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Consensus in distributed systems

In distributed systems:

a collection of n independent entities (or nodes)

entities interact / exchange messages to coordinate their actions
interactions must satisfy some constraints, e.g.:

synchronous vs. asynchronous,
not every entity can interact with all others (network structure),
how often two specific entities may interact, etc.

A central problem in distributed systems:

Definition (Consensus)

Let each node have an input value. A solution for the consensus problem
must guarantee:

Termination: every node eventually decides on some value,

Agreement: all nodes decide on the same value,

Validity: the decided value must be the input of some node.
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Consensus in distributed systems

Many applications of the consensus problem, e.g.:

leader election

distributed ranking [Jung et al., ISIT, 2012]

The majority problem:

a natural special case of the consensus problem

the agreed value must be the input value of the majority of the nodes

two or more different input values (or colors)
[Angluin et al., Distributed Computing, 2008]
[Becchetti et al., SPAA, 2014]

many applications, e.g.:

voting [Kearns et al., WINE, 2008]
epidemiology and interacting particle systems
[Liggett, Interacting Particle Systems, 2004]
social networks [Mizrachi, MSc thesis, Ben-Gurion University, 2013]

[Mossel et al., Auton. Agents & Multi-Agent Systems, 2014]
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Computing the majority

To solve the majority problem in a network:

we need assumptions on the model of computation

In the “traditional” settings: “strong” models

central authority, unlimited memory, full information about the network
efficiently computable
the goal is to minimize the number of comparisons
[Saks et al., Combinatorica, 1991]
[De Marco et al., Combinatorics, Probability and Computing, 2006]

In “modern” settings: “weaker” models

no central authority, limited memory, partial or no information
a node does not know:

its own identity
the identities of the nodes it can interact with (i.e. its neighbors)
when it will interact with other nodes

one way to model such systems is using population protocols
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Population protocols

Population V of |V | = n entities (i.e. nodes)

A population protocol A consists of:

finite input and output alphabets X and Y

a finite set of states Q

an input function I : X → Q

an output function O : Q → Y

a transition function δ : Q ×Q → Q ×Q

The result of an interaction between nodes u and v depends only
on their states qu and qv

A population protocol is symmetric if interactions have no “direction”:

δ(qu, qv ) = (q′u, q′v ) ⇐⇒ δ(qv , qu) = (q′v , q′u),

for every pair of states qu, qv ∈ Q

Otherwise, for every interaction, one of the nodes is the initiator
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Population protocols
Schedulers

Terminology:

The interaction order is chosen by an adversary (scheduler)

To allow meaningful computations: scheduler must be fair
we do not allow avoidance of a possible step forever
for any two state configurations C1, C2, where C2 is reachable from C1:
if C1 occurs infinitely often ⇒ C2 also occurs infinitely often

The interaction graph G = (V , E ) of the population:
the entities of the population are arranged on the nodes V

only neighboring nodes are allowed to interact

The probabilistic scheduler:
a special case of a fair scheduler

directed case: every directed edge (u, v) is chosen uniformly at random
(u is the initiator)
undirected case: replace edge {u, v} by directed edges (u, v), (v , u)
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Population protocols
Computation

Terminology:

Definition

Given the probabilistic scheduler, a population protocol A computes
a function g with error probability ε if for every input configuration C0

the population eventually reaches a configuration C such that with
probability at least 1− ε:

(a) all nodes have output g(C0)

(b) this remains true for any configuration reachable from C

Definition

A population protocol A stably computes a function g if for every fair
scheduler the population eventually reaches a configuration C that satisfies
both (a) and (b).
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Population protocols for computing the majority

Computing the majority in distributed settings has been mainly
studied in homogeneous populations (i.e. the complete graph)

The following simple 3-state population protocol was introduced in
[Angluin et al., Distributed Computing, 2008]

initially nodes have 2 possible states: r and g

during the execution, a node can have 3 possible states: r, g, and b

interactions are dictated by the probabilistic scheduler

the 3× 3 transition table can be summarized as follows:
node u of state r “hits” node v of state g ⇒ v comes to state b
node u of state g “hits” node v of state r ⇒ v comes to state b
node u of state r / g “hits” node v of state b ⇒ v comes to state r / g

Example:
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Population protocols for computing the majority

In the protocol of [Angluin et al., Distributed Computing, 2008]:

if the underlying interaction graph is complete (with n vertices)
and the initial difference between majority and minority is ω(

√
n log n)

then it converges to the initial majority in O(n log n) time w.h.p.

A similar protocol for the complete graph has been studied in
[Perron et al., INFOCOM, 2009]

In the case of arbitrary interaction graphs:

how fast can such protocols terminate?

do they compute the correct initial majority with high probability?

is it possible to compute majority with probability 1?

how many states (per node) do we need to compute majority?

how large should be the difference between initial majority / minority?
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Our results

First result: the ambassador protocol

Theorem

There exists a 4-state protocol, the ambassador protocol,
which stably computes the initial majority value:

for any interaction graph G ,
for any initial difference between majority / minority,
with probability 1.

There does not exist any 3-state protocol with these properties

Theorem

Under the probabilistic scheduler:

The 4-state ambassador protocol runs in expected polynomial time.

If the interaction graph G is complete and the initial difference is
Θ(n), then the protocol terminates in expected time O(n log n).
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Our results

Second result: a detailed analysis of the protocol of Angluin et al.
on an arbitrary interaction graph G (under the probabilistic scheduler)

Theorem

If the types r and g are distributed uniformly at random on the vertices
of G , the protocol converges to the initial majority with probability ≥ 1

2 .

Theorem

There exists an infinite family {Gn}n∈N of interaction graphs where the
protocol fails with high probability, even when the initial difference
between majority / minority is n−Θ(logn).

Theorem

There exists an infinite family {G ′n}n∈N of interaction graphs where the
protocol terminates in exponential expected time.
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The 4-state ambassador protocol

The symmetric 4-state ambassador protocol:

every node always has a color (r or g)

every node may (or may not) have an extra token (called ambassador)

⇒ every node has 4 possible states: (r,0), (r,1), (g,0), (g,1)

having an ambassador, a node can promote its color to a neighbor

initially every node is at state (r,1) or (g,1), i.e. with an ambassador

When two nodes u and v interact, then:
if both u and v have an ambassador:

if u and v have the same color, nothing happens
if u and v have different color, they both lose their ambassadors

if u has an ambassador and v does not:
the ambassador of u moves to v
v takes the color of u

if neither u nor v have an ambassador:
nothing happens
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The 4-state ambassador protocol

Example:
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The 4-state ambassador protocol

Example:

For any fair scheduler:

the ambassadors of the minority will eventually all die out

the remaining ambassadors will eventually color all the graph
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The 4-state ambassador protocol

Example:

For any fair scheduler:

the ambassadors of the minority will eventually all die out

the remaining ambassadors will eventually color all the graph

Theorem (correctness)

The 4-state ambassador protocol stably computes the initial majority:

for any interaction graph G ,
for any initial difference between majority / minority,
with probability 1.
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Lower bound on the number of states

Theorem

Let P be a population protocol that stably computes the majority function
in an arbitrary 2-type population and for an arbitrary interaction graph.
Then P needs at least 4 states.

Proof (sketch, by contradiction).

Assume P has 3 states r, g, b

For at least one of the two input colors (say r):

starting with a majority of r,
eventually all nodes have the same state q ∈ {r,g,b}

We construct two instances C1, C2 on the same population such that:

C1 and C2 have different initial majorities
there exists a fair scheduler that brings both C1 and C2 to the same
intermediate configuration
contradiction
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The 4-state ambassador protocol

For the probabilistic scheduler:

Theorem

If ∆ > 0 is the initial difference between majority / minority, the 4-state
ambassador protocol converges in expected:

O(n6) time for an arbitrary connected graph G

O
(
ln n
∆ n2

)
time for the complete graph Kn.

Proof based on:

random walks on graphs and coupon collector arguments

Therefore:

in the complete graph Kn, when ∆ = ω(
√

n log n), the ambassador
protocol converges in expected O(n

√
n) time

a bit slower than O(n log n) of the 3-state protocol of [Angluin et al.,
Distributed Computing, 2008]

but always correct
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The protocol of Angluin et al. in arbitrary graphs

Assuming the probabilistic scheduler:

What can we achieve with a 3-state protocol?

it cannot stably compute majority on arbitrary graphs
but it might compute majority with large enough probability.

The 3-state protocol of Angluin et al.:

Converges fast to the correct initial majority whp in the clique
(for sufficiently large majority).

What about arbitrary graphs?

Theorem

If the types r and g are distributed uniformly at random on the vertices
of G , the protocol converges to the initial majority with probability ≥ 1

2 .

Proof based on Hall’s Marriage Theorem.
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The protocol of Angluin et al. in arbitrary graphs

The model of Angluin et al. can be abstracted by a Markov chain M:

M has states (Rt , Gt), where Rt (resp. Gt) is the set of nodes of type
r (resp. g) at time t
symmetries of the interaction graph can reduce the size of the state
space; e.g. in the clique Kn, the set of states is just (|Rt |, |Gt |).
The analysis of M on arbitrary graphs is complicated; for the clique
exact formulae can be found [Perron et al., INFOCOM, 2009].

We define 2 stochastic processes that filter the information from M:

Definition (The Blank Process W)

W(t)
def
= 〈# nodes of type b at time t〉
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The protocol of Angluin et al. in arbitrary graphs

Definition (The Contest Process C)

We recursively pair the state changing transitions in M as follows:

each transition that increases the blanks (g → r or r → g)
with the earliest subsequent transition that decreases the blanks
(g → b or r → b) and is not paired yet.

define τ(t)
def
= 〈# pairs until time t〉

C is defined over time scale τ

Initially set C(0) = |R0|, and recursively:

C(τ) =


C(τ − 1) + 1, if τ-th pair is (r→ g, r→ b)
C(τ − 1)− 1, if τ-th pair is (g→ r, g→ b) and
C(τ − 1), otherwise.
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The protocol of Angluin et al. in arbitrary graphs

The Contest Process keeps track of the battle between g and r

C(τ) counts the number of:

nodes of type r and
nodes of type b that were previously of type r
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The protocol of Angluin et al. in arbitrary graphs

The Contest Process keeps track of the battle between g and r

C(τ) counts the number of:

nodes of type r and
nodes of type b that were previously of type r

Example:

t τ = τ(t) W(t) C(τ) transitions

0 0 0 2 -

1 0 1 2 g → r
2 0 1 2 b → r
3 1 0 1 g → b
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The protocol of Angluin et al. in arbitrary graphs

W and C are dependent and not Markov chains

C is defined on different time scale than W and M
W decreases ⇒ pair of transitions in M ⇒ transition step in C

Under assumptions on |Rt | and |Gt |, we can dominate both W and C
in the clique by appropriate birth-death processes

Combining the above, we can prove that under the probabilistic
scheduler the protocol of Angluin et al. in the clique is robust:

Theorem

For every constant ε < 1/7 in the complete graph Kn:

if we initially have at most εn type r nodes

then the probability that the minority r wins is exponentially small in n.
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The protocol of Angluin et al. in arbitrary graphs
Convergence to minority whp

Theorem

There exists an infinite family {Gn}n∈N of interaction graphs where the
protocol fails with high probability, even when the initial difference
between majority / minority is n−Θ(logn).

Proof (sketch).

Let n1 ≥ 100 ln n and consider the lollipop graph:

line Ln−n1 with leftmost vertex u connected to vertex v of clique Kn1
Ln−n1 ∪ {v} is of type r and Kn1\{v} is of type g

v u

Kn1
Ln−n1
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The protocol of Angluin et al. in arbitrary graphs
Convergence to minority whp (cntd.)

Proof sketch. (cntd.)

Define similarly Blank and Contest processes W ′ and C ′ on Kn1

These are slightly different than before, because of the edge {u, v}.
Using W ′ and C ′ we first show that:

Pr(all Kn1 becomes r) = e−Ω(n1)

Second, we prove that in a line Ln−n1 with a single vertex of type g
and the rest of type r:

Pr(all Ln−n1 becomes g) = Ω
(

1

n− n1

)
The above imply that, for n1 ≥ 100 ln n, the minority g in the clique
Kn1 has enough attempts to take over the whole graph.
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The protocol of Angluin et al. in arbitrary graphs
Exponential expected convergence time

Theorem

There exists an infinite family {G ′n}n∈N of interaction graphs where the
protocol terminates in exponential expected time.

We consider the family of graphs consisting of a clique Kn1 of type g
and a clique Kn2 of type r, connected with an edge.

v

Kn1

u

Kn2

The proof builds upon the proof ideas for the robustness of the
protocol in the clique.
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The protocol of Angluin et al. in arbitrary graphs
Exponential expected convergence time

v

Kn1

u

Kn2

Main idea:
if vertex v becomes r:

Kn1 needs expected exponential time in n1 to become of type r

if vertex u becomes g:

Kn2 needs expected exponential time in n2 to become of type g
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u
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Summary and Open Problems

A 4-state symmetric (ambassador) protocol that always computes the
majority

this is not possible with 3 states per node

A detailed analysis of the majority protocol of Angluin et al. on
arbitrary graphs

although it converges correctly and fast whp in the clique,
this is not the case for arbitrary graphs

Open problems:

Analogue of the ambassador protocol for k-type majority
on arbitrary graphs ?

A “good” 3-state protocol for majority on arbitrary graphs
(under the probabilistic scheduler) ?

Other computations than majority ?
average value
median
...
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Thank you for your attention!
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