Social Network Games

Krzysztof R. Apt

CWI and University of Amsterdam
Based on joint works with
Evangelos Markakis
and
Sunil Simon

Social Networks

- Facebook,
- Hyves,
- LinkedIn,
- Nasza Klasa,
- ...

But also ...

An area with links to

- sociology (spread of patterns of social behaviour)
- economics (effects of advertising, emergence of 'bubbles' in financial markets, ...),
- epidemiology (epidemics),
- computer science (complexity analysis),
- mathematics (graph theory).

Example

(From D. Easley and J. Kleinberg, 2010).

Collaboration of mathematicians centered on Paul Erdős. Drawing by Ron Graham.

The model

Social network ([Apt, Markakis '11, '14])

- Weighted directed graph: $G=(V, \rightarrow, w)$, where
V : a finite set of agents, $w_{i j} \in(0,1]:$ weight of the edge $i \rightarrow j$.
- Products: A finite set of products \mathcal{P}.
- Product assignment: $P: V \rightarrow 2^{\mathcal{P}} \backslash\{\emptyset\}$; assigns to each agent a non-empty set of products.
- Threshold function: $\theta(i, t) \in(0,1]$, for each agent i and product $t \in P(i)$.
- Neighbours of node $i:\{j \in V \mid j \rightarrow i\}$.
- Source nodes: Agents with no neighbours.

The associated strategic game

Interaction between agents: Each agent i can adopt a product from the set $P(i)$ or choose not to adopt any product $\left(t_{0}\right)$.

Social network games

- Players: Agents in the network.
- Strategies: Set of strategies for player i is $P(i) \cup\left\{t_{0}\right\}$.
- Payoff: Fix c>0.

Given a joint strategy s and an agent i,

The associated strategic game

Interaction between agents: Each agent i can adopt a product from the set $P(i)$ or choose not to adopt any product $\left(t_{0}\right)$.

Social network games

- Players: Agents in the network.
- Strategies: Set of strategies for player i is $P(i) \cup\left\{t_{0}\right\}$.
- Payoff: Fix c>0.

Given a joint strategy s and an agent i,

$$
\text { if } i \in \operatorname{source}(\mathcal{S}), \quad p_{i}(s)= \begin{cases}0 & \text { if } s_{i}=t_{0} \\ c & \text { if } s_{i} \in P(i)\end{cases}
$$

The associated strategic game

 Interaction between agents: Each agent i can adopt a product from the set $P(i)$ or choose not to adopt any product $\left(t_{0}\right)$.
Social network games

- Players: Agents in the network.
- Strategies: Set of strategies for player i is $P(i) \cup\left\{t_{0}\right\}$.
- Payoff: Fix $c>0$.

Given a joint strategy s and an agent i,
vif $i \in \operatorname{source}(\mathcal{S}), \quad p_{i}(s)= \begin{cases}0 & \text { if } s_{i}=t_{0} \\ c & \text { if } s_{i} \in P(i)\end{cases}$

- if $i \notin \operatorname{source}(\mathcal{S}), \quad p_{i}(s)=$
$\begin{cases}0 & \text { if } s_{i}=t_{0} \\ \sum_{j \in \mathcal{N}_{i}^{t}(s)} w_{j i}-\theta(i, t) & \text { if } s_{i}=t, \text { for some } t \in P(i)\end{cases}$
$\mathcal{N}_{i}^{t}(s)$: the set of neighbours of i who adopted in s the product t.

Example

Threshold is 0.3 for all the players.

- $\mathcal{P}=\{\bullet, \bullet, \bullet\}$

Example

Payoff:

- $p_{4}(s)=p_{5}(s)=p_{6}(s)=c$

Threshold is 0.3 for all the players.

- $\mathcal{P}=\{\bullet, \bullet, \bullet\}$

Example

Payoff:

- $p_{4}(s)=p_{5}(s)=p_{6}(s)=c$
- $p_{1}(s)=0.4-0.3=0.1$

Threshold is 0.3 for all the players.

- $\mathcal{P}=\{\bullet, \bullet, \bullet\}$

Example

Payoff:

- $p_{4}(s)=p_{5}(s)=p_{6}(s)=c$
- $p_{1}(s)=0.4-0.3=0.1$
- $p_{2}(s)=0.5-0.3=0.2$
- $p_{3}(s)=0.4-0.3=0.1$

Threshold is 0.3 for all the players.

- $\mathcal{P}=\{\bullet, \bullet \bullet \bullet\}$

Social network games

Properties

- Graphical game: The payoff for each player depends only on the choices made by his neighbours.
- Join the crowd property: The payoff of each player weakly increases if more players choose the same strategy.

Does Nash equilibrium always exist?

Threshold is 0.3 for all the players.

Does Nash equilibrium always exist?

Observation: No player has the incentive to choose t_{0}.

- Source nodes can ensure a payoff of $c>0$.
- Each player on the cycle can ensure a payoff of at least 0.1.

Threshold is 0.3 for all the players.

Does Nash equilibrium always exist?

$$
(\underline{\bullet}, \bullet, \bullet)
$$

Observation: No player has the incentive to choose t_{0}.

- Source nodes can ensure a payoff of $c>0$.
- Each player on the cycle can ensure a payoff of at least 0.1.

Threshold is 0.3 for all the players.

Does Nash equilibrium always exist?

Threshold is 0.3 for all the players.

Best response dynamics

Observation: No player has the incentive to choose t_{0}.

- Source nodes can ensure a payoff of $c>0$.
- Each player on the cycle can ensure a payoff of at least 0.1.
Reason: Players keep switching between the products.

Nash equilibrium

Question: Given a social network S, what is the complexity of deciding whether $G(S)$ has a Nash equilibrium?

Nash equilibrium

Question: Given a social network S, what is the complexity of deciding whether $G(S)$ has a Nash equilibrium?

Answer: NP-complete.

Nash equilibrium

Question: Given a social network S, what is the complexity of deciding whether $G(S)$ has a Nash equilibrium?

Answer: NP-complete.

The PARTITION problem

Input: n positive rational numbers $\left(a_{1}, \ldots, a_{n}\right)$ such that $\sum_{i} a_{i}=1$.
Question: Is there a set $S \subseteq\{1,2, \ldots, n\}$ such that

$$
\sum_{i \in S} a_{i}=\sum_{i \notin S} a_{i}=\frac{1}{2}
$$

Hardness

Reduction: Given an instance of the PARTITION problem $P=\left(a_{1}, \ldots, a_{n}\right)$, construct a network $\mathcal{S}(P)$ such that there is a solution to P iff there is a Nash equilibrium in $\mathcal{S}(P)$.

Hardness

Reduction: Given an instance of the PARTITION problem $P=\left(a_{1}, \ldots, a_{n}\right)$, construct a network $\mathcal{S}(P)$ such that there is a solution to P iff there is a Nash equilibrium in $\mathcal{S}(P)$.

Hardness

Reduction: Given an instance of the PARTITION problem $P=\left(a_{1}, \ldots, a_{n}\right)$, construct a network $\mathcal{S}(P)$ such that there is a solution to P iff there is a Nash equilibrium in $\mathcal{S}(P)$.

Hardness

Reduction: Given an instance of the PARTITION problem $P=\left(a_{1}, \ldots, a_{n}\right)$, construct a network $\mathcal{S}(P)$ such that there is a solution to P iff there is a Nash equilibrium in $\mathcal{S}(P)$.

Hardness

Reduction: Given an instance of the PARTITION problem $P=\left(a_{1}, \ldots, a_{n}\right)$, construct a network $\mathcal{S}(P)$ such that there is a solution to P iff there is a Nash equilibrium in $\mathcal{S}(P)$.

Hardness

Reduction: Given an instance of the PARTITION problem $P=\left(a_{1}, \ldots, a_{n}\right)$, construct a network $\mathcal{S}(P)$ such that there is a solution to P iff there is a Nash equilibrium in $\mathcal{S}(P)$.

$$
\theta(4)=\theta\left(4^{\prime}\right)=\frac{1}{2} .
$$

Nash equilibrium

Recall the network with no Nash equilibrium:

Theorem. If there are at most two products, then a Nash equilibrium always exists and can be computed in polynomial time.

Nash equilibrium

Properties of the underlying graph:

Nash equilibrium

Properties of the underlying graph:

- Contains a cycle.

Nash equilibrium

Properties of the underlying graph:

- Contains a cycle.
- Contains source nodes.

Nash equilibrium

Properties of the underlying graph:

- Contains a cycle.
- Contains source nodes.

Question: Does Nash equilibrium always exist in social networks when the underlying graph

- is acyclic?
- has no source nodes?

Non-trivial Nash equilibria

- A Nash equilibrium s is non-trivial if there is at least one player i such that $s_{i} \neq t_{0}$.
- Theorem. In a DAG, a non-trivial Nash equilibrium always exists.
- Theorem. Assume the graph has no source nodes. There is an algorithm with a running time $\mathcal{O}\left(|\mathcal{P}| \cdot n^{3}\right)$ that determines whether a non-trivial Nash equilibrium exists.

Finite Improvement Property

Fix a game.

- Profitable deviation: a pair $\left(s, s^{\prime}\right)$ such that $s^{\prime}=\left(s_{i}^{\prime}, s_{-i}\right)$ for some s_{i}^{\prime} and $p_{i}\left(s^{\prime}\right)>p_{i}(s)$.
- Improvement path: a maximal sequence of profitable deviations.
- A game has the FIP if all improvement paths are finite.

Summary of results

	arbitrary graphs	DAG	simple cycle	no source nodes
NE	NP-complete	always exists	always exists	always exists
Non-trivial NE	NP-complete	always exists	$\mathcal{O}(\|\mathcal{P}\| \cdot n)$	$\mathcal{O}\left(\|\mathcal{P}\| \cdot n^{3}\right)$
Determined NE	NP-complete	NP-complete	$\mathcal{O}(\|\mathcal{P}\| \cdot n)$	NP-complete

Summary of results

	arbitrary graphs	DAG	simple cycle	no source
nodes				

Summary of results

	arbitrary graphs	DAG	simple cycle	no source nodes
NE	NP-complete	always exists	always exists	always exists
Non-trivial NE	NP-complete	always exists	$\mathcal{O}(\|\mathcal{P}\| \cdot n)$	$\mathcal{O}\left(\|\mathcal{P}\| \cdot n^{3}\right)$
Determined NE	NP-complete	NP-complete	$\mathcal{O}(\|\mathcal{P}\| \cdot n)$	NP-complete
FIP	co-NP-hard	yes	$?$	co-NP-hard
FBRP	co-NP-hard	yes	$\mathcal{O}(\|\mathcal{P}\| \cdot n)$	co-NP-hard
Uniform FIP	co-NP-hard	yes	yes	co-NP-hard
Weakly acyclic	co-NP-hard	yes	yes	co-NP-hard

FBRP: all improvement paths, in which only best responses are used, are finite. Uniform FIP: all improvement paths that respect a scheduler are finite. Weakly acyclic: from every joint strategy there is a finite improvement path that starts at it.

Paradox of Choice (B. Schwartz, 2005)

[Gut Feelings, G. Gigerenzer, 2008]
The more options one has, the more possibilities for experiencing conflict arise, and the more difficult it becomes to compare the options. There is a point where more options, products, and choices hurt both seller and consumer.

Paradox 1

Adding a product to a social network can trigger a sequence of changes that will lead the agents from one Nash equilibrium to a new one that is worse for everybody.

Example

- Cost θ is constant, $0<\theta<0.1$.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is a Nash equilibrium. The payoff to each player is $0.1-\theta>0$.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is not a Nash equilibrium.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is not a Nash equilibrium.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is not a Nash equilibrium.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is not a Nash equilibrium.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is not a Nash equilibrium.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is not a Nash equilibrium.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is not a Nash equilibrium.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is not a Nash equilibrium.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is not a Nash equilibrium.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is not a Nash equilibrium.

Example

- Cost θ is constant, $0<\theta<0.1$.
- This is a Nash equilibrium. The payoff to each player is 0 .

Paradox 2

Removing a product from a social network can result in a sequence of changes that will lead the agents from one Nash equilibrium to a new one that is better for everybody.

Example

- Cost θ is product independent.
- The weight of each edge is w, where $w>\theta$.
- Note Each node has two incoming edges.

Example

- Cost θ is product independent.
- The weight of each edge is w, where $w>\theta$.
- This is a Nash equilibrium. The payoff to each player is $w-\theta$.

Example

- Cost θ is product independent.
- The weight of each edge is w, where $w>\theta$.
- This is not a legal joint strategy.

Example

- Cost θ is product independent.
- The weight of each edge is w, where $w>\theta$.
- This is not a Nash equilibrium.

Example

- Cost θ is product independent.
- The weight of each edge is w, where $w>\theta$.
- This is not a Nash equilibrium.

Example

- Cost θ is product independent.
- The weight of each edge is w, where $w>\theta$.
- This is not a Nash equilibrium.

Example

- Cost θ is product independent.
- The weight of each edge is w, where $w>\theta$.
- This is a Nash equilibrium. The payoff to each player is $2 w-\theta$.

Final remarks

- Needed: Identify other conditions that guarantee that these paradoxes cannot arise.
- Open problem:

Does a social network exist that exhibits paradox 1 for every triggered sequence of changes?

- Alternative approach:

Obligatory product selection (no t_{0}). In this setup the above problem has an affirmative answer.

References

- K.R. Apt and E. Markakis, Social Networks with Competing Products. Fundamenta Informaticae. 2014.
- S. Simon and K.R. Apt, Social Network Games. Journal of Logic and Computation. To appear.
- K.R. Apt, E. Markakis and S. Simon, Paradoxes in Social Networks with Multiple Products. Submitted.
- K.R. Apt and S. Simon, Social Network Games with Obligatory Product Selection. Proc. 4th International Symposium on Games, Automata, Logics and Formal Verification (Gandalf 2013). EPTCS.

Thank you

