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Executive Summary 

 

The report presents a malaria early warning study carried out over the Rural, Peri-urban and 

Urban communities within the Kumasi metropolis, using Ghana Meteorological Agency's 

synoptic station data as model input and reported malaria cases in some selected hospitals 

within the study areas. Two independent models (Liverpool Malaria Model and VECTRI 

model) were employed for this study. In addition, the correlation between climate variables 

(rainfall, temperature and relative humidity) and reported outpatient malaria cases in Rural, 

Peri-urban and Urban communities in the Kumasi Metropolis for the entire study period were 

reported. Poor positive correlations were found with rainfall and negative correlations were 

seen with temperature.  The model results revealed higher malaria prevalence in the rainy 

season (from May to October) with peaks in June and July for the first (major) rainy season 

and October and November for the minor rainy season.  The seasonality shown is evidence of 

strong climatic influence on malaria transmission in the study area.  

 

1. Introduction  

 

Malaria continues to place a huge social and economic burden on African communities, 

because it is one of the most important endemic tropical diseases, which has been identified 

to be responsible for 60 % of the world's 300 - 500 million clinical cases in sub-Saharan 

Africa. At least 80 % of worldwide malaria deaths occur in this region (WHO, 2005). Malaria 

prevalence is affected by spatial and seasonal distributions and inter-annual variability in 

climate and long-term trends (Githeko and Ndegwa, 2001). Climate variables such as rainfall, 

temperature and relative humidity have been identified to influence the spread of malaria 

(Craig et al., 1999). The ecology of the breeding habitat of mosquitoes is changing and 

rainfall onset and cessation could affect creation and stability of the breeding habitat. 

Hydrologic controls on the persistence time of mosquito-breeding sites can be used to 

regulate mosquito emergence and significantly impact the mosquito development cycle 

(Gianotti et al., 2009). Also, variation in daily temperature affects the aquatic stage 

development of mosquitoes. In addition, human interaction with the ecosystem strongly 

affects the life cycle of mosquitoes. 

 

Climate therefore has a large impact on the incidence of vector-borne diseases such as 

malaria; directly via the development rates and survival of both the pathogen in the vector 

and the vector, and indirectly through changes in vegetation and land-surface characteristics 

such as the availability of breeding sites (Martens et al., 1995).  
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Climate and its variability therefore have a major impact on the public health system in 

Africa in general and Ghana in particular.  Malaria is the leading cause of morbidity, 

accounting for about 37.5% of Out Patients Department (OPD) attendance (NMCP, 2009). It 

is estimated that malaria cases accounted for 48.8 % of children under five and in total 32.5 

% of all outpatients visits to hospitals in Ghana (NMCP, 2009). The whole population of 

Ghana are at risk of malaria as cases of it are reported throughout the year with the rainy 

season causing some seasonality (GNMSP, 2008). Malaria is therefore not only a health issue 

as it has a huge indirect cost on Ghana’s economy due to lost of productivity; those infected 

by malaria are in and out of hospital and unable to work to contribute effectively to the 

economic growth of the country. 

 

Mosquitoes may exploit any available water for oviposition, natural or man-made (Imbahale 

et al., 2011; Fillinger et al., 2004), permanent or temporary (Fillinger et al., 2004) and of 

various sizes from hoof-print of animals to the edge of large water bodies (Sattler et al., 2005; 

Mutuku et al., 2006; Imbahale et al., 2011), clean or polluted (Sattler et al., 2005; Awolola et 

al., 2007; Chinery, 1984), though individual species have preferences of habitat type. 

Anopheles gambiae complex mosquitoes and Anopheles funestus, the principal malaria 

transmission vector in Sub-Sahara Africa prefer small, clear, temporary and sunlit water for 

their breeding which becomes abundant during the rainy season, although their larvae have 

also been found in polluted waters (Awolola et al., 2007; Sattler et al., 2005).  These  

temporary habitats contains less or no competitors and predators which decrease larvae 

mortality rate (Koenraadt et al., 2004; Sunahara et al., 2002). Furthermore, these habitats are 

usually available close to human settlements, the gambiae complex being anthropophilic 

(Highton et al., 1979) and as such time spent by the gravid mosquito to locate surface water 

for oviposition is reduced along with its associated risks and this would in effect increase the 

sporogonic cycle (Mutuku et al., 2006; Minakawa et al., 1999). 

 

The goal of the study is to understand malaria transmission for Kumasi metropolis, using the 

Liverpool Malaria Model (hereafter LMM) (Hoshen and Morse, 2004; Ermert et al., 2011b,a) 

and VECTRI malaria model (Tompkins and Ermert 2013). Both model run were carried out 

Kumasi using the Ghana Meteorological Agency (hereafter GMet) data for the past 30 years 

(from 1980 to the 2012).  

 

2.0  Climate and malaria hospital data   

 

The climate input data for the malaria-vector model are daily rainfall and mean temperature. 

Therefore the first step for running the model is to prepare this climate data in the model 

desired format.  The challenge here requires ensuring that all daily temperature and rainfall 

data for the study period are available.   

 

Rainfall and malaria transmission do not peak at the same time, as there is always a time lag 

between them. The time variation is due to the time required for mosquitoes to complete their 

life cycle and the parasite to fully develop in the human host. Therefore poor positive 

correlation in the range of 0.25 – 0.31 were seen for these study cases. It was observed that 

the rainfall and malaria recorded cases do not peak simultaneously. Thus, increasing rainfall 

amounts are therefore not leading to an increase in malaria transmission even under the 

consideration of time lags. This could point to the fact that, some productive breeding 

habitats are permanent and semi-permanent.  
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Figure 2.1: Confirmed monthly malaria cases reported at Atonsu Hospital (Urban) over the 

study period (red) and corresponding monthly rainfall (green)     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Confirmed monthly malaria cases reported at Emena Hospital (peri-urban) over 

the study period (red) and corresponding monthly rainfall (green)     
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Figure 2.3 Confirmed monthly malaria cases reported at Nkawie Hospital (rural) over the 

study period (red) and corresponding monthly rainfall (green)     

 

Temporary shallow waters are the preferred breeding habitats for Anopheles gambiae. These 

breeding habitats are most productive when there are many rainy days in the month. The 

critical factors for malaria forecast therefore are the onset and frequency of rainfall since 

these determine the stability of habitat to complete aquatic stage life cycle. In general, 

malaria prevalence rate is high after the onset of rain.  This is because at the start of the rainy 

season, rainfall provides additional breeding habitats. This leads to an increase in the 

Anopheles gambiae mosquito population and hence increases the malaria prevalence. 

The average monthly temperature for Kumasi is in the range of 25–28°C, which is a 

favourable temperature for both breeding and survival of mosquitoes. Relative humidity 

affects malaria transmission by influencing the life span and flight range of Anopheline 

mosquitoes. The vector has a shorter life span when the relative humidity is below 60%, 

which may not allow complete development of the parasite within the vector. Results from 

the monthly data show that throughout the year, relative humidity is greater than 70% in 

Kumasi and therefore there can be a complete development of the malaria parasite within the 

vector to increase the probability of infectious bites. This further explains the reason for 

higher malaria transmission during the rainy season in Kumasi. The limiting factors however 

are the availability of breeding habitats, which are provided by rainfall, drainage and sewage 

systems and other environmental factors. 

A correlation plot of the temperature with outpatient malaria cases recorded at Nkawie a rural 

hospital and Emena Peri-urban hospital are shown in Figure 2.4. In general, a negative 

correlation was observed with temperature with correlation coefficient  -0.26 to -0.18.  
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Figure 2.4: Scatter plot for temperature as a function of outpatient malaria cases for 

Nkawie. 
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3.0  Malaria-vector Model  

 

The Liverpool Malaria Model (LMM) and the Vectri malaria model, are mathematical-

biological models of malaria parasite dynamics driven by daily temperature and precipitation 

data (Hoshen and Morse, 2004). Extensive details on parameter setting and definitions are 

described in the 2011 LMM version (called LMM new version) which was used for this study 

(Ermert et al., 2011a,b). The details on Vectri malaria model are described in Tompkins and 

Ermert (2013).  
 

In this study, temperature and precipitation measurements were taken from GMet synoptic 

station at Kumasi airport.   Entomological malaria field studies frequently sample biting 

mosquitoes on humans (Le Go et al., 1997). Standard measurements include the Human 

Biting Rate (HBR), which is the number of mosquito bites per human per time. However, it is 

known that only female mosquitoes with sporozoites in their salivary glands are able to infect 

humans [(Ermert et al., 2011b) and references therein]. This fraction of the biting females is 

called Circumsporozoite Protein Rate (CSPR) (Awolola et al., 2002). By multiplying HBR 

with CSPR results in the Entomological Inoculation Rate (EIR), which is deemed as the 

number of infectious mosquito bites per human per time. Only months revealing infectious 

mosquito bites (EIR values above zero) are usually used to define the malaria season at a 

certain location. By contrast, parasitological malaria studies usually measure the asexual 

parasite ratio (PR) representing the proportion of the survey population, which is positive for 

the malaria parasite. Extensive literature has been reviewed on all these parameters in Ermert 

(2010). Other parameters such as entomological and parasitological variables are taken into 

account in the model; these are: the annual Human Biting Rate (HBRa), the annual 

Entomological Inoculation Rate (EIRa), the annual mean Circumsporozoite Protein Rate 

(CSPRa), the length, onset, and end of the malaria season, the length of the main malaria 

season (MSeas); i.e. the number of months in which 75 % of EIRa is recorded (Hay et al., 

2002), the month of maximum transmission (XSeas; i.e. the month with the largest 

entomological inoculation rate, the annual mean, maximum, and minimum of the asexual 

parasite ratio (PRa, PRmax; a, and PRmin, a, respectively). The output results of all these 

parameters from LMM are reported in this study. This new version of the LMM described in 

Ermert et al. (2011b,a) provides 12 to 15 days life cycle of mosquitoes comprising the egg, 

larval, pupal, and adult stages. The egg, larval, and pupal stages are entirely aquatic and, 

therefore, mostly depend on weather conditions. Besides climatic conditions, competition due 

to over-crowding, water quality, food supply, cannibalism, predators, parasites, as well as 

pathogens are limiting factors for aquatic stages of mosquitoes (Ermert et al., 2011a,b).  In 

addition to all these in the LMM, the VECTRI model takes into account the surface 

hydrology (relative small breeding pond size) climate and population density(Tompkins and 

Ermert 2013). 
 
 The model results shown in Figures 3.1 and 3.2 revealed higher malaria prevalence in the 

rainy season (from May to October) with peak in June, July for the first season and October -

November for the minor rainy season.  The seasonality shown are evidence of strong climatic 

influence on malaria transmission in the study areas. The box-and-whisker plot shown in 

Figure 3.3 indicate relatively high monthly EIR values (greater than 50) for the peak malaria 

transmission seasons and relatively low EIR values for the dry season (December to March).   
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Figure 3.2: The inter-annual variability of rainfall and temperature as well as the simulated inter-annual 

malaria transmission and asexual parasite ratio between 1980 and 2012 for Kumasi using LMM. The top panel 

annual rainfall (RRa; in mm; blue line) and annual mean temperature (Ta; in 
o
C; red line). Middle: Annual 

Entomological Inoculation Rate (EIRa; red line), annual Human Biting Rate (HBRa; blue line; right scale 

divided by 1000), and annual CircumSporozoite Protein Rate (CSPRa; in %; green line). Bottom panel: Annual 

mean parasite ratio (PRa; in %; black line), the annual minimum (PRmin,a; in %; blue line) and annual 

maximum (PRmax,a; in %; red line) of the parasite. The malaria seasonality (right scale; in month). The 

monthly Entomological Inoculation Rate (coloured squares) of month when the monthly Entomological 

Inoculation Rate reaches at least 0.01 infectious mosquito bites per human per month. The month with the 

maximum transmission is marked via an "X". 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Result from Vectri malaria-model but same plot as Figure 3.2  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Box-and-whisker plot with regard to simulated monthly entomological and parasitological values 

for 1980 – 2012 from LLM (top) bottom (Vectri). Illustrated are the box-and-whisker plots of the simulated 

number of mosquitoes per humans (Nm; green box-and-whisker plots), the monthly Entomological Inoculation 

Rate (EIRm; i.e. the number of infectious mosquito bites per human per month; ma-genta box-and-whisker 

plots), the monthly CircumSporozoite Protein Rate (CSPRa; fraction of infectious mosquito bites; in %; yellow 

box-and-whisker plots), and the monthly averaged asexual parasite ratio (PRm; in %; red box-and-whisker 

plots).  



 

 

 

 

4.0   Summary  

 

Malaria early warning study has been carried out over the Rural, Peri-urban and Urban 

communities within the Kumasi metropolis. Liverpool Malaria Model and VECTRI model  

were employed for the study. The model results revealed higher malaria prevalence in from 

May to November with peaks  in June, July for the major rainy  season and October -

November for the minor rainy season.   The seasonality shown is evidence of strong climatic 

influence on malaria transmission in the study areas. The study reveals relatively high 

monthly EIR values for the peak malaria transmission seasons and relatively low EIR values 

for the month of December to March.   

In addition, the correlation between climate variables (rainfall, temperature and relative 

humidity) and the out patient malaria cases in rural, peri-urban and urban communities in the 

Kumasi Metropolis for the entire study period were reported. Poor positive correlations were 

found with rainfall and negative correlations were seen with temperature.   

This study will serve as a first step of developing Malaria Early Warning System (MEWS) 

for the study area.  Currently a downscaling of a regional climate model (ERA-Interim) to be 

used to prepare  temperature and rainfall data for the past, present and future malaria seasonal 

forecast. This climate data generation is been done using the downscaling scheme described 

in Gutierrez et al. (2004); Brands et al. (2011). The climate data generated would be us as 

input data to run the LMM and VECTRI models and the results will be prepare for 

publication. 
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