B). Each cluster is

also indexed with a number of 12 bits called cluster index, a unique

identification value for every cluster, stored with the member peaks.

The memory content of RAM(A) before clustering and RAM(B) after

clustering is shown in Figure 5. The first peak from address 0 has a

single bit set to one at the k-th position of its cluster flag. This indicates

that the peak stored at address k is part of the same cluster as the first

peak. As a result the peaks 1 and kþ1 will be stored in RAM(B) at

successive memory locations. In addition, to indicate that they are part

of the first cluster, both peaks will have their 12 bits cluster indexes set

to 1, The cluster will not include more peaks because the peak at

address k has its cluster flags null. The clustering process continues

until all the peaks from RAM(A) are visited. The result in RAM(B)

will be the same list of peaks, this time ordered by increasing cluster

indexes and increasing mass values for peaks belonging to the

same cluster.

For example, a cluster of eight peaks is shown in Figure 6. The peaks

are situated at �1Da distance with m/z values: m1¼ 2265.35,

Fig. 3. Effects of baseline detection.

Fig. 4. Data flow for cluster flag generation.

Fig. 5. Memory operations during clustering.
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m2¼ 2266.35Da, m3¼ 2267.34Da, m4¼ 2268.37Da, m5¼ 2269.37Da,

m6¼ 2270.36Da, m7¼ 2271.39Da, m8¼ 2272.29Da. In practice such a

cluster has to be processed further since one cluster may contain more

than one monoisotope, that is, the peaks in a cluster can be viewed as a

superposition of isotopic distributions.

The deisotoping unit isolates all monoisotopic masses in a cluster and

calculates the total abundance of the peptide by summation of the

intensities of all of the isotopomers. The hardware algorithm

implements deisotoping based on an approximation of isotopic patterns

by a Poisson distribution as proposed by Breen et al., (2000). Starting

with the first peak in a cluster (usually the monisotopic peptide), the

algorithm generates the theoretical isotopic distribution based on peak

height (abundance) and mass value. The computed abundance values

are then subtracted from the original peaks at the corresponding m/z

values. Following subtraction, any abundance value below a user-

specified threshold is set to zero. The step is then repeated, with the

remaining (height adjusted) peaks. At each step, the monoisotopic mass

value, the original detected abundance and the total abundance are

recorded in the final peak list. The deisotoping unit processes previously

computed clusters from the dual port RAM (B), writes back partial

results in RAM (B) and the final peak list in RAM (A).

When the last peak from the cluster is visited, the total peptide

abundance for every monoistope detected is stored back to RAM(A), in

the 32 bit area previously used to store the cluster flag fkþ1. At the same

time, the cluster index information (last 12 bits) is overwritten with a

flag set to 1 or 0 depending on whether the monoistopic peak at that

address is above or below the threshold �3.

For example, the monoisotope peaks recovered from the previously

clustered fragment displayed in Figure 6 are shown in Figure 7. In this

example, two consecutive overlapping monoisotopomers are detected.

The abundances of all the higher isotopes of each monoisotope are

added to its original monoisotopic abundance. The first monoisotope

has its summed abundance of 867.7146 while for the second

monoisotope the corresponding overall abundance is 4333.5933.

When processing ends, the harvested peak list in RAM(A) is ready to

be used to search the protein database.

3 RESULTS

The processor was implemented on a FPGA motherboard

equipped with a Xilinx Virtex-II XC2V8000 FPGA (8 million

gates) and 4Mbytes ZBT RAM, communicating with the host

PC server via a PCI interface (32 bit, 33MHz).

On the motherboard there are two FPGA devices (Fig. 8).

The bigger one (Virtex-II XC2V8000 FPGA) is used to

implement user designs—in our case the spectrum processor.

The Xilinx Spartan-II FPGA implements the PCI interface

between the server PC and the user FPGA from the mother-

board. Communication between these two FPGA devices is at

40MHz on a 32 bits wide data bus. The motherboard has

4MB of ZBT RAM connected to the user FPGA as shown in

Figure 9. This is enough to store 512K samples of mass-

abundance pairs on 32 bits each.
The actual design occupies about 70% of the FPGA’s logic

resources and 18% of the FPGA’s I/O resources. The server is a

Dual 3.06GHz Xeon processor machine with 4GBytes RAM.

The block scheme of the system is given in Figure 8.
The mass spectrum is transferred into the ZBT RAM via the

PCI interface in two steps, first the mass and second the

abundance data vectors.

The design can be easily ported, however, to a new version of

the motherboard that supports PCI-X standard (64 bits at

133MHz) which will allow transfer of the abundance and mass

data streams at the same time.

All arithmetic operations are performed using 32-bit signed

fixed-point binary number representation of mass and abun-

dance values, with 12 bits after the radix point.

3.1 Spectral processing

The basic steps in processing a mass spectrum are largely the

same, irrespective of the software used: smoothing, baseline

subtraction and centroiding/deisotoping. For the FPGA based

approach to be useful, the quality of the processed spectra

should be at least as acceptable as those processed by software.

A recombinant protein designed as an internal standard for

multiplexed absolute protein quantification (Beynon et al.,

2005; Pratt et al., 2006) was digested with trypsin to release

Fig. 6. Results of clustering. Fig. 7. Deisotoping results. The cluster of peptide ions in the Figure are

deconvoluted into two species with overlapping isotopomer profiles.
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20 limit peptides of known identity. Digested material was

analysed by MALDI-ToF MS and raw data was processed

separately using MassLynx, a commercial mass spectrometry

software, and FPGA.
Data was processed using MassLynx software to remove

background noise using polynomial order 10 with 40% of the

data points below this polynomial curve and a tolerance of 0.01.

Spectral data was also smoothed by performing two mean

smooth operations with a window of three channels. The

processed spectra were compared as a scatterplot of the centroid

intensity values (relative to base peak) for data analysed in each

way. The centroided spectra are highly comparable and the

FPGA identifies the same peaks as the commercial product

(Masslynx). Moreover, the intensities of the different peaks

correlated well, irrespective of the method used to process the

spectrum (Fig. 10) identified by the software.

3.2 Deconvolution

A valuable test of effective deisotoping is provided by the

resolution of isotopomer distributions derived from asparagine

containing peptides and the deamidated cognate peptide.

If a peptide contains the sequence Asn-Gly in particular there

is a marked propensity for this to be converted non-enzymically

to Asp-Gly, with the result that the deamidated peptide is

1Da heavier (–NH2 to –OH). We tested this part of the analysis

using MALDI-ToF peptide mass spectra derived from in-gel

digestion of glyceraldehyde 3 phosphate dehydrogenase.

A peptide generated by tryptic digestion has the sequence

VKVGVNGFGR (monoisotopic mass 1031.59Da, creating

a singly charged ion [MþH]þ of 1032.59m/z) which is

readily deamidated to VKVGVDGFGR (monoisotopic

mass 1032.57Da, creating a singly charged ion [MþH]þ of

1033.57m/z). To assess the ability of the FPGA implementation

to deconvolute complex and overlapping spectral data,

we generated a set of spectra for this peptide. The 1Da mass

shift on deamidation generates a series of mass spectra that

are strongly overlapping (Fig. 11).
Previously, we have assessed the proportion of acid and

amide by a non-linear least squares iterative curve fitting

procedure that explains the observed mass spectrum by

optimizing the proportion of acid and amide variants,

from theoretical spectra for the acid and amide species

generated using the Protein Prospector MSIsotope tool

(http://prospector.ucsf.edu/ucsfhtml4.0/msiso.htm). The corre-

lation between the calculation of acid:amide proportion

was exactly the same, irrespective of whether the FPGA

implementation or the non-linear least squares method was

used (Fig. 12). Thus, the hardware solution was able to

deconvolute overlapping spectra with ease and yield the same

results as previous methods.

3.3 Speed gains

The impact of the spectral length on processing time was

measured using spectra with various lengths but constant

isotopic composition and noise levels. The reference design was

compiled in C and was simulated on a dual processor server

using 3.06GHz Xeon devices running Windows XP Professional

operating system. The FPGA processor had an internal clock

frequency of 180MHz. In order to evaluate how the number of

Fig. 8. Block scheme of the system.

Fig. 9. A recombinant protein designed as an internal standard

for multiplexed absolute protein quantification (Beynon et al., 2005;

Pratt et al., 2006) was digested with trypsin to release 20 limit peptides

of known identity. Digested material was analysed by MALDI-ToF

MS and raw data was processed separately using MassLynx software

and FPGA.
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data points in a spectrum relates to speed gain, spectra with

different number of mass-abundance pairs were processed. The
software processing routine was repeated 30 times for each mass
spectrum data set and timed. The average time was used to

calculate speed gains. It should be mentioned that the software
processing time does not account for data transfers and memory
initialization operations. Only the main computational loop was

timed. Initializations for example, add on average 30ms to the
C processing time. The results are summarized in Table 1.
The average speed gain for processing spectra of different

lengths is 122. Of course, implementations in instrument
manufacturers’ software are somewhat slower, and spectral

processing such as obtained here can take several tens of seconds.
It is interesting to note that on a single processor server

having the same configuration as the dual processor—except of

the number of processors—the average time of processing the
largest spectrum of 200 976 mass-abundance pairs was
204.71ms which corresponds to a speed gain of about 180.

Processing time is less dependent on the number of signal
peaks in the mass spectrum. Although, clustering and
deisotoping processes are time consuming and depend on the

spectral composition (i.e. the higher the isotopic abundance,
the larger the number of iterations that have to be performed),
the number of monoisotopes and their isotopic contributions is

far less then the entire spectrum data. As a consequence, peak
identification, which involves processing the entire spectrum,

represents the most time consuming operation, giving the bulk
of the total processing time.

4 DISCUSSION

We have successfully demonstrated that processing of a mass
spectrum can be very effectively implemented as a hardware

solution in a high-density FPGA. The performance is

comparable in terms of quality of the processed spectrum,

and spectra can be processed at much higher rates than

obtained through software alone. For example, our FPGA

implementation of the PMF algorithm can process in 1 s over

900 mass spectra consisting of 200 000 mass-abundance pairs.

When implemented alongside a hardware implemented data-

base search algorithm, which should deliver a match in

5100ms, the goal of real-time peptide mass fingerprinting

seems eminently achievable. Another very exciting prospect is

that FPGAs will enable the fast execution of ‘intelligent’

optimization protocols of instrument settings and spectrum

processing, which take prohibitively long time to run even on a

high-end workstation. For example, the closed-loop multi-

objective optimization approach proposed recently by O’Hagan

et al. (2005), which employs Genetic Algorithms and Genetic

Programming to determine optimal instrument settings and

remove noise, reportedly takes from 20min and up to 118 h to

run.
The motherboard can be configured to have up to three

additional FPGA modules that can be plugged into dedicated

motherboard slots. These modules will be used to implement

the database search. Each FPGA module has one Virtex-II

XC2V8000 FPGA device and 1GB of DDR SDRAM that can

Fig. 10. Measurement of peak intensity by FPGA and commercial

software.

Fig. 11. Test data for deconvolution of mass spectra. A series of

spectra were acquired for a peptide that undergoes deamidation using

MALDI-ToF mass spectrometry (left hand column). After processing

the data with the FPGA implementation, the proportions of acid

([MþH]þ¼ 1032.59m/z and amide ([MþH]þ¼ 1033.59m/z) were

calculated, and indicated on the processed spectra by vertical drop lines,

headed by asterisks (right hand column).
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easily hold the entire protein database. Each module is

connected with the motherboard user FPGA implementing
the spectrum processor and with other two modules via a 64 bit,
66MHz local bus. This architecture will enable the implemen-
tation of parallel searches at FPGA level as well as across

modules.
There are three types of proteomics: identification proteo-

mics, characterization proteomics and quantitative proteomics.

The core technology in many of these applications is mass
spectrometry, but power of modern instrumentation brings

with it the penalty of highly information-rich data streams at
very high rates. As such, the bottleneck is moving from data
acquisition to data processing. In identification proteomics and

in quantification proteomics in particular, hardware solutions
such as described here, could solve this bottleneck, and increase

proteomics throughput considerably.
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Table 1. Benchmark results of the spectrum processor implementations

Spectrum

size

Timing [ms]:

Dual Xeon

3GHz processors

Timing [ms]:

Virtex-II FPGA,

180MHz clock

Speed gain

25 488 20.27 0.1632 124.20

50 448 31.23 0.3105 100.56

75 168 47.33 0.4557 103.86

101 040 62.50 0.5607 111.46

125 184 79.17 0.7557 104.76

150 114 114.33 0.8547 133.76

175 104 130.20 1.0024 129.88

200 976 188.63 1.1219 168.13
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