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Computational Fluid Dynamics based simulation of trimmed flight is now becoming

possible but requires the incorporation of a controller which commands control surface

deflections. This paper describes efforts to realise this for a generic fighter configuration in

longitudinal motions. The incorporation of the flight mechanics equations and controller

into the CFD solver loop and the treatment of the mesh, which must move with both the

control surface deformations and the rigid motion of the aircraft, are described. This work

is a contribution to a wider effort towards the simulation of aeroelastic and flight stability

in regions where nonlinear aerodynamics, and hence potentially CFD, can play a key role.

Results demonstrating the coupled solution are presented.

I. Introduction

The basis of conventional flight mechanics models is a coefficient based description of the aerodynamics,
with the coefficients (stability derivatives) being obtained from experiment. The control inputs enter the
model as aerodynamic data from tables.

The flight simulation therefore depends to a large extent on the quality of the aerodynamic model. There
is potential for some rather complex aerodynamic phenomena which incorporate significant hysteresis which
will not be described by derivative based aerodynamic models (see for example1). In principle computa-
tional fluid dynamics can produce the aerodynamic inputs but can also, through a coupling with rigid body
motion equations, simulate a rigid motion response directly. Although not likely to be a tool for routine
flight mechanics studies, such a simulation could be very powerful for investigating and understanding po-
tential problem conditions. In addition aeroelastic stability studies of flexible aircraft based on CFD should
incorporate the influence of the flight control system.

The current paper describes work to put in place a CFD based simulation of flight mechanics. The
intention here is not to investigate complex flight mechanics behaviour, but to describe the development
of a tool which can be used for this purpose. Issues addressed are the coupling of the CFD and the
flight mechanics models, incorporation of flight control for longitudinally unstable configurations and grid
treatment for moving control surfaces on a rigidly moving aircraft.

II. Flow solver

All simulations described were performed using the University of Glasgow PMB (Parallel Multi-Block)
RANS solver. A full discussion of the code and turbulence models implemented is given in reference.2 PMB
uses a cell centred finite volume technique to solve the Euler and RANS equations. The diffusive terms
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are discretised using a central differencing scheme, and the convective terms using Osher’s approximate
Riemann solver with MUSCL interpolation. Steady flow calculations proceed in two parts, initially running
an explicit scheme, then switching to an implicit scheme to obtain faster convergence. The linear system
arising at each implicit step is solved using a Krylov subspace method. The preconditioning is based on a
Block Incomplete Lower-Upper BILU(0) factorisation which is decoupled across blocks. For time-accurate
simulations, Jameson’s pseudo-time (dual-time stepping) formulation is applied,3 with the steady state solver
used to calculate the flow steady states on each physical time step.

III. Longitudinal Flight Mechanics Models

Two flight mechanics models have been implemented, a 1 degree-of-freedom free-to-pitch model about
the body pitch axis, and a 3 degree-of-freedom free-to-pitch model and translate in the longitudinal plane.

A. Free-to-pitch model

The non-dimensional one degree-of-freedom pitch model is given by

θ̈∗c∗
2

r

U∗
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∞
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r

J∗

zz
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(1)

where θ̈ is the non-dimensional pitch acceleration, ρ∗
∞

is the freestream air density, c∗r is the root chord of
the wing, J∗

zz is the moment of inertia around the body z-axis, and CMz
is the pitching moment around the

body z-axis. In the coordinate system employed by the PMB flow solver, Jzz is the moment of inertia about
the pitch axis which points spanwards in the body fixed coordinate system.

In the current work the pitching moment coefficient is defined as

Cm =
CMz

ρ∞U2
∞
c3r

(2)

The one degree-of-freedom model was coupled to the PMB solver by evaluating the flight mechanics
model in the pseudo time stepping loop of the dual time stepping scheme of Jameson.3 In this way, the flight
mechanics model converges with the flow solution minimising sequencing errors. Clearly the only variable
driving the pitching motion is the pitching moment coefficient which is updated at each pseudo time step.
The most recent update for the pitching moment Cm is used in the evaluation of the pitch angle and pitch
rate at the following pseudo time step.

The implicit integration scheme is given by

qn+1,k = qn +
∆τ

2
(Rn+1,k + Rn) (3)

where
q = (θτ , θ)

T (4)

and

R = (
ρ∞c

5
r

Jzz

Cm, θτ )T . (5)

Note that for 1 DOF pitching motion θ = α. With the updated position of the wing θ, the grid is rigidly
rotated and the grid speeds are computed with second order finite differences.

B. Longitudinal 3 degree of Freedom Model

The dimensional translational equations of motion (for a flat Earth inertial reference frame) is

U̇∗

B =
1

M∗
F∗

B − ω∗

B ×U∗

B + Bg∗

I (6)

where
U̇B = (u̇B, v̇B , 0)

T
(7)
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and g∗

I is as defined by

g∗

I = (0, g∗, 0)T . (12)

T is the engine thrust which acts in the direction of the body axis and through the aircraft CG. An offset
from the CG could be applied by adding an additional term to the pitching moment (thrust induced pitching
moment). Expanding (6) yields the following equations for the aircraft acceleration in body axes (ẇ∗

B=0)

u̇∗B = θ̇∗v∗B + g∗ sin θ +
F ∗

x + T ∗

M∗
(13)

and

v̇∗B = −θ̇∗u∗B + g∗ cos θ +
F ∗

y

M∗
(14)

Non-dimensionalising equations (13) and (14) yields

u̇B = θ̇vB + g sin θ +
ρ∗
∞
c∗

3
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and
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where g is defined as

g =
g∗c∗r
U∗

2

∞

(17)

Equations (15) and (16) give the aircraft accelerations in body axes. In order to take into account the
translational acceleration of the aircraft, the freestream velocity vector UI remains constant and the grid is
moved relative to the freestream velocity. After integration of equations (15) and (16), to perform the mesh
movement the velocities must be defined in the inertial (or freestream) frame of reference. This is obtained
via the transformation

UI = B−1UB (18)

Integrating equation (18) yields updated centre of gravity (CG) locations. It should be noted that the
longitudinal 3 DOF equations are loosely coupled, in that they are solved sequentially (u-equation, then
v-equation, then θ̇ equation) for each pseudo timestep. With the new CG locations and pitch attitude, the
grid is rigidly translated and rotated accordingly, and the grid speeds (which simulate the acceleration of
the aircraft) are computed using second order finite differences. The integration procedure is as described
for the 1-degree of freedom model.
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IV. Controlling the free-to-pitch motion

A. Mesh Treatment

The control decisions are felt by the aerodynamic simulation through deflections of the control surfaces. This
presents the problem of first specifying the deformed aircraft shape and secondly passing this deformation
to the volume grid. The volume grid also needs to be moved according to the rigid body motion (in pitch in
this case) of the aircraft.

The second issue is dealt with through the method described in reference6 which uses transfinite inter-
polation (TFI) to distribute applied surface grid deflections to the interior volume grid. Denote the volume
grid locations as x and the surface grid locations as xs, prefix these with δ to indicate the change from the
initial values and use a subscript 0 to indicate initial values, b to denote a frame of reference fixed to the
aircraft and i to indicate the inertial frame used for the CFD calculations. Blending functions are used to
give a relationship resulting from TFI for the volume grid deflections of the form

δxb = T (δxs,b). (19)

The new grid locations are then written as

xb = x0,b + δxb. (20)

The grid locations in the interial frame are then obtained by applying rotation matrices which in the current
case, for motion in pitch only, leads to

xi = Pxb (21)

where

P =


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

cosΘ −sinΘ 0

sinΘ cosΘ 0

0 0 1






. (22)

(23)

The remaining problem is to specify the surface grid deformations δxs,b. There are several considerations
for the choice of method. First, the geometry of the aircraft must be respected which means that an accurate
surface definition, preferably from a CAD model, should be used when defining the surface grid. Secondly,
since we are using deforming multiblock grids, the topology must remain fixed if regeneration of the topology
itself, with an associated interpolation between grids of the CFD solution, is to be avoided. This means that
part span control surfaces, not used here, are blended into the wing at their ends. Thirdly, the surface
grid must be easily available over the range of possible control surfaces in an easy and computationally
inexpensive manner.

These considerations have motivated the use of mode shapes to specify control surface deflections.7 The
basic idea is as follows. A mode shape is specified for each control surface separately. A surface grid is
generated at the extreme deflection of the control surface, with the CAD model of the aircraft being used
to specify the new geometry. Since the block topology is fixed this is a straighforward task once the initial
(undeformed) CFD grid is generated. For example, using the ICEM CFD grid generator the appropriate block
faces need to be reprojected onto the new CAD description. Modifying the CAD model is also reasonably
straightforward since typical control surface motions involve rotations of existing components. Denote the
surface grid on the geometry with the deployed control surface as x

deployed
s,b . The process is illustrated in

figure 1 for a generic aircraft test case with an all moving elevator. First, the elevator is rotated to the
maximum angle ψmax (in this case 10 degrees) in the CAD model and then the surface grid is reprojected
onto this new CAD model. The mode shape then represents the difference between the deflected and initial
surface grids, φ = x

deployed
s,b − xs,b,0.

The surface grid deflections at an intermediate control surface angle ψc is now approximated by scaling
the mode shapes by the value ψc/ψmax, i.e. δxs,b = (ψc/ψmax)φ. This approach allows good surface grid
quality to be retained, at least if control surface deflections are restricted between the extremes used to
generate the surface grids which define the mode shape, and generates the required surface grids at the cost
of generating a modified surface grid in the grid generation package.
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Figure 1. Generation of Control Surface Mode Shapes.
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Problems with this approach might arise if a control input goes outside the range used to define the mode
shape, or if too large a deflection is used to define the mode shape. These cases can be catered for by using
multiple mode shapes to define the influence of one control surface and summing their influence.

Finally, once the volume grid has been regenerated grid speeds are calculated using second order finite
differences. It is however possible to calculate the grid speeds analytically by adding in the contributions
from the TFI and the rigid rotations. This has been left to future work.

B. Trimming algorithm

The trimming algorithm described in the following sections is designed to make use of the aerodynamic
updates from the dual time-stepping scheme employed in the flow solver. Standard control methods usu-
ally make use of non-linear tabular data from wind tunnel/flight tests. Here, by taking advantage of the
aerodynamic updates, no a priori knowledge of aerodynamics is required by the trimmer. The trimmer
operates within a feedback loop within the dual time-stepping scheme, where updated elevator deflections
and pitching moments are fed back to the trimmer to estimate new elevator deflections.

1. Manoeuvres

In order to perform a manoeuvre to change the orientation of the aircraft (for a climb manoeuvre as an
example), a desired change in orientation ∆θ can be entered as an input to the trimmer. Thus the orientation
of the fuselage relative to the inertial frame of reference can be altered. A generic variation in pitch attitude
is given by

θ(τ) = θ0 +
∆θ

2

(

1 − cos
πτ

T

)

(24)

Manoeuvring the aircraft in this way prevents overshoots and allows the aircraft to manoeuvre effectively.
Differentiating equation (24) yields a sinusoidal variation in pitch rate, thus midway through the manoeuvre
the pitch rate is at its highest, decreasing as the desired orientation is approached. Given the desired change
in pitch attitude (∆θ), as well as the period over which the change should occur (T), the desired pitch rate
of the wing (θ̇reqd) is given by

θ̇reqd =
π∆θ

2T
sin
(πτ

T

)

(25)

To estimate the elevator angle required to perform such a manoeuvre, we first calculate the pitching
moment that will be required to perform the manoeuvre. We can explicitly calculate this pitching moment
by rearranging the integration scheme given by equation (3). Rearranging gives the explicit equation

CMz
=

J∗

zz

ρ∗
∞
c∗5

r

(

2

∆τ
(θ̇reqd − θ̇n) −

ρ∗
∞
c∗

5

r

J∗

zz

Cn
Mz

)

. (26)

Entering the desired pitch rate θ̇reqd into equation (26), we get the pitching moment required to perform
the manoeuvre. Although a sinusoidal variation in pitch rate is assumed, any pitch rate history can be
applied. In equation (26) CMz

is the pitching moment required to accelerate the aircraft, Cn
Mz

is the

pitching moment from the previous time step, θ̇reqd is the required pitch rate calculated from the aircraft

deceleration rate, and θ̇n is the pitch rate from the previous time step.
Given the pitching moment required to perform a desired manoeuvre we must now estimate the elevator

deflection which will give the required pitching moment. This is done iteratively. At the start of each
time step, the elevator is perturbed a small amount which starts the method. Based on the results of this
perturbation a new elevator angle is estimated by assuming the gradient

∂CMz

∂δE
to be equal to that obtained

from the previous iteration. This yields the iteration scheme

Cn+1,k
Mz

− Cn
Mz

δn+1,k
E − δn

E

=
Cn+1,k+1

Mz
− Cn+1,k

Mz

δn+1,k+1

E − δn+1,k
E

. (27)

During a time step we are trying to drive the pitching moment to the required value, and so in equation
(27) we replace Cn+1,k+1

Mz
with the required pitching moment CMz

, and solve for δn+1,k+1

E . This iteration

procedure continues throughout the time step. In equation (27) δn+1,k+1

E is the updated elevator deflection,
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δn+1,k
E is the elevator deflection from the previous pseudo iteration, δn

E is the elevator deflection from the

previous timestep, Cn+1,k
Mz

is the pitching moment from the previous pseudo iteration, and Cn
Mz

is the
pitching moment from the previous timestep. The convergence depends on the accuracy of the updated
pitching moment Cn+1,k

Mz
, which is taken as the pitching moment associated with the elevator deflection

δn+1,k
E . To provide accurate updates for the pitching moment associated with an elevator deflection δn+1,k

E ,

the elevator position is only updated every second pseudo iteration, allowing sufficient convergence of Cn+1,k
Mz

to provide an accurate elevator deflection at the end of the time step. It should be noted that the elevator
deflection is constrained by a user specified maximum elevator rate. Since the aerodynamic derivative

∂CMz

∂δE

is expected to vary linearly over one time step, the described method should converge well.
Example convergence histories of the pitching moment and elevator deflection are given for a case limited

by the elevator deflection rate (figure 2), and for a case where the elevator reaches its desired location (figure
3) within the time step. In the limited case the required pitching moment cannot be reached within one time
step. As such the elevator angle is limited to its maximum deflection for that time step. In the unlimited
case the method described converges well.

Pseudo iteration
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Figure 2. Convergence of elevator angle and pitching moment coefficient for one time step - Limited by δE

2. Hold angle of attack

Either before or after a manoeuvre we may wish to hold the current angle of attack. For a given flight
condition (elevators fixed), as the simulation proceeds the aircraft will either pitch up or down based on
the pitching moment around the centre of gravity (which is dependent of the angle of attack of the aircraft
and the elevator incidence relative to the fuselage axis). If the aircraft is pitching we wish to set the pitch
rate to zero. When the trimmer is turned on the algorithm begins by estimating the elevator deflection
required to bring the pitch rate to zero. This requires a non-zero pitching moment in the opposite sense to
the moment driving the pitching motion. When eventually both the pitch rate and moment are zero, the
aircraft is trimmed.

Realistically we do not wish to bring the aircraft from its current pitch rate to zero within one trim step,
therefore we must define an aircraft acceleration, θ̈ac to constrain the motion. We therefore calculate the
pitch rate desired at the end of the time step within the constraint of the acceleration rate of the aircraft.
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Pseudo iteration
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Figure 3. Convergence of elevator angle and pitching moment coefficient for one time step

The pitch rate at the end of the time step is calculated using

θ̇reqd = θ̇n − Sign(θ̇n)θ̈ac∆τ (28)

Using the pitch acceleration θ̈ac as a limiter, we calculate the pitching moment needed to give the required
pitch rate θ̇reqd using equation (26). From equation (26) it can be seen that the pitching moment required
to accelerate the aircraft is simply a restoring moment to counter the current pitching moment, as well as
an additional amount required to counter the angular momentum. In a similar manner to the manoeuvring
case we require to estimate the elevator deflection to give the required pitching moment. Again this is done
iteratively as in equation (27). However, rather than linearising from the previous timestep we linearise from
the point when the trimmer is turned on to prevent divisions by zero (as would be the case if we used the
iteration scheme given by equation (27)). The iteration scheme employed is given by

Cn+1,k
Mz

− C0
Mz

δn+1,k
E − δ0E

=
Cn+1,k+1

Mz
− Cn+1,k

Mz

δn+1,k+1

E − δn+1,k
E

. (29)

where δ0E and C0
Mz

are the elevator deflection and pitching moment at the beginning of the trimming
procedure.

V. Test cases

The test case for the current simulations is the Standard Dynamics Model (SDM).5 The SDM has been
used in the investigation of wing and fin buffet associated with vortex breakdown at high incidence.5 The
model is a generic fighter aircraft configuration (based on the F-16) which consists of a cylindrical fuselage
section, a leading edge extension (for the generation of vortical flow), wings with sharp leading edges, elevators
(all moving in the current simulations), a vertical fin, canopy, and a cone section at the rear of the fuselage.
The cone replaces the sting which was present in experiments and is necessary as we are conducting Euler
simulations and no jet condition is applied. Given the similarity of the model to the F-16, the inertial data
for an F-164 was used. The centre of gravity was located at 2.2cr from the nose of the aircraft to make
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the configuration unstable for the one degree of freedom calculations. Clearly changing the centre of gravity
location will change the moments of inertia of the aircraft. However in the current work only indicative
inertia values are required. Table 1 shows the initial test conditions used in all the described simulations.

Mach number 0.8

Angle of attack 3o

ρ∞ 1.23kgm−3

cr 3.45m

xcg 2.25cr

Jzz 75651Nm2

Aircraft pitch acceleration 45os−2

Max elevator pitch rate 60os−1

Table 1. Flow conditions

Since we are dealing with longitudinal motion, only half of the aircraft was modelled with a symmetry
condition applied at the centreplane. The grid which is of an “O” topology around the streamwise direction,
consists of 32 blocks with approximately 410,000 grid points.

Figure 4. Surface mesh

VI. One degree of Freedom Results

A. Steady state calculation

Before commencing simulations of the free response of the SDM, a steady state calculation was performed.
The flow conditions (as specified in table 1) were a freestream Mach number of 0.8 and an incidence of 3o.
The elevators were fixed in position at 0o relative to the fuselage axis. The lift coefficient obtained was 0.084,
which after re-dimensionalising and assuming steady level flight, yields a lift force balancing an aircraft mass
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of approximately 9100Kg (the mass of the F-16 is approximately 9300Kg4). With the elevators fixed at 0o

there is a slight nose-up pitching moment making the configuration unstable (Cmα
is positive).

CP

0.40
0.28
0.17
0.05

-0.07
-0.18
-0.30
-0.42
-0.53
-0.65
-0.77
-0.88
-1.00

Figure 5. Surface pressure distribution over SDM at 3o incidence and M=0.8

The surface pressure distribution over the model is shown in figure 5. Since the Euler equations are
solved the flow acceleration over sharp changes in geometry (near the leading edge of the wing and at the
beginning of the cone at the end of the fuselage) can be seen as dark blue regions. With the grid density
used and the low incidence, there is little or no indication of a vortex forming at the leading edge extension.

B. Free-to-pitch simulation - No control

Before applying any form of control to the model, a free-to-pitch simulation was performed. The initial
conditions were 2o angle of attack at zero pitch rate, with the elevators fixed at 0o relative to the fuselage
axis. As previously mentioned with this elevator setting the model is unstable with a nose up pitching
moment. Figure 6 shows the angle of attack and pitch rate histories, and figure 7 shows the lift and pitching
moment coefficient histories. Clearly with no control the aircraft pitches up under the influence of the nose-
up pitching moment, with the pitch rate increasing as the pitching moment increases (with incidence). As
the incidence increases the lift coefficient also increases, reaching a maximum around τ=75.

C. Free-to-pitch simulation - Hold incidence

Given the results of the simulation for the free-to-pitch motion without control, a simulation was conducted
to immediately trim the aircraft and hold the angle of attack. The initial angle of attack of the aircraft
is 4o and the initial elevator setting is 0o relative to the fuselage axis. After one time step (to allow the
aircraft pitch rate to become non-zero) the trimmer was turned on. As described earlier the trimmer is
limited by the pitch rate of the elevator, and as such time is required for the elevator to bring the aircraft
pitch rate to zero. This is due to the fact that the initial elevator setting of 0o is relatively far from the
elevator setting required to trim the aircraft. Examination of the trim histories during the initial time steps
showed convergence histories (during the pseudo iterations for a physical time step) of Cm and δE similar to
those shown in figure 2. In other words at the beginning of the trimming procedure, the time taken for the
elevator to reach its required position prevents the aircraft trimming immediately, and as such the incidence
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Figure 6. Free to pitch motion without control - Angle of attack and pitch rate histories
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Figure 7. Free to pitch motion without control - Lift and pitching moment coefficient histories
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of the aircraft increases slightly under the influence of the initial nose up pitching moment. Eventually the
elevator is able to reach the required settings and the trim histories resemble those shown in figure 3.

τ
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α τ
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-0.005
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0.015
α CFD
ατ CFD
α LINEAR
ατ LINEAR

Figure 8. Free to pitch motion with trimmer holding angle of attack - Angle of attack and pitch rate histories

The angle of attack and pitch rate histories for the hold incidence case are shown in figure 8, where
results from simulations using a full time accurate CFD model and a linear model of the aerodynamics,4 are
shown. The pitching moment and lift coefficient histories are shown in figure 9 (where only results from the
full CFD model are shown), and the elevator deflection histories are shown in figure 10 (for both the full
CFD and linear models). As previously discussed, it can be seen in figure 8 that the aircraft angle of attack
increases slightly while the trimmer brings the aircraft under control. If we examine the pitch rate histories
from the full CFD model, it is clear that the positive pitch rate initially increases due to the nose up pitching
moment whilst the elevator moves in to place. As the elevator gets close to the trim position the positive
pitch rate decreases, becoming negative at around τ = 6. As the trimmer continues to adjust the pitch rate
becomes positive again, with the oscillations quickly damping out leaving a zero pitch rate for all τ > 12.

Examining the lift and pitching moment coefficients in figure 9 it is clear that despite the aircraft pitch
rate being near zero, there are still minor adjustments being made by the trimmer (though it is clear that the
amplitude of these adjustments decreases with time). However this may be expected given that the aircraft
is unstable and any small perturbations will grow with time unless the trimmer acts upon them.

It is clear from the elevator deflection histories in figure 10, that as the trimmer is turned on and the
aircraft begins to pitch up, the trimmer applies an increasing angle of attack of the elevator to counter the
nose up moment and pitch rate. The linear variation in elevator angle with time during the period 0 ≤ τ ≤ 4,
is due to the elevator pitching at its maximum rate to reach the required trim position as quickly as possible.
It should be noted that the rate at which the elevator pitches up is equal to its maximum allowable pitch
rate of 60o/s. It can be seen in figure 9 that as increasing elevator is applied, the pitching moment quickly
reduces and begins to decelerate the aircraft pitch rate at around τ = 3. Similary as the pitch rate begins
to slow the elevator angle is reduced until approximately τ = 9. Comparing the elevator histories from both
the full CFD and linear models, it can be seen that the elevator deflections are of a lower magnitude in the
full CFD simulations in comparison to the linear model solutions. This reduces the damping in the linear
model solutions and may be due to the inaccuracy of using constant stability derivatives in the linear model.
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Figure 9. Free to pitch motion with trimmer holding angle of attack - Lift and pitching moment coefficient histories
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Figure 10. Free to pitch motion with trimmer holding angle of attack - Elevator deflection histories
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D. Free-to-pitch simulation - Prescribed manoeuvre

Given that with control surface deflections we can hold the angle of attack of the aircraft, we now perform a
simulation of a specified manoeuvre. In this case we initially want to hold the angle of attack as in the case
of section C. However, once the aircraft is trimmed we wish to increase the angle of attack by 7o in a time
of τ = 250. As described earlier, a sinusoidal variation in pitch rate is assumed throughout the duration of
the manoeuvre. This prevents overshoots in the angle of attack.
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Figure 11. Free to pitch motion with trimmer manoeuvring aircraft - Angle of attack and pitch rate histories

The angle of attack and pitch rate histories for the manoeuvring case are shown in figure 11 (where only
results from the full CFD model are shown). It should be noted that this simulation was also conducted
using the linear model and that the pitch angle and rate curves lie on top of the curves presented in figure
11. The pitching moment and lift coefficient histories are shown in figure 12 for the full CFD model, and the
elevator deflection histories from both the full CFD and linear models are shown in figure 13. Considering
first the pitch angle and rate histories, it is clear that the commanded sinusoidal variation in pitch rate is
obtained, and that the aircraft incidence has increased by 7o as requested. The aircraft initially trims well
at 4o angle of attack, and after a time of τ = 60, the aircraft performs a pitch up manoeuvre to increase the
incidence by 7o.

As in the case where the aircraft is held at a constant angle of attack, there are slight fluctuations in the
pitching moment and lift coefficient curves throughout the hold, manoeuvre, and final hold (see figure 12).
Again this is due to an oscillation in the elevator motion as seen in figure 13. During the hold incidence
portions of the load and moment histories there are decaying oscillations as in section C, with slightly larger
oscillations in pitching moment during the duration of the manoeuvre. This is due to the fact that the
trimmer is forcing the unstable aircraft to follow the commanded sinusoidal variation in pitch rate, thus the
elevator has to constantly make corrections.

Finally we compare the elevator histories from the full CFD and linear models given in figure 13. Both
the full CFD and linear models exhibit minor fluctuations in elevator angle throughout the histories. Clearly
there is a discrepancy between the full CFD model and linear solutions with respect to the elevator histories.
As previously discussed this is most likely due to errors associated with the constant coefficient linear model.
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Figure 12. Free to pitch motion with trimmer manoeuvring aircraft - Lift and pitching moment coefficient histories
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Figure 13. Free to pitch motion with trimmer manoeuvring aircraft - Elevator deflection histories
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Mach number 0.5

Angle of attack 3o

Elevator angle −1.93o

Aircraft Mass 3143Kg

Root chord 3.45m

Jzz 75651Kg−m2

Air density 1.23Kg
m3

Table 2. Trim conditions

E. Three degree of Freedom Results

An additional test case was the controlled longitudinal 3 DOF flight of the SDM geometry. In order to trim
the aircraft, the trimmer was applied to eliminate pitch rates as previously described. To trim the aircraft in
the translational sense, a low engine thrust was applied (acting through the cg) with the mass of the aircraft
being set such that no translational accelerations were present. The trim conditions obtained are as follows

Recall that the wing and tail of the SDM have a flat upper and lower surface, therefore the lift predicted
is low. Also the Euler equations are used thus the drag is small (theoretically the drag would be zero in
the absence of numerical effects). Figure 14 shows the angle of attack and pitch angle histories of the SDM
after an elevator doublet of ±2o. Also shown is the response of the F-16 to the same doublet elevator input
for comparison purposes. It should be stressed that the F-16 result is given to compare trends only, since
differences in parameters such as cg location, lift curve slope etc., will effect the response and damping (of
both the short period and phugoid modes) of the motion. As the aircraft pitches down under the influence
of the positive elevator deflection, the lift of the aircraft decreases and the aircraft decends. This results
in a change in the angle of attack of the aircraft (as well as pitch angle), which due to the additional
downward velocity component is less than the change in pitch angle (θ). As the elevator is deflected in the
opposite sense, the aircraft nose lifts up and lift is restored, increasing as angle of attack increases. Again
due to the fact that as the SDM increases angle of attack and lift becomes greater than weight, the aircraft
climbs, increasing the angle of attack further than the pitch angle, due to the additional velocity components
associated with climbing flight. As the elevator is set back to the trim condition the aircraft reponds with a
damped short period and phugoid mode as it settles back to the trim condition. From figure 14 it is clear
that the short period mode of the SDM is slightly less damped than the F-16, as is the phugoid mode which
is apparent in the gradual change in θ which will oscillate eventually becoming zero at some later time.
However, it is clear that the coupled CFD / 3 DOF model performs well.

VII. Conclusions

The calculation of trimmed longitudinal flight of an unstable generic fighter configuration has been demon-
strated, using coupling between CFD and one and three degree-of-freedom equations. A simple controller
has been implemented to allow a prescribed motion to be followed (including trimmed flight). Whilst the
flight mechanics and control are relatively simple the demonstration has achieved the following

• the various grid motions necessary (including applied elevator motions and rigid body rotations) have
been achieved in a straightforward fashion which can be generalised to more demanding cases

• the coupling between the flight mechanics and aerodynamic equations, and incorporating a controller,
has been built into the pseudo time loop successfully

• the generalisation to include flexibility effects is straightforward and will allow time domain simulations
for flight and aeroelastic stability

• the cost of the calculations is not prohibitive for isolated flight manoeuvres

Future work and questions are
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Figure 14. Three degree of freedom response to an elevator doublet.

• the generation of a full derivative based flight mechanics model for evaluation of the CFD generated
motions

• the simulation of motions in regions where the derivative type model is likely to be unsatisfactory, such
as when vortical flows introduce hysteresis
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