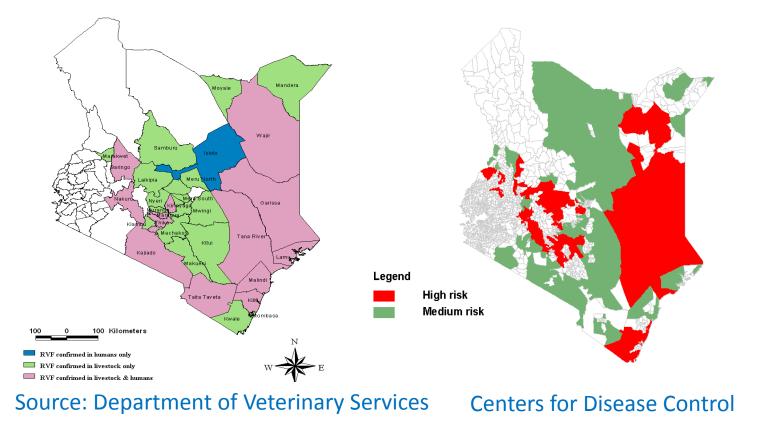
Statistical modelling-- RVF

Updates on dynamic model


Other RVF projects in ILRI

Geospatial analysis of the risk of Rift Valley Fever in Kenya

Published work on RVF epizootics in Kenya

- History of epizootics in Kenya (Murithi et al. 2010)
- Risk factors that have been identified (Hightower et al., 2012; Anyamba et al., 2009; Archie et al., 2007)
 - Excessive rainfall (El Nino years, except 1989)
 - NDVI
 - Altitude (areas <1,100 m above sea level)</p>
 - Soil types (solonetz, calcisols, solanchaks, planosols)

On-going work on RVF risk analysis

Current focus: Refine the risk maps and identify factors that influence the incidence of RVF outbreaks verses those that promote persistence

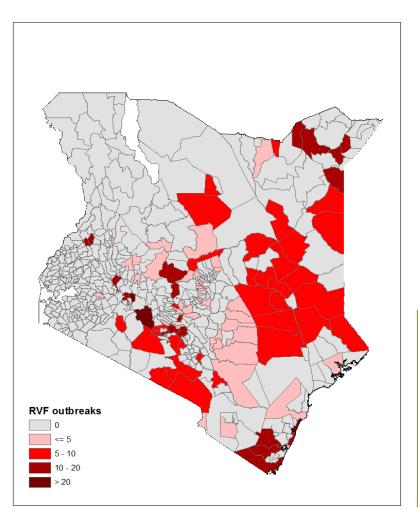
Methodology

- Data on RVF outbreaks
 - Case laboratory confirmed outbreak of RVF (RT-PCR) by division/month from Vet. Department
- GIS datasets:
 - Land use and land cover maps
 - Precipitation
 - NDVI
 - Human population
 - Elevation
 - Soil types
 - Wet lands
 - Parks

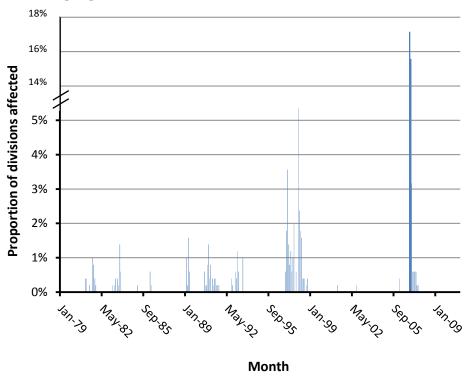
GIS data - predictors

Variable	Source	Description
Livelihood zones	FEWSNET	Livelihood practices as at 2006
Land cover	FAO on-line database	Global land cover data, 2000
Precipitation	ECMWF	Monthly minimum, maximum and average for the period: 1979 - 2010
NDVI	Spot Vegetation	Monthly average, minimum, maximum values from: 1999 - 2010
Human population	Kenya National Bureau of Statistics	Human and household census for 1960, 1970, 1980, 1990, 1999
Elevation	CSI SRTM	
Soil types	FAO	FAO's Harmonized World Soil Database (HWSD), 2009
Wetlands (area as % of total)	ILRI GIS Unit	
Parks/reserves (area as %)	ILRI GIS Unit	

Data analysis

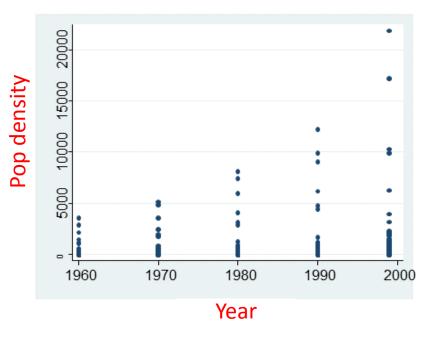

- Descriptive analyses
- Regression models:
 - -Generalized Linear Mixed models
 - Poisson model for incidence

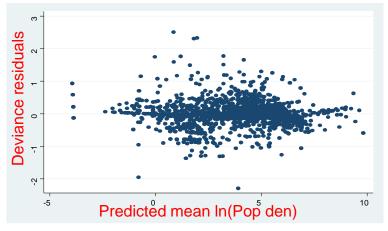
Restricted iterative generalized least squares estimation


- Logit models for prevalence
- -MCMC/spatial multiple membership model
 - To account for spatial autocorrelation

Results

Divisions that have had RVF outbreaks in Kenya between Jan 1912 and Dec 2010

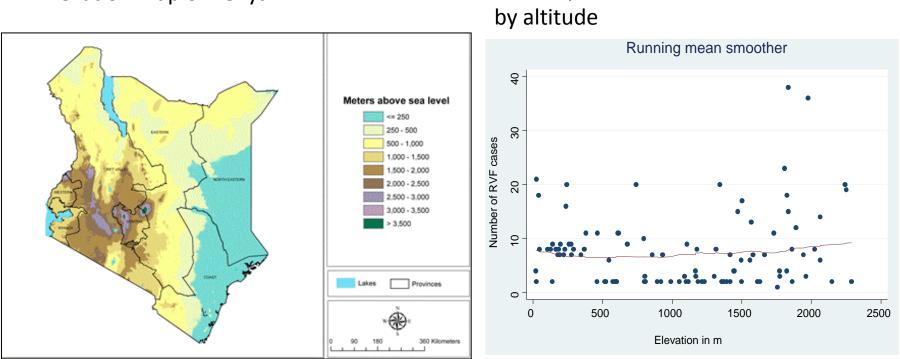

Temporal distribution of RVF outbreaks: 1979 - 2010


- 505 divisions -1999 population census
- 20.2 % (n = 102) of the divisions have had an outbreak at least once
- Mean outbreak interval : 5.4 (4.4 6.4) years

Analyzing human population data – predictor?

Human population trends 1960 - 1999

Deviance residuals verses fitted values


GLM model fitted to the human population data

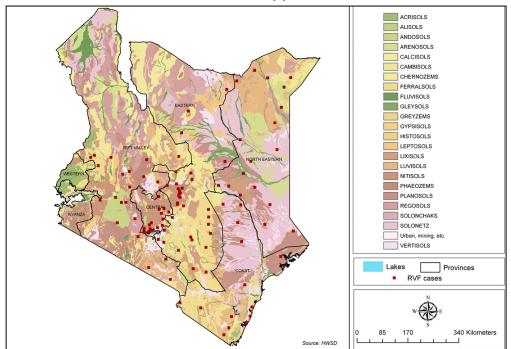
Variable	Level	β	SE(β)	P> Z
Time		0.034	0.001	0.000
Level of growth	Very low	0.280	0.068	0.000
	Low	0.000	-	-
	Medium	0.037	0.022	0.097
	High	0.218	0.063	0.001
Growth x Time	Very low	-0.036	0.006	0.000
	Low	0.000	-	-
	Medium	0.004	0.002	0.033
	High	0.009	0.003	0.002
Ln(starting pop)		1.017	0.013	0.000
Ln(starting pop)_sq		-0.006	0.002	0.013
Constant		0.005	0.016	0.757

Log pseudo-likelihood = -746.67; AIC = 0.62; BIC = -18830.-5

- Gives good prediction for human population
- Outliers mainly with the 1999 population:
 - 3 divisions in NE Kenya, one with a refugee camp
 - one division near Mau Forest
- Population density is significant in the crude RVF regression model

Association between altitude and RVF occurrence?

Elevation map of Kenya


Scatter plot of the number of RVF cases

- Altitude is a factor; cases observed up to 2,300 m above sea level
- Similar observations made in Madagascar where RVF occurred in a mountainous region of >1,500m (Chevalier et al., 2011)

Association between soil type and RVF occurrence?

Soil texture	Status	Frequency	Number positive	%		Chi (P)	
Clay	Yes	345		80	23.2	5.6 (0.02)	
	No	157		22	14.0		
Loamy	Yes	70		11	15.7	1.1 (0.30)	
	No	432		91	21.1		
Sandy	Yes	25		2	8.0	2.5 (0.12)	
	No	477		100	21.0		
Very clayey	Yes	53		8	15.1	0.1 (0.32)	
	No	440		94	20.9		

Relative distribution of soil types and divisions with RVF in Kenya

- Soil types associated with RVF include:
 - Solonetz
 - Luvisols
 - Vertisols
 - Lixisols

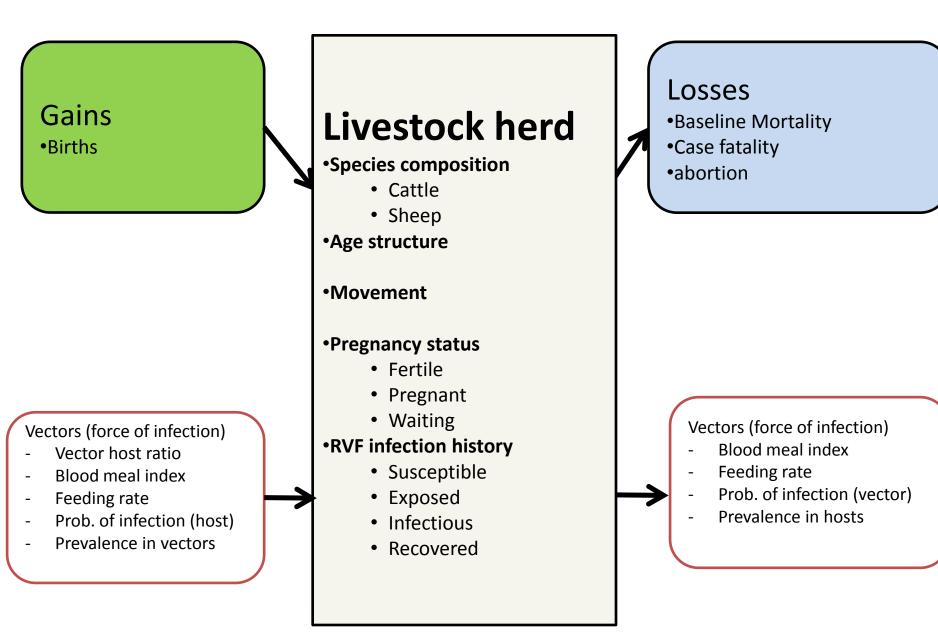
Regression model: factors that affect the incidence of RVF with months-at-risk as an offset

		Multi-level Poisson model		MCMC/Bayesian model		Multiple –membership model	
Variable	Level	β	SE	β	SE	β	SE
Fixed effects							
Constant		-16.73	0.22	-17.15	0.25	-17.03	0.34
Precipitation		0.30	0.01	0.29	0.02	0.29	0.02
Elevation	< 2300 m	0.000	-	0.00	-	0.00	-
	<u>></u> 2300 m	-0.58	0.54	-0.59	0.49	-0.82	0.52
No. previous infections	0	0.00	-	0.00		0.00	-
	1 - 6	5.86	0.24	5.94	0.21	5.72	0.21
	>6	7.26	0.27	7.37	0.25	6.96	0.24
Random effects							
Livelihood zones		1.72	0.38	0.95	0.27	0.71	0.46
Division		0.00	0.00	0.01	0.01	1.70	0.55
Deviance				4139.29		4140.91	•

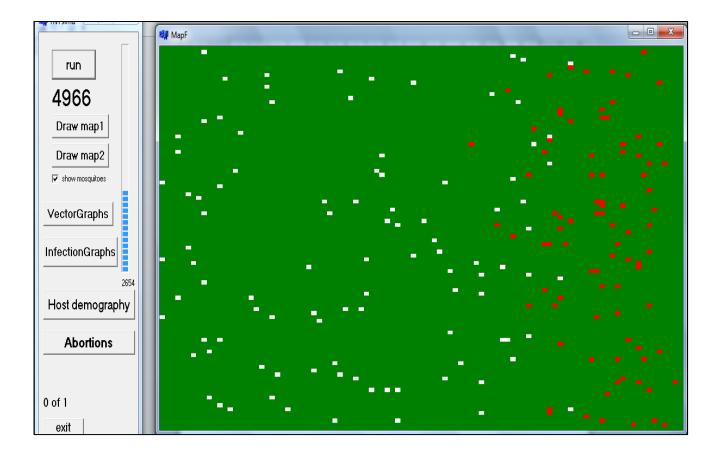
 $\begin{aligned} \log(\pi_{i}) &= \text{offs}_{i} + \beta_{0i} & . \\ \beta_{0i} &= \beta_{0} + u_{0,live_zones(i)}^{(3)} + \sum_{j \in neighl(i)} w_{i,j}^{(2)} u_{0j}^{(2)} \end{aligned}$

Models for the persistence of outbreaks

	Multi-level Poisson model			MCMC/	MCMC/Bayesian model		
Variable	Level	β	SE	β	SE		
Fixed effects							
Constant		-3.74	0.69	-6.18	0.92		
Precipitation		0.11	0.03	0.16	0.04		
NDVI		2.68	0.80	3.29	0.83		
Soil types	Solonetz	1.34	0.49	1.64	0.62		
	Luvisols	1.24	0.45	1.80	0.59		
Elevation	< 2300 m	0.00	-	0.00	-		
	<u>></u> 2300 m	-2.99	0.64	-3.79	0.95		
Random effects							
Livelihood zones		3.16	0.61	9.37	3.02		
Deviance				841.57			

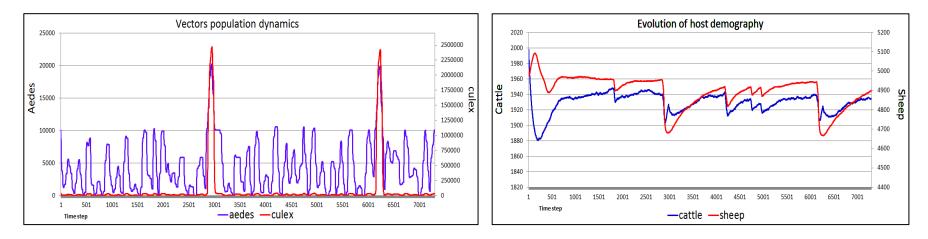

Discussion

- Intense precipitation more important for RVF incidence (3 months cumulative) but soil type (e.g. solonetz and luvisols) supports persistence of outbreaks
- Elevation consistent with previous findings
- Potential for using these results to map hot spots

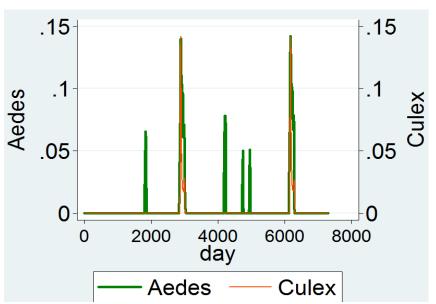

Dynamic model

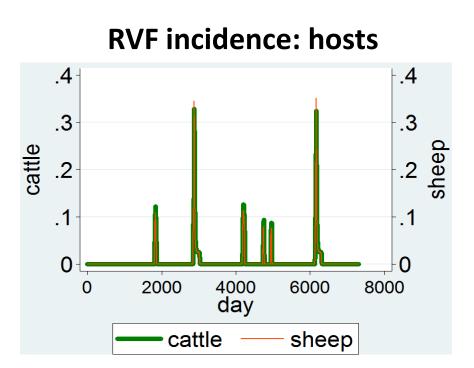
Basic structure

- Grid of 10,000 sq km 500 x 500 m
- 2 hosts: cattle and goats
- Movement wet and dry season grazing sites
- Vectors: Aedes spp and Culex spp

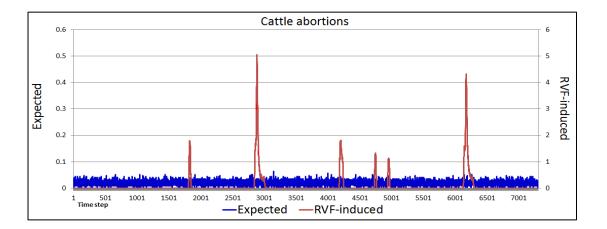


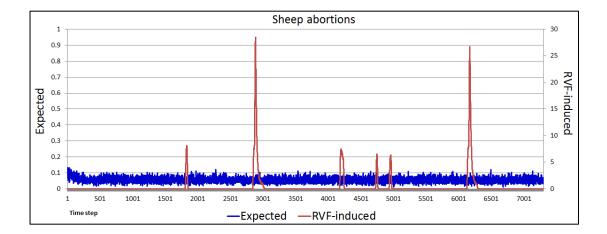
Model interface

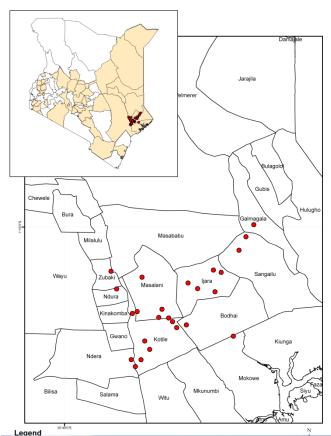



Vector pop dynamics

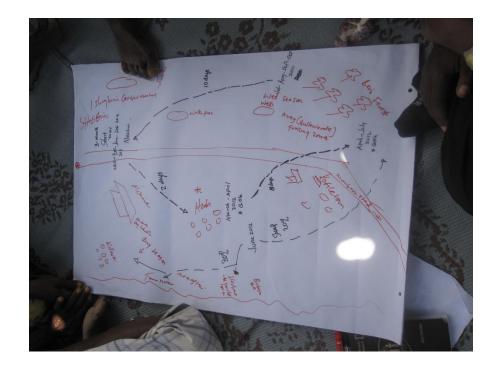
Host pop dynamics

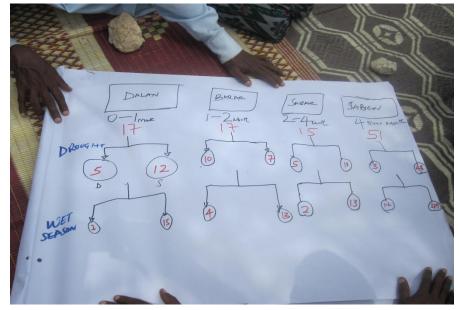



RVF incidence: vectors


Abortion rates – with and without RVF

Other RVF Projects at ILRI


- Healthy Futures
 - Anticipate future environmental changes and their impacts on water-related VBDs
 - Build capacity of health and veterinary services to respond to early warnings of future outbreaks
- Dynamic Drivers of Disease in Africa
 - the relationships between ecosystems, health and poverty
 - Hypothesis: disease regulation as an ecosystem service is affected by changes in biodiversity, climate and land use, with differential impacts on people's health and wellbeing
- AVID
 - Pathogen discovery RVF



Healthy Futures

- WP 2 Disease information and database construction
 - Historical outbreaks, socioeconomics, migration, settlement, conflicts, climate observations/downscaling
 - Meta-database
- WP3 Field work, *statistical models* and dynamics models
- WP4 Risk and vulnerability mapping of disease and impacts, Socioeconomic change scenarios
- WP5 Decision Support Tools

