

(sugoi@liv.ac.uk)

3rd EAWE PhD SEMINAR CENER - IRUÑA

A CFD Method for Detailed Aerodynamic Analysis of HAWT

Sugoi Gómez-Iradi

3rd Year PhD student, Engineering Department of Liverpool University Thesis Supervisor: G. Barakos & K. Badcock Sponsored by **Cener**

Picture from EWEA:

Background

- The design of large-diameter wind turbines is outside the knowledge envelope of wind turbine manufacturers (Larger diameters wind turbines)
 - Flow compressibility
 - Stalled flow
 - Aerodynamic Noise
- CFD base WT design
- The objectives are to take into account compressibility effects, aeroelastic influence and to analyze the computation of full HAWT

Data for CFD Validation

- NASA Ames wind tunnel 24.4 m x 36.6 m test section
- Two bladed upwind wind turbine, with S809 aerofoil after the 25% of the span
- Test instrumentation (INPUT)
 - 22 Pressure taps each at 5 span-wise sections
 - Wind tunnel's dynamic, static and total pressures, density, temperature, velocity,...

December 2001.

Geometry and Blocking

R 0.982		S809		S809	0.074 R
				-·-·-}-·-	
а К	2	3 R	6 R	R	0.126 R
0.95	0.80	0.63	0.46	0.30	
				5 R	
3 degrees				24.855	degrees
(Pitch + Twist)				(Pitch +	Twist)

Case 4: Geometry used for validation

Multi-block topology

UNIVERSITY OF LIVERPOOL

- Different grid sizes were analyzed (from 1.3 mill. to 4.6 mill.)
 - The majority of the results were obtained for 3.4 million grid
- Effect of far-field location was analyzed
 - From 2 blade radii inflow, 4 R outflow and 4 R far-field
 - From 4 blade radii inflow, 8 R outflow and 8 R far-field
- Different time steps were analyzed (from 0.5° to 2° in azimuth)
- Validation against wind-tunnel data
- Sensitivity of CFD results due to the effect of blade geometry

Grid Convergence

- Different grid sizes were analyzed (from 1.3 mill. to 4.6 mill.)
 - The majority of the results were obtained for 3.4 million grid
- Effect of far-field location was analyzed
 - From 2 blade radii inflow, 4 R outflow and 4 R far-field
 - From 4 blade radii inflow, 8 R outflow and 8 R far-field
- Different time steps were analyzed (from 0.5° to 2° in azimuth)
- Validation against wind-tunnel data
- Sensitivity of CFD results due to the effect of blade geometry

Effect of Domain: Far-field

LIVERPOOL

- Different grid sizes were analyzed (from 1.3 mill. to 4.6 mill.)
 - The majority of the results were obtained for 3.4 million grid
- Effect of far-field location was analyzed
 - From 2 blade radii inflow, 4 R outflow and 4 R far-field
 - From 4 blade radii inflow, 8 R outflow and 8 R far-field
- Different time steps were analyzed (from 0.5° to 2° in azimuth)
- Validation against wind-tunnel data
- Sensitivity of CFD results due to the effect of blade geometry

Effect of Time Step Convergence

Variation in azimuth per time step.

- Different grid sizes were analyzed (from 1.3 mill. to 4.6 mill.)
 - The majority of the results were obtained for 3.4 million grid
- Effect of far-field location was analyzed
 - From 2 blade radii inflow, 4 R outflow and 4 R far-field
 - From 4 blade radii inflow, 8 R outflow and 8 R far-field
- Different time steps were analyzed (from 0.5° to 2° in azimuth)
- Validation against wind-tunnel data
- Sensitivity of CFD results due to the effect of blade geometry

7 m/s Wind: Working Conditions

- Assumptions:
 - No tower.
 - Steady and attached flow.
 - 3 full rotations.
- Grid and CFD computation:
 - 3.4 mill. cells.
 - κ-ω turbulence model

10 m/s Wind: Stalled Flow

- Assumptions:
 - No tower.
 - Attached and de-attached flow.
 - 3 full rotations.
- Grid and CFD computation:
 - 3.4 mill. cells.
 - κ-ω turbulence model

20 m/s Wind: Deep Stalled Flow

- Assumptions:
 - No tower.
 - De-attached flow.
 - 3 full rotations.
- Grid and CFD computation:
 - 6.4 mill. cells.
 - κ - ω turbulence model

Run number: S200000

- Different grid sizes were analyzed (from 1.3 mill. to 4.6 mill.)
 - The majority of the results were obtained for 3.4 million grid
- Effect of far-field location was analyzed
 - From 2 blade radii inflow, 4 R outflow and 4 R far-field
 - From 4 blade radii inflow, 8 R outflow and 8 R far-field
- Different time steps were analyzed (from 0.5° to 2° in azimuth)
- Validation against wind-tunnel data
- Sensitivity of CFD results due to the effect of blade geometry

Sensitivity of CFD Results

CFD Lab – Department of Engineering – The University of Liverpool

CFD Lab – Department of Engineering – The University of Liverpool

CFD Results: Flow Visualization

Turbulent Reynolds number isosurface colored with pressure levels

CFD Results: Flow Visualization

Turbulent Reynolds number isosurface colored with pressure levels

CFD Lab – Department of Engineering – The University of Liverpool

UNIVERSITY OF

VERPOOL

Summary and Next Steps

- CFD solver was validated for working conditions.
 - Stalled flow needs further investigation
- Blade geometry variations were studied and their sensitivity analyzed.
 - Aspect ratio and adequate pitch are essential outputs as expected.
 - Tip and root sections have smaller role and can be neglected for first calculations.
- Next step will be the implementation of sliding grid technique in order to analyze the effects of the tower, nacelle and the ground in the wind turbine aerodynamics.

