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Motivation
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What are Sensors?

• used in cameras and smartphones,. . .

• . . .in smart-watches, hubs, and for gas-detection

• . . .and it’s only the beginning!
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Sensors in Mobile Robots

• Robots equipped with sensors . . .
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What are Sensors Used for?

• . . . to enable/enhance communicion.
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“Edson Arantes do Nascimento, 1940”

• From grapefruits. . .to rugs and socks...

• ...to modern technology!
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The Most Important Questions in ihe Beautiful Game!

• Did the Ball Cross the Line? Which Line? When?

• The correct answer can cause goodwill or hostility?

NeST, Liverpool 2014



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 9

The Beautiful . . . . . .

• Christmas Day 1914: soccer match between British and
German troops. a

– “A German looked over the trench—-no shots—-our men
did the same, and then a few of our men went out and
brought the dead in and buried them and the next thing a
football kicked out of our trenches. . .and Germans and
English played football.”

• To be commemorated in 2014.

aBritish Mirror, December, 1914:
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. . . and not so Beautiful Game!

• La guerra del fútbol (the Soccer War or 100 Hour War): brief
war fought by El Salvador and Honduras in 1969.a

– Began on 14 July 1969, (during a World Cup Qualifier)
when the Salvadoran military launched an attack against
Honduras: left thousands of civilians dead

aWikipedia
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On Measuring the Beautiful Game
“Why Soccer Matters”, Pele, 2014

• Hang a ball with a rope on a treea. . .

• . . .and practice more . . .

• . . .to win!
aInvented by Pele’s father.
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On Measuring the Beautiful Game

• Many Questions:

– Put sensors on all players’ feet, hands, heads,. . .!

– Measure the total distance covered by the players of a team!

– How many passes did a team make during the game?

– What was the average length of a pass during a game?

– . . .

• What should a winning team do?
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Sensors in a Vineyard

• Making Canadian (in Ontario) “Ice Wine”.

• Very sensitive to temperature changes.

• . . . harvest late in the season and wait for the temperature to
drop to −7C!
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Problem & Model
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Not too Close to Each Other
(Proximity and Sensor Interference)

• Proximity affects transmission and reception signals and
degrades performance:the closer the distance the higher the
resulting interference and hence performance degradation.

–

• In theoretical models, a critical value, say s > 0, is established
and sensors must be kept a distance of at least s apart:

– Two sensors’ signals interfere with each other during
communication if their distance is < s.
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Not too Far from Each Other
(Sensor Coverage)

• You want to cover a line (or any geometric domain) in such a
way that every point on the line is within the range of a sensor.
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(Total, Max, etc) Movement

• Sensors’ initial placement does not necessarily satisfy the
coverage and/or interference requirements.

• An algorithm is required to specify how sensors should move.

• The cost is specified by

– Sum of movements (or Total Movement) of sensors,

– Max movement of a sensor,

– etc
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Problem Statement

• Sensors are placed on a specific domain, e.g.,

– line, plane, etc

• Move the sensors along the domain so as to

– satisfy the coverage and/or interference constraints, and

– minimize the cost of sensor movement.
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Communication and Movement Algorithms (1/2)

• Deterministic Input

– How efficiently can you move the sensors?
∗ Minimize the energy
∗ Minimize the time
∗ Minimize the number of sensors moved

– How do sensors communicate?
∗ Global
∗ Local

• Some Recent Research

– COCOA 08 (TCS 09), ADHOCNOW 09 & 10, PODC 13,
. . .
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Communication and Movement Algorithms (2/2)

• Random Input

– Type of distribution

– Relationship of sensor range and movement

• Some Recent Research

– SPAA 13, COCOON 14, . . .

• Key references for Random Placement:

– Kranakis et al. [2013][Coverage]

– Kranakis and Shaikhet [2014a][Interference] M/D/1 Queues

– Kranakis and Shaikhet [2014b][Interference & Coverage]:
Queues G/G/1 (Coverage), G/D/1 (Interference)

– Talagrand [2005][The Generic Chaining]
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Model

• Random Variables X1, X2, . . . , Xn represent sensor positions.

• Interference/Coverage Problems in the half-line [0,+∞):
X1 X2 . . . Xn

. . .

Xi is the i-th arrival in a Poisson (or General) process.

• Interference/Coverage Problems in the unit interval [0, 1]:
X1 X2 . . . Xn

Sensors are thrown randomly and independently with the
uniform distribution in the unit interval.
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Coverage: Mathematical Motivation (1/3)

• Throw n sensors of radius r := 1
2n at random in a unit interval.

– To ensure coverage of the interval they must be moved to
anchors ai = i

n + 1
2n , for i = 0, 1, . . . , n− 1.

– This is the worst-case total movement!

– Why?

• Keep increasing the sensor radius.

– The bigger the radius the less the movement! Why?

• When the radius reaches Θ( lnn
n ) w.h.p. no sensor needs to

move!

– Why?
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Coverage: Mathematical Motivation (2/3)

• Sensor movement as a function of the sensor range.

√
n

O(1)

Sensor Range r

Movement

ln n
n

1
2n

• The bigger the radius (range) the smaller the movement.
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Interference: Mathematical Motivation (3/3)

• Throw n sensors at random in a unit interval. We we want to
ensure no two sensors are at distance < s.

– To ensure no two sensors are at distance < 1
2n they must all

be placed to anchors ai = i
n + 1

2n , for i = 0, 1, . . . , n− 1.
This is the worst-case total movement! Why?

• Keep decreasing the interference distance s.

– The smaller the interference distance s the less the
movement! Why?

• In general,

Arrival Time of i+ 1st sensor−Arrival Time of ith sensor

are the interarrival times of the Poisson process.
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Interference
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Displacement and Interference on a Line

• Consider sensors on a line. We are allowed to move the sensors
(on the line), if needed, so as to avoid interference.

• We call total movement the sum of displacements that the
sensors have to move so that the distance between any two
sensors is ≥ s.

• Assume that n sensors arrive according to a Poisson process
having arrival rate λ = n in the interval [0,+∞).

– What is the expected minimum total distance that the
sensors have to move from their initial position to a new
destination so that any two sensors are at a distance more
than s apart?
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Results on Interference

• In Kranakis and Shaikhet [2014a], we study tradeoffs between
the interference distance s and the expected minimum total
movement, denoted by E(s).

Interference Distance s Total Displacement E(s)

s− 1
n ∈ Ω (n−α) , 2 ≥ α ≥ 0 Ω(n2−α)∣∣s− 1
n

∣∣ ∈ O (n−3/2
)

Θ(
√
n)

s ≤ 1
tn , t > 1 ≤ t2

(t−1)3

• Critical Regime: Critical threshold around 1
n ,

1. for s below 1
n − 1

n3/2 , E(s) is a constant O(1),

2. for s ∈
[

1
n − 1

n3/2 ,
1
n + 1

n3/2

]
, E(s) is in Θ(

√
n),

3. for s above 1
n + 1

n3/2 , E(s) is above Θ(
√
n).
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Interference and G/D/1 Queues

• Can extend the results to arbitrary random processes. In
Kranakis and Shaikhet [2014b] we prove:

Theorem 1 Assume the sensors arrive according to a general
distribution. Let the interference distance be s = 1

tn . Then the
expected minimum sum of displacements of the sensors to
ensure that any two of them are at distance at least s, is at
most 1

2t(t−1) .

– This is a result about G/D/1 queues.

– Proof uses Little’s theorem and the Pollaczek-Khinchine
formula.

NeST, Liverpool 2014



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 30

Coverage
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Displacing for Coverage in [0, 1]

• n sensors with identical range r = f(n)
2n , for some f(n) ≥ 1, for

all n, are thrown randomly and independently with the
uniform distribution in the unit interval [0, 1].

• They are required to move to new positions so as to cover the
entire unit interval in the sense that every point in the interval
is within the range of a sensor.

• We obtain tradeoffs between the range r of the sensors and

– the expected min sum (denoted by E(r))

of displacements of the sensors required to accomplish this task.
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Results for the Unit Interval

In Kranakis et al. [2013] we prove:

Sensor Range r Total Displacement E(r)
1
2n Θ(

√
n)

f(n)
2n (f(n) ≥ 6) O(

√
lnn
f(n) )

f(n)
2n (12 ≤ f(n) ≤ lnn− 2 ln lnn) O( lnn

f(n)ef(n)/2 )
f(n)
2n (1 < f(n) <

√
n) Ω(εf(n)e−(1+ε)f(n)),∀ε > 0
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Interference and G/G/1 Queues

• Can we prove the existence of a critical regime for coverage on a
line? (i.e., Can we prove tight bounds) for coverage on a line?)

• YES

• In Kranakis and Shaikhet [2014b], using Skorokhod maps (used
in the theory of stochastic differential equations) we can show
there is a critical regime for the coverage problem.

– This is a result about G/G/1 queues.
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2D

• Several deterministic/randomized results are known on

– Covering a domain

– Covering the perimeter of a domain

– Preventing interference
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Thank you
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