

(sugoi@liv.ac.uk)

Helicopter Study Weekend

Another Rotary Wing: The Wind Turbine Blade

Sugoi Gómez-Iradi

3rd Year PhD student, Engineering Department of Liverpool University Thesis Supervisor: G. Barakos & K. Badcock Sponsored by Scener

FUNDACIÓN CENER CIEMAT

Background

- The design of large-diameter wind turbines is outside the knowledge envelope of wind turbine manufacturers (Larger diameters wind turbines)
 - Flow compressibility
 - Stalled flow
 - Blade deflection
- CFD base WT design
- The objectives are to take into account compressibility effects, aeroelastic influence and to analyze the computation of HAWT

From EWEA: http://ec.europa.eu/research/energy/nn/ nn_pu/renews/005/article_4133_en.htm

Outline

- Description of the CFD solver
- Validation for Wind Turbine flows
 - 2D: S809 aerofoil
 - 3D: Wind tunnel
- Parked and ramping calculations overview
- Steady state calculations and comparisons with unsteady
- Study of geometry and its effect
- Conclusions and future steps

CFD Solver: Summary of Features

- PDE solver (WMB)
- Implicit time marching
- Osher's scheme for convective fluxes
- MUSCL scheme for formally 3rd order accuracy
- Central differences for viscous fluxes
- Multi-block capability
- Paralleled using the SPMD paradigm (just requires MPI)
- Flow Physics: Euler, RANS, URANS, DES
- Aeroelastic analysis based on modal representation of structures
- Moving and deforming grids
- Documentation (Validation database)
- Used by academics and engineers

Validation: S809 aerofoil

1.2

0.8

Re=1e+6

Grid size:

- 19,154 WMB
- 19,215 elsA

Unsteady calculations above 10° angle of attack

Turbulence model k-ω SST

A. Le Pape and J. Lecanu, 3D Navier-Stokes Computations of a Stall-Regulated Wind Turbine, Wind Energy, 7(4):309-324, 2004. DOI:10.1002/we.129.

Data for CFD Validation

- NASA Ames wind tunnel 24.4 m x 36.6 m test section
- Two bladed upwind wind turbine, with S809 aerofoil after the 25% of the span
- Test instrumentation
 - 22 Pressure transducers each at 5 span-wise sections
 - Wind tunnel dynamic, static and total pressures, density, temperature, velocity,...

Image taken from M.M. Hand et al. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns, T.R. NREL/TP-500-29955, NREL, December 2001.

CFD Results - GRID SIZE

- Different grid sizes were analyzed (from 1.3 mill. to 4.6 mill.)
 - The majority of the results were obtained for 3.4 million grid
- Different time steps were analyzed (from 0.5° to 2° in azimuth)

CFD Results - Far-Field Location

Parked and Ramping

7 m/s Wind: Working Conditions

10 m/s Wind: Stalled Flow

20 m/s Wind: Deep Stalled Flow

- Assumptions:
- Grid and CFD computation:
 - 6.4 mill. cells

5.5

4.5

3.5

2

2

1.5

0.5

0 -0.5

0

5

 $k-\omega$ turbulence model

Run number: S2000000

CFD Lab – Department of Engineering – The University of Liverpool

T. Sant, G. van Kuik and G.J.W. van Bussel, Estimating the Angle of Attack from Blade Pressure Measurements on the NREL Phase VI Rotor Using a Free Axial Conditions, Journal of Wind Energy, 9:549–577, 2006. DOI:10.1017/we.201

UNIVERSITY OF

VERPOOL

"Steady State" Calculations

The Burn House, Edzell, 28-30th March, 2008

CFD Lab – Department of Engineering – The University of Liverpool

CFD Results

CFD Results: Flow Visualization - ROOT

Case 1

Case 2

Case 3-4

CFD Results: Flow Visualization - TIP

Sliding Grids

Summary and Next Steps

CFD solver was validated for working conditions.

• Stalled flow needs further investigation

Blade geometry variations were studied and their sensitivity analyzed.

- Aspect ratio and adequate pitch are essential outputs as expected.
 - 5.4 % longer blade increases the thrust and torque in 10%.
 - 0.5° pitch angle differences affects more than 5 % in the total thrust.
- Tip and root sections have smaller role and can be neglected for first calculations.
 - Thrust and torque difference between rounded and flat tips less than 1%.

Next step will be using the sliding grid technique to analyze the effects of the tower, nacelle and the ground in the wind turbine aerodynamics.

