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Abstract
Regionalized seasonal predictions of maximum temperature and precipitation for a set of selected stations within the QWeCI countries were
obtained using state-of-the art statistical downscaling methods (analogs, regression, and GLMs). First, the downscaling methods were calibrated
under the Perfect Prognosis approach, that is, ERA-Interim reanalysis was used as predictor data, identifying the optimum predictors for
each variable in each region. Then, the resulting statistical methods were applied to the outputs of the ENSEMBLES Stream 2 multi-model
experiment. The skill of the Stream 2 raw and downscaled predictions was evaluated and compared against the Perfect Prog. results, considered
as the limit of attainable skill. Uncertainties associated with the different models, downscaling methods and predictor datasets were also
assessed. Finally, the experiments here presented are available through the QWeCI downscaling portal, where users can downscale the regional
projections or even try alternative downscaling experiments in an interactive way.

1 Introduction

Global Forecast Systems (GFSs) are unable to provide infor-
mation at the spatial scale required by many stakeholders.
Hence, regionalisation/downscaling methods are necessary
for transferring the global predictions to smaller (regional
or local) spatial scales, providing predictions calibrated and
adapted to the required scale. Statistical Downscaling (SD)
is the most popular approach in seasonal forecasting, due
to the enormous amount of hindcasts to be downscaled for
model calibration. In the perfect prognosis approach, statis-
tical downscaling is based on empirical relationships derived
between a set of predictands (observations of the target vari-
able, such as precipitation), and a set of suitable large-scale
predictors from a reanalysis dataset (such as sea level pres-
sure). The resulting methods are latter applied to global sea-
sonal predictions obtaining adapted local forecasts.

The present deliverable is a follow on of D3.1.b (QWeCI
Statistical Downscaling Portal established and open to part-
ners with an initial set of statistical-based seasonal predic-
tions for the target regions, with documentation and sup-
port on good practices of use). Optimum predictors and
downscaling methods are obtained for each of the QWeCI
countries, and regional seasonal predictions using the result-
ing methods are provided for QWeCI partners through the
QWeCI statistical downscaling portal1, described in D3.1.b.

1https://www.meteo.unican.es/downscaling/qweci

2 Data

This deliverable focus on the performance of different SD
methods to downscale temperature and precipitation in the
QWeCI counties. In this section we describe the data used in
this work.

2.1 Predictands (observations)

The QWeCI downscaling portal includes the whole MI-
DAS QWeCI, GSOD QWeCI, SenegalMet and GMet obser-
vational datasets described in D3.1.b to perform downscaling
experiments in the QWeCI countries: Senegal, Ghana and
Malawi. In order to illustrate the downscaling results in the
present deliverable we follow the indications of deliverable
D3.1.b and consider only some stations with best quality and
longest records from the three latter datasets (the selected sta-
tions are shown in Fig. 1 and Table 1). Note, however, that
the downscaling portal allows applying the resulting methods
to any available dataset.

The seasons considered in the study are JFM, AMJ, JAS
and OND. However, for the sake of brevity, and taking into
account the strong climate seasonality in the pilot countries,
only some key seasons have been analyzed in detail, although
the results are available in the portal for all the seasons. Since

http://www.liv.ac.uk/qweci/


Regional Seasonal Predictions in the QWeCI countries 2

Senegal (Tmax)
Senegal (Precip)

Ghana North (Tmax-Precip)
Ghana North (Precip)

Ghana South (Tmax-Precip)
Ghana South (Precip)

Malawi (Tmax)

Figure 1: Stations considered for downscaling. Red/blue/green triangles represent stations where observed maximum tempera-
ture/precipitation/both maximum temperature and precipitation are available. Note that Ghana stations have been divided into two homo-
geneous (in terms of seasonal cycles) subgroups (North and South). Black crosses represent the initial grids considered in the downscaling
process, whereas red squares represent the largest allowed domain of the optimization process in each are (later explained trough the text).

precipitation is more complex and difficult to predict than
temperature, the seasons of study were selected based on pre-
cipitation regimes rather than on temperature ones. Figure
2 shows the climograms for the stations and seasons con-
sidered in each country. Note that for Ghana two different
regions were defined (North and South), in order to gain ho-
mogeneity due to the different precipitation regimes.

In Senegal, climate is conditioned by its tropical latitude
and the seasonal migration of the Inter Tropical Convergence
Zone (ITCZ), as well as by other phenomena as the African
Easterly Jet (AEJ) or the African Easterly Waves (AEWs).
From January to March ITCZ is located south of Senegal,
moving northward from April and covering all the country
around July-August. The position of the ITCZ determines
the prevailing winds. On the one hand, the trade winds are
dry winds that originate in the continental interior and blow
northeast. In winter and spring, when they are strongest, they
are known as the harmattan (or dry monsoon). They bring no

precipitation apart from a very light rain, the heug. On the
other hand, the moist maritime winds blow primarily from
the west and northwest, bringing rains from June to Septem-
ber. Therefore, the country presents a marked dry-wet annual
regime as shown in the climograms in Fig. 2. The length of
the rainy season varies from five and a half months in the
south to two and a half months in the north.

Note that the six stations considered for precipitation are
located in nearby latitudes (see figure 1) and thus all of them
present similar seasonal cycles (see figure 2), with a clear
unique monsoon peak in JAS. Therefore, JAS was the only
season considered for downscaling in Senegal (see table 1).
The four stations considered for maximum temperatures also
present similar seasonal cycles, with highest temperatures
occurring in two seasons, AMJ and OND, and lowest in JAS.
The average temperature in Senegal increases from the coast
to the interior. On average, values are between 24 and 29 ◦C.

Tech. Notes Santander Meteorology Group (CSIC-UC): GMS:03.2012;1–14
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Senegal
Tmax Dataset (Stations) GSOD QWeCI (Kaolack, Linguere, Tambacounda, Ziguinchor)

Precipitation Dataset (Stations) Senegal (Fatick, Gossas, Kaffrine, Koungheul, Nioro, Thies)
Season (Period) JAS (1979-2000)

Ghana North
Tmax Dataset (Stations) GMet (Tamale)

Precipitation Dataset (Stations) GMet (Navrongo, Tamale, Yendi)
Season (Period) JAS (1979-2000)

Ghana South
Tmax Dataset (Stations) GMet (Accra, Kumasi)

Precipitation Dataset (Stations) GMet (Accra, Akuse, Kumasi)
Season (Period) AMJ (1979-2000)

Malawi
Tmax Dataset (Stations) GSOD QWeCI (Chileka, Lilongwe Int L’Airport, Mzuzu)

Precipitation Dataset (Stations) −
Season (Period) JFM (1983-1994)

Table 1: Stations, seasons and period of study considered for each zone and predictand in this study.
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Figure 2: Maximum temperature/precipitation monthly climograms (upper/bottom row) for the stations considered in each zone (columns), in
units/day.

Tech. Notes Santander Meteorology Group (CSIC-UC): GMS:03.2012;1–14
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Ghana presents a tropical climate marked by warm to
hot temperatures throughout the year and abundant seasonal
rainfalls. On the one hand, temperatures are hotter in the
north than in the south, due to its longer distance from the
modulating action of the ocean. The warm season occurs in
JAS, whilst maximum temperatures are recorded in the start
and the end of the year. On the other hand, rain in the north-
ern part of the country is closely linked to the West African
monsoon (thus to the position of the ITCZ, the AEJ and the
AEWs, as occurs in Senegal), taking place around JAS. How-
ever, in the south, rainfall is more related to the sea surface
temperatures (SSTs) in the Gulf of Guinea and it is more dis-
tributed throughout the year, falling mainly in two seasons:
May-June and around October. Due to this marked difference
between the north and the south climates, both for tempera-
ture and precipitation, we split the GMet stations into two ho-
mogeneous subgroups, called Ghana North and Ghana South
(see figure 2). According to the main precipitation peak, JAS
(AMJ) was the season considered for downscaling in Ghana
North (Ghana South).

Malawi has a sub-tropical climate, relatively dry and
strongly seasonal. There is a cool and dry season from May
to October with mean temperatures varying between 17 and
27 ◦C and a warm and wet season stretching from November
to April, during which 95% of the annual precipitation takes
place. Although the range of observed temperatures is spread
for the three stations considered, all of them present similar
seasonal cycles (see figure 2). Since January to March are
the most rainy months in Malawi, JFM was the season con-
sidered for downscaling. Due to the lack of observational
records for precipitation, maximum temperature was the only
variable treated in this country.

2.2 Potential Predictors

A list of potential predictors for the QWeCI regions was ini-
tially determined from the literature appeared in the last two
decades. Most of them were focused on West African mon-
soon, the most interesting phenomena due to its large impact
on human sectors. In the following, we present a brief sum-
mary of some of the most relevant published works, chrono-
logically ordered, indicating the most important relationships
found between large scale predictors and West African mon-
soon precipitation:

• Fontaine (1995) found that U and V at 200 and 850 hPa
were the best predictors for August rainfall in the Sahe-
lian and Guinean regions.

• Eltahir (1996) highlighted the importance of boundary-
layer entropy at 1000 and 950 hPa, vorticity at 200 hPa
and SST in the South Eastern Tropical Atlantic (SETA)
region to predict monthly rainfall in West Africa.

• Zheng (1999) stated a teleconnection (well-known to-
day) between Tropical Atlantic SSTs and the dynamics
of the West African monsoon.

• Deme (2002) found that thermodynamical indices such
as the lifting condensation level at 1000 hPa, U at 850
hPa, vorticity at 700 hPa and mixed indices such as

water vapor fluxes were the best predictors for August
daily rainfall at Dakar.

• Rotstayn (2002) identified U at 900 hPa as the best pre-
dictor for July-August daily rainfall in the Sahel region.

• Mo (2002) used global SSTs and 200 hPa streamfunc-
tion with zonal means removed (PSI) to predict summer
rainfall over the Sahel.

• Rowell (2003) indicated that averaged SSTs in the
Mediterranean, the moisture flux, Q, U and V at 700
and 850 hPa affected JAS rainfall in the Sahel.

• Penlap (2004) found that relative humidity and U at 850
hPa (Q at 500 hPa and divergence at 700 hPa) provided
the best link to the variability of local precipitation in
northern (southern) Cameroon for March-June.

• Paeth (2005) analyzed how Tropical Atlantic SSTs, the
AEJ, the AEWs, the Tropical Easterly Jet (TEJ), the
Subtropical Jet (STJ) and the position of the ITCZ gov-
erned daily rainfall variability in West Africa.

• Moron (2008) suggested that predictors for JAS daily
rainfall over Senegal must be selected to represent the
three distinct vertical levels of the monsoon circulation,
that is, the low-level monsoon flow (U and V at 925
hPa), the AEJ (U and V at 700 hPa) and the TEJ (U and
V at 200 hPa).

Apart from the aforementioned studies, colleagues from
UCAD (Senegal) and KNUST (Ghana) gave us some recom-
mendations on the large scale variables dominating climate
variability over West Africa. In summary, they recommended
us to look at the following predictors:

• U, V and T at 600-700-850 hPa. Wind vorticity and
temperature at these levels determines the AEJ activ-
ity. Within the jet, maximum wind speeds are located at
around 600 hPa. The AEJ is considered to play a crucial
role in the West Africa monsoon and helps to form the
AEWs. Convective cells associated with these waves
can form tropical cyclones and squall lines (lines of se-
vere thunderstorms that can form along or ahead of a
cold front) after they move from West Africa into the
tropical Atlantic, mainly during August and September.

• U, V and Q at 850-925 hPa. Winds and humidity at
these levels characterize the type of prevailing winds in
the low troposphere; the trade winds that suppresses the
monsoon or the moist maritime winds blowing bringing
monsoon precipitation.

The variables resulting from this study form the list of
potential predictors to be used in the project.

2.3 Model Data (Reanalysis and GFSs)

On the one hand, we used ERA-INTERIM2 (Dee, 2011), the
latest atmospheric reanalysis produced by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), to ob-
tain the predictors in the Perfect Prognosis (PP) case. ERA-
INTERIM covers the period 1979 to date and it is expected

2http://www.ecmwf.int/research/era/do/get/era-interim

Tech. Notes Santander Meteorology Group (CSIC-UC): GMS:03.2012;1–14
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Centre Atmospheric model and resolution Ocean model and resolution

ECMWF IFS CY31R1 (T159/L62) HOPE (0.3◦−1.4◦/L29)
IFM-GEOMAR ECHAM5 (T63/L31) MPI-OM1 (1.5◦/L40)
CMCC-INGV ECHAM5 (T63/L19) OPA8.2 (2◦/L31)

MF ARPEGE4.6 (T63) OPA8.2 (2◦/L31)
UKMO HadGEM2-A (N96/L38) HadGEM2-O (0.33◦−1◦/L20)

Table 2: Overview of the five seasonal models conforming to the Stream2 multi-model experiment of the EU project EMSEMBLES: The
UK Met Office (UKMO), Meteo France (MF), the European Centre for Medium-Range Weather Forecasts (ECMWF), the Leibniz Institute of
Marine Sciences (IFM-GEOMAR) and the Euro-Mediterranean Centre for Climate Change (CMCC-INGV).

to perform better than the preceding ERA40 over the coun-
tries of study, due, among others, to its enhancements in data
assimilation and use of observations.

On the other hand, we considered the state-or-the-art sea-
sonal hindcast provided by the Stream2 multi-model experi-
ment of the EU-funded ENSEMBLES project3, including the
global atmosphere-ocean coupled models shown in Table 2.
The atmosphere and the ocean were initialized four times a
year within the period 1960-2005 (starting the first of Febru-
ary, May, August and November) producing seven month-
long hindcasts (see Weisheimer, 2009, for more details about
the experiment). Each model ran an ensemble of nine initial
conditions (nine members) produced perturbing the realistic
estimate of the observed initial state (the analysis). Since the
seasons of study considered in this deliverable were JFM,
AMJ and JAS, only two months lead-time predictions were
analyzed, that is, initializations of November/February/May
were used to downscale seasons JFM/AMJ/JAS, respectively.
Note, however, that the whole set of hindcasts is available
through the QWeCI downscaling portal for further analysis.

Since ERA-Interim and the five ENSEMBLES Stream2
models (see Table 2) have different resolutions, all datasets
were regridded to the same 2.5◦ regular grid using bilinear
interpolation. Thus, the finer resolution of ERA-Interim is
not fully exploited in this work, since the resulting statistical
downscaling methods would not be applicable to the seasonal
forecasting outputs.

Unfortunately, not all the variables corresponding to the
potential predictors identified in Sec. 2.2 are available for
the ENSEMBLES Stream2 seasonal models used in this
work4. Therefore, we only considered those variables/levels
available for both ERA-Interim and ENSEMBLES Stream2
datasets. The resulting list of variables is shown in Table
3. Note that this lack of data could imply a foreseeable loss
of skill since, for instance, the 600-700 hPa levels available
in ERA-Interim, which are closely related to West African
precipitation, are not available in ENSEMBLES Stream2 —
although they are in ERA-Interim— and, thus, are discarded
in this study.

3http://www.ecmwf.int/research/EU projects/ENSEMBLES
4Note that storing all the variables available for ERA-Interim

is virtually impossible for a multi-model seasonal hindcast experi-
ment since the volume of data increases two orders of magnitude: 5
models, 9 members, four initializations.

3 Downscaling Methods

Different statistical methods have been proposed in the liter-
ature to adapt the coarse predictions provided by global fore-
cast systems to the finer scales required by impact studies.
The different statistical downscaling techniques are broadly
categorized into two classes:

• Weather typing (analogs), based on nearest neighbors or
in a pre-classification of the reanalysis into a finite num-
ber of weather types obtained according to their synop-
tic similarity; these methods are usually non-generative,
since they consist of an algorithmic procedure to obtain
the prediction, such as the method of analogs.

• Transfer functions (regression), based on linear or
nonlinear regression models to infer the relationships
between predictands and the large-scale predictors;
these methods are “generative” in the sense that the
projections are derived from a model obtained from
data. These techniques include linear regression (typ-
ically used for temperature), Generalized Linear Mod-
els (GLMs, typically used for precipitation) and more
flexible —but computationally expensive— neural net-
works.

In the present study we have tested two representative
statistical downscaling techniques for maximum temperature
and precipitation. On the one hand, an analog downscaling
technique (based on the closest analog, using the Euclidean
distance) was considered for both variables. On the other
hand, a multiple linear regression was considered for tem-
perature whereas a GLM was used for precipitation; in both
cases, in order to reduce the dimensionality of the predictors,
the n PCs explaining the 95% of the variance were consid-
ered as input for the regression models (note that n is differ-
ent for each predictor dataset and domain combination, but a
maximum of 30 PCs was obtained in the most complex con-
figurations). In all cases, the predictor datasets were firstly
standardized, gridbox by gridbox. Note that, besides allow-
ing for a better combination of different predictors for the
downscaling process, the standardization process removes
the effect of the systematic biases of the seasonal models.

In order to obtain the optimum configuration of predic-
tors and geographical domains for each of the above down-
scaling techniques in each of the regions, we implemented
an automatic stepwise-like greedy procedure (hereafter re-
ferred to as OPTimizer Algorithm, OPTA) which iteratively
test new predictors (from the list of predictors shown in Ta-

Tech. Notes Santander Meteorology Group (CSIC-UC): GMS:03.2012;1–14
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Code Name Level (hPa) Time Units

Z Geopotential 850,500,200,50 00 UTC m2s−2

T Temperature 850,500,200,50 00 UTC K
U Zonal wind 850,500,200,50 00 UTC ms−1

V Meridional wind 850,500,200,50 00 UTC ms−1

Q Specific humidity 850,500,200,50 00 UTC kgkg−1

2T 2-meters temperature 0 (2 meters) 00 UTC K
MSL Mean sea level pressure 0 (mean sea level) computed from 6,12,18,24 UTC Pa
10U Zonal comp. of 10m wind 0 (10 meters) 00 UTC ms−1

10V Meridional comp. of 10m wind 0 (10 meters) 00 UTC ms−1

TP Total precipitation 0 (surface) daily accumulated from 00 UTC m of water

MX2T Maximum temperature 0 (2 meters) computed from 6,12,18,24 UTC K
MN2T Minimum temperature 0 (2 meters) computed from 6,12,18,24 UTC K

Table 3: ERA-Interim and ENSEMBLES Stream2 variables available through the QWeCI portal.

ble 3) as well as new/modified geographical domains (start-
ing with the domains marked with black crosses in Fig. 1,
with largest allowed domains marked with the red squares),
until an optimum configuration is obtained where no further
improvement of the model performance is achieved. Differ-
ent statistical scores were tested in order to measure model
performance (bias, RMSE, MAE, correlation, and combina-
tions of the above) obtaining similar results in all cases. Fi-
nally, we considered Pearson/Spearman correlation for tem-
perature/precipitation, respectively5. In order to avoid model
overfiting, for each zone the first 75% of the whole period of
study was used for training and the last 25% for test. Seasons
were treated separately, that is, only DJF data were used to
calibrate methods which were later used to predict DJF.

As opposite to standard stepwise methods, OPTA per-
forms two types of operations in the iterative search process:
including predictors and extending the geographical domain.
The type of the operation is chosen at random in each iter-
ation and the algorithm proves all the possibilities. In the
case of the predictors, the algorithm test all models resulting
from the addition of an extra predictor; in the case of the geo-
graphical domains the algorithm test all possible domains re-
sulting from increasing a 10% the size of the current domain
in the north/south/east/west directions. Moreover, in order to
discard unnecessary predictors, or allow domain reductions,
the algorithm is implemented in a forward-backward form,
and the inclusion/exclusion or extension/reduction character
of the operation is also selected at random. In every single
test within each iteration, the downscaling is done and results
are validated against observations. The best configuration is
retained for the next iteration in case that a performance im-
provement is obtained w.r.t. the value of the previous itera-
tion (a 1% relative improvement is required). The algorithm
stops when no improvement is obtained with any of the pos-
sible operations.

5Although the downscaling method works at a daily basis, the
correlation was computed at a 10-day basis for precipitation, aggre-
gating both observed and predicted data on 10-day blocks. This led
to higher correlation values allowing to reduce the “noise” in the
optimization process.

4 Results in Perfect Prog.

In this section we describe the results of the calibration of
the statistical downscaling methods in PP conditions, i.e. us-
ing ERA-Int predictors. In this case, the period of study for
the different zones is determined by the overlap between the
reanalysis data and the observational records (see Table 1).

In order to obtain an initial estimation of the potential of
the different predictors (shown in Table 3) for downscaling in
perfect prognosis conditions, we computed the correlation of
the available temperature and precipitation observations in
each region and the different predictors from ERA-Interim
(considering the neighboring gridbox for each station). The
largest the correlation, the strongest the physical link is be-
tween the local predictands and the large-scale predictors,
and thus the better the predictor is expected to be for down-
scaling. Figure 3 shows, the resulting correlations for each
region (in rows) and variable (temperature on the left and
precipitation on the right).

This figure show that marginal correlations between pre-
dictands and predictors are in general low, even between the
observed variable and its corresponding reanalysis counter-
parts (TP, MX2T and MN2T, shown in the three first places
of the graphs), with maximum values of 0.5-0.7 for tem-
perature and 0.2-0.5 for precipitation, depending on the sta-
tions and regions. Surface temperatures are in general the
most correlated with both observed maximum temperature
and precipitation. T at 850 hPa is also quite correlated with
maximum temperature in all zones. Q at 850 hPa, U at 850
hPa and V at 850 hPa and Q at 500 hPa are also significantly
linked with this variable in Senegal, Ghana and Malawi, re-
spectively. In addition, surface winds (U at 850 hPa) are re-
lated to precipitation in Senegal (Ghana South).

The above results show the low quality of the reanaly-
sis over this region (note that in extra-tropical latitudes, as
for instance occurs in Spain, ERA-INTERIM correlations
are around 0.9 and 0.7 for temperature and precipitation, re-
spectively). Therefore, the joint effect of different variables
(co-factors) can be more relevant in this situation and, thus,
finding the best combination of predictors and geographical

Tech. Notes Santander Meteorology Group (CSIC-UC): GMS:03.2012;1–14
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Figure 3: Pearson/Spearman correlation between observed maximum temperature/precipitation (in columns) and the ERA-INTERIM predic-
tors considered at the nearest grid point. Different regions/seasons are represented in rows.
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domain results in an exhaustive search of possible combina-
tions. This was the reason that motivated the development of
the OPTA algorithm, described in Sec. 3. A typical execution
of this algorithm for an illustrative predictand (precipitation),
region (Senegal) and season (JAS) is shown in Table 4; note
that the optimum configuration is obtained in this case af-
ter four iterations (the last two iterations do not achieve any
further improvement).

n r Predictors PCs X S
0 - - - - -
1 0.248 U850 6 0:0 0:0
2 0.296 U850-Q850 13 0:0 0:0
3 0.347 U850-Q850 17 0:0 1:0
4 0.376 U850-Q850-T500 23 0:0 1:0
5 0.349 U850-Q850-T500 12 0:2 1:-2
6 0.361 U850-Q850-T500-U500 29 0:0 1:0

Table 4: Tracking of the optimization process for precipitation in
Senegal in JAS, for the analog method. Each row corresponds to
one iteration; columns (from left to right) indicate the iteration (n),
correlation (r), predictor dataset, number of principal components
explaining the 95% of variance, position of the left-bottom corner of
the current domain with respect to the initial one (X , in gridboxes),
and the increase (positive)/reduction (negative) of the current do-
main with respect to the initial one (S, in gridboxes).

The OPTA algorithm was applied to the different regions
and seasons shown in Table 1. As in any iterative algorithm,
the optimum reached might be a local one rather than the
global one. To take this into account, the OPTA was run ten
times for each experiment for a robust interpretation of the
results and the best solution attained was selected in each
case (it is worth noticing that the same, or similar, optimum
predictors-domains were obtained in most of the instances).
The resulting predictor datasets are shown in Table 5.

Senegal (JAS)
Tmax an1 2T0-T850

reg 2T0-T850-Q850-V500-Z850
Precipitation an1 U850-Q850-T500

glm Q850-V850-Z850-T200
Ghana North (JAS)

Tmax an1 V850-T850-Q200-U200
reg U850-2T0-V850-U500

Precipitation an1 T850
glm U200-V850-Z200-U500

Ghana South (AMJ)
Tmax an1 2T0-U850-Q850

reg 2T0-SLP0
Precipitation an1 2T0-T850

glm U850-U200-T850
Malawi (JFM)

Tmax an1 T850-T500-V850-U850
reg T850-Q500-Z200

Precipitation an1
glm

Table 5: Final optimum predictor datasets considered for each
zone/predictand/method. Analogs (an1), multiple regression (reg),
and GLM (glm).

The first conclusion from the use of the OPTA was
that the optimum domain/predictor dataset depended on the
downscaling method considered. Despite this variability, is
is important to notice the consistency between the predictor
datasets found and the results reported in the literature, de-
scribed in Sec. 2.2. For the case of precipitation, U at 200
and 850 hPa appeared among the most relevant predictors
for Senegal and Ghana, which is in agreement with Fontaine
(1995), Eltahir (1996), Mo (2002), Deme (2002), Rotstayn
(2002), Rowell (2003) and Moron (2008). Q at 850 hPa also
came up as an important predictor, as found in Rowell (2003)
and pointed out by our QWeCI colleagues. The latter also
suggested the importance of T at 850 hPa, which is system-
atically included in predictor datasets found for Ghana. Note
also that, in relative agreement with the correlation analysis
shown in Fig. 3, surface temperatures, which were shown
to exhibit high correlations with precipitation in all zones,
were among the predictors found for Ghana. In the same
line of agreement, T at 850 hPa turned up as one of the
most relevant predictors for maximum temperature in Sene-
gal and Malawi. In addition, other ERA-Interim variables
which were shown to be strongly correlated with maximum
temperature appeared among the selected predictors: Q at
850 hPa in Senegal, U at 850 hPa in Ghana (both North and
South), SLP in Ghana South and V at 850 hPa and Q at 500
hPa in Malawi. However, in contrast with the results of the
correlation analysis, surface winds did not come up among
the predictors found for Senegal, neither for maximum tem-
perature nor for precipitation.

These results have been obtained considering only large-
scale predictors, excluding surface variables poorly repre-
sented by the global models (or highly affected by model
parameterization which might be different in the reanalysis
and the different seasonal models). In particular we excluded
TP, MX2T and MN2T as potential predictors, which are rep-
resented as a separate group in Table 3. Moreover, in or-
der to test the performance of this type of predictors we also
tested the so called MOS-like statistical downscaling con-
figurations, including a single predictor (the model variable
counterpart of the predictand, i.e. TP for precipitation and
MX2T for maximum temperature) defined over the initial
domains defined in Fig. 1. The results of the MOS-like
configurations in the Perfect Prog. approach (using ERA-
Interim outputs) will give a benchmark for the model perfor-
mance. Moreover, the comparison of the results for the sea-
sonal forecasts will allow us estimating the adequacy of this
type of configuration for seasonal forecasting. These results
are shown in the next section.

5 Results for Seasonal Forecats

The optimum configurations found in Sec. 4 (Table 5) were
applied to the five seasonal forecast models shown in Ta-
ble 2, considering the whole hindcast period 1960-2005. To
this aim, the statistical downscaling methods were applied
to the corresponding predictors for each of the model mem-
bers, obtaining nine downscaled daily series for each model
(one per member) for each of the stations. Afterwards the
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nine members where averaged together at a seasonal level
obtaining a single 45-years seasonal prediction for each of
the models. These predictions where validated separately for
each model considering also the multi-model mean, obtained
by averaging the five model predictions. In this case, the
validation was performed considering the observed and pre-
dicted yearly series for a period obtained as the intersection
of the observational and hindcas years. Thus, we evaluate
the skill of the models to capture the interannual variability
of the corresponding season. In order to obtain a measure
of the added value of the statistical downscaling technique
we compute the performance of both the raw model outputs
(maximum temperature, or precipitation) and the statistically
downscaled values according to the different methods.

Figure 4 shows the results for the four regions defined
for temperature (in columns). The first two rows show the
Pearson correlation ρ for an illustrative model (the ECMWF
model, first row) and for the multi-model (second row). The
last row shows the Mean Absolute Error (MAE) for the
multi-model prediction. For the raw model outputs, this
score is highly influenced by the systematic model biases
and, thus, allow us to evaluate the added value of the statis-
tical downscaling techniques from this point of view. Each
of the panels in the figure show the results for the different
stations in the corresponding region. For instance, the panel
in the upper left corner correspond to the correlation results
for the ECMWF model for Senegal, containing four differ-
ent stations. The results for each station are given by five
colored bars corresponding to the raw model outputs (gray
bar), ant to the analog and regression downscaled values con-
sidering the MOS-like and the optimum configuration (see
the legend for details on colors). Therefore, the added value
of the statistical downscaling methods can be evaluated by
comparing the first bar with the remaining four ones (for dif-
ferent downscaling options); moreover, for each of the sta-
tistical downscaling methods (analogs and regression), the
differences between the MOS-like configuration and the op-
timized one (containing only large-scale predictors) can be
also established by comparing the results of the correspond-
ing consecutive bars. Finally the bars show the results for
the PP approach (considering the “perfect” predictors from
ERA-Interim), whereas the corresponding results for the sea-
sonal forecasting systems are indicated with a black square
within each bar. Therefore, the color bars in the panels of
the first two rows are exactly the same, since in both cases
they are the results of considering ERA-Interim as predictor;
note that this facilitates the comparison of the results for the
illustrative model (ECMWF) and the multi-model.

In general, the results for the perfect model configura-
tion (color bars) are quite homogeneous, attaining correla-
tion between 0.6 and 0.8 in most cases, and for all downscal-
ing methods and configurations. Thus, inter-annual variabil-
ity is appropriately captured by the statistical downscaling
methods. However, the results of the seasonal forecasting
systems are much lower, particularly for Senegal and Ghana
North. In those cases, the correlation of the direct model out-
puts (black square within gray bar) are much smaller than the
corresponding to ERA-Interim (below 0.5 in all the stations,
with the only exception of Kaolack), whereas it is compa-
rable in Ghana South and, particularly in Malawi. The per-

formance of the seasonal models (as estimated by the direct
model outputs) determine the posterior performance of the
statistical downscaled values which yield similar correlations
than the direct model outputs, with higher variability among
downscaling methods and configurations for those cases with
lower skill. However, the MAE results (the bias) are clearly
better for the downscaled series than for the direct model
outputs, influenced by the systematic model biases. Finally,
an interesting result is that MOS-like configurations perform
similarly to the optimized ones using only large-scale infor-
mation in this case. The results from the multi-model predic-
tions are, in general, better than the results of each individual
model, in agreement with previous studies.

Figure 5 shows the results for precipitation. Note that
in this case the scores are clearly poorer than for maximum
temperature, with larger differences between the correlations
for ERA-Interim and the seasonal forecast precipitation val-
ues (gray bars and black rectangle, respectively). The perfor-
mance of the seasonal predictions is quite small, with corre-
lations below 0.5 in almost all cases for both the direct model
outputs and the downscaled values. Similarly to the previous
case, in some cases the statistical downscaling methods al-
low reducing the bias (MAE) of the direct model outputs,
thus adapting the predictions to the local scale, although they
lack of skill to reproduce the annual variability. As opposite
to the previous case, the MOS-like configurations are better
in perfect prog. conditions (with ERA-Interim data), but the
performance clearly degrades when using seasonal predic-
tions from any of the global models. Therefore, MOS-like
downscaling is not recommended for this variable.

Finally, in order to estimate the uncertainty of the results
given by the different members (which were averaged in the
previous results), Fig. 6 show two illustrative examples, for
maximum temperature and precipitation, respectively. In this
case, the raw ERA-Interim and model output are compared
with the interval given by the nine ensemble members (45 for
the multi-model), represented by a box-and-whiskers plot of
the member values. It can be easily seen that the uncertainty
is much larger for precipitation than for temperature. In the
latter case, the inter-member variability is smaller than the
inter annual signal, obtaining good correlations in all cases.
However, in the former case the inter-member variability is
larger than than the inter-annual one, shown the lack of a
clear signal in this case. The figures over each of the pan-
els show the correlation and MAE of the direct model output
(first pair of values) and the for the downscaled results (us-
ing the mean of the ensemble, as given in the second pair of
values).

6 The QWeCI downscaling portal

The resulting downscaled values for the different regions and
variables have been included in the QWeCI downscaling por-
tal (http://www.meteo.unican.es/downscaling/qweci) for the
user/password qweci/qweci. For each region, both the analog
and the regression methods are defined, using the optimum
predictors found. Moreover, the user can define new config-
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Figure 7: As illustrative example of the data produced and available in the QWeCI downscaling portal.

urations and methods, based on these results, using the por-
tal facilities to to test and compare the performance of sev-
eral approaches (note that the skill of statistical downscaling
methods varies from variable to variable and from region to
region). For a particular predictor and predictand, a particu-
lar downscaling method can be selected and configured from
the “Downscaling Method” window, obtaining an automatic
cross-validation6. This automatic validation feature is an im-
portant help for users for the iterative process of creating an
appropriate predictor/domain configuration (variables, geo-
graphical domain, etc.).

For instance, Fig. 7 shows the available downscaled val-
ues for the Senegal Tmax JAS case, for the five available
models with May initialization, including all members (9)
and years (1960-2005). This information can be downloaded
just by clicking on the corresponding checkboxes, marked as
green in the figure.

7 Conclusions

Different downscaling methods have been tested for max-
imum temperature and precipitation in the QWeCI coun-

6See the user documentation for more details on the methods:
https://www.meteo.unican.es/downscaling/doc/UserGuide.pdf

tries, considering different combinations of predictors and
geographical domains. The downscaled values allow reduc-
ing the systematic biases present in the seasonal forecasting
model outputs. However, the skill of the downscaled series
for reproducing the inter-annual variability of the observed
series rely on the skill of the forecasting system (character-
ized, e.g. by the skill of the direct model output). In general,
good results are found for maximum temperature in some of
the regions, whereas almost no skill is exhibited by both the
direct model outputs and the downscaled series, in contrast
with the results obtained in perfect model conditions using
ERA-Interim.

The limited availability of data in the multi-model EN-
SEMBLES Stream2 dataset implies a foreseeable loss of skill
since, for instance, the 600-700 hPa levels, which are closely
related to West African precipitation, are not available in
Stream2, although they are in ERA-Interim. Therefore, a
potential gain of skill could be obtained using a larger set of
predictors, if they become available in future projects. How-
ever, major limitations seem to be the deficient quality of the
reanalysis in this region —in agreement with Brands et al.
(2012)— and the lack of skill of the seasonal forecasting sys-
tems over this area. Since, the idea for the coming future is
to work with some operational seasonal forecasting model/s
(e.g. ECMWF System4, but still to decide), this potential
gain of skill will be further explored in the future.

Finally, all the results have been include in
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the QWeCI statistical downscaling portal and
can be downloaded for further analysis from
http://www.meteo.unican.es/downscaling/qweci using
the user/password qweci/qweci.
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