Dynamic Multiple-Message Broadcast: Bounding Throughput in the Affectance Model

Miguel A. Mosteiro

Dept. of Computer Science, Kean University

Joint work with Dariusz R. Kowalski and Tevin Rouse

Wireless Networks Workshop Univ. of Liverpool, June 2014

Introduction

Dynamic Multiple-Message Broadcast (MMB) [1]:

- problem: packets arrive at nodes continuously, to be delivered to all nodes
- metric: competitive throughput of deterministic distributed MMB algorithms
- analysis: in general Affectance model:
 - Affectance subsumes many communication-interference models e.g. RN and SINR models
 - conceptual idea: parameterize interference from transmitting nodes into links
 - introduced [2,3,4] for link scheduling as link-to-link affectance
- (non-dynamic MMB) Khabbazian-Kowalski PODC 2011
- [2] Halldórsson-Wattenhofer, ICALP 2009
- [3] Kesselheim, PODC 2012
- [4] Kesselheim-Vöcking, DISC 2010

Introduction

Contributions:

- we introduce new model characteristics: (based on comm network, affectance function, and a chosen BFS tree)
 - maximum average tree-layer affectance K
 - maximum fast-paths affectance M
- we show how characteristics influence broadcast time complexity:

if one uses a specific BFS tree (GBST [1]) that minimizes M(K + M)

single broadcast can be done in time $D + O(M(K + M) \log^3 n)$

• we extend this to dynamic packet arrival model and the MMB problem:

new algorithm reaching throughput of $\Omega(1/(\alpha K \log n))$

... also simulations for RN

[1] Gasieniec-Peleg-Xin, DC 2007

Introduction

- Observations:
 - ullet throughput measured in the limit \Rightarrow
 - preprocessing is free \Rightarrow protocol is distributed
 - deterministic results are existential (protocol includes randomized subroutine)
 - can also be applied to mobile networks,
 - if movement is slow enough to recompute structure
 - To the best of our knowledge,

first work on dynamic MMB under the general Affectance model

The General Affectance Model

Interference:

- 1-hop:
 - Radio Network model without collision detection
- (≥ 1)-hop:
 - value $a_u(\ell) \leq 1$ quantifies interference of node u on link ℓ
 - $a_u((u,v)) = 0$, $a_v((u,v)) = 1$, and $a_w((u,v)) = 1$, $w \in N(v)$ and $w \neq u$
 - $a_{\cdot}(\cdot)$ is any function s.t. $a_{\{u,v\}}(\ell) = a_{\{u\}}(\ell) + a_{\{v\}}(\ell)$
 - ullet affectance degradation parameter lpha

Successful transmission:

- transmission from u is received at v iff
 - u transmits
 - v listens
 - $a_T((u, v)) < 1$, where $T = \{\text{set of nodes transmitting}\}$

Injection and Performance Metric

Feasible adversarial injections: \exists OPT with bounded packet latency.

At most 1 packet may be received by a node in each time slot and all nodes must receive the packet in order to be delivered

⇒ feasible adversarial injection rate at most 1 packet per time slot.

Performance metric: competitive throughput in the limit

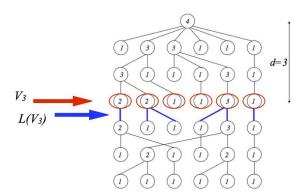
$$\exists f: \lim_{t \to \infty} \frac{d_{ALG}(t)}{d_{OPT}(t)} \in \Omega(f)$$

Affectance Characterization

Maximum average tree-layer affectance

Quantifies the difficulty to disseminate from one layer to the next one.

$$K(T,s) = \max_{d} \max_{V' \subseteq V_d(T)} \frac{a_{V'}(L(V'))}{|L(V')|}$$

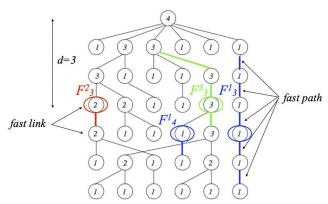


Affectance Characterization

Maximum fast-paths affectance

Quantifies the difficulty for dissemination on a path due to other paths.

$$M(T,s) = \max_{d,r} \max_{\ell \in F_d^r(T)} a_{F_d^r(T)}(\ell)$$



Low-Affectance Broadcast Spanning Tree (LABST)

- Tree construction:

 - $Oldsymbol{1}{Oldsymbol{1}{Oldsymbol{1}{Oldsymbol{2}{Old$

T avoids links between nodes of the same rank with big affectance blowing up GBST ranks by a M(T) multiplicative factor

• Broadcast schedule: defined using the ranks in T

Low-Affectance Broadcast Spanning Tree (LABST)

Corollary

For any given network of $n \ge 8$ nodes and source s, diameter D, and affectance degradation distance $\lceil \log n \rceil$, there exists a broadcasting schedule of length

$$D + O(M(T_{\min}, s)(M(T_{\min}, s) + K(T_{\min}, s)) \log^3 n)$$

For comparison, in Radio Networks: $D + O(\log^3 n)$ [1]

$$O(D + \log^2 n) [2]$$

- [1] Gasieniec-Peleg-Xin, DC 2007
- [2] Kowalski-Pelc, DC 2007

MMB Protocol

- define LABST from each source node
- define a MBTF [1] list of source nodes
- assign a token to some source node from list
 - upon receiving the token at node s
 - \bigcirc if queue(s) is "empty":
 - pass token to next in list
 - else if queue(s) is "small":
 - **1** disseminate Δ packets pipelined with period δ
 - pass token to next in list
 - else if queue(s) is "big":
 - move s to front of list
 - while queue(s) is "big": disseminate Δ packets pipelined with period δ
 - pass token to next in list

[1] Chlebus-Kowalski-Rokicki 2009

MMB Protocol Analysis

Lemma

There exists a MMB protocol that achieves a throughput ratio of at least

$$\lim_{t\to\infty}\frac{1}{1+\delta}-\frac{2\Delta n^2}{t}$$

Corollary

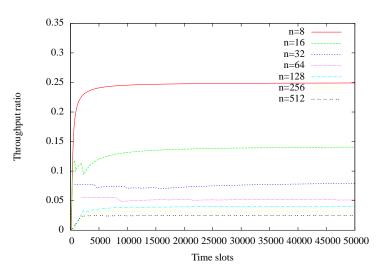
For any given network of n nodes, diameter D, affectance degradation distance α , and $K = \max_{s \in S} K(T_{\min}(s), s)$, there exists a MMB protocol such that the throughput ratio converges to

$$\frac{1}{O(\alpha K \log n)}$$

For comparison, in Radio Networks:

- using WEB protocol [1] for propagation converges to $1/O(\log^2 n)$
- $O(1/\log n)$ for any single-instance MMB algorithm [2]
- [1] Chlamtac-Weinstein 1987
- [2] Ghaffari-Haeupler-Khabbazian 2013

Simulations



Thank you