

Development of a CFD Method for Aerodynamic Analysis of Large Diameter Horizontal Axis wind turbines

S. Gomez-Iradi, G.N. Barakos and X. Munduate

2007 joint meeting of IEA Annex 11 and Annex 20 Risø National Laboratory Roskilde, Denmark, 14-15 June, 2007

FUNDACIÓN CENER CIEMAT

CFD Solver - Overview

Summary of Features - 1

- PDE solver
- Multi-block capability
- Parallerised using the SPMD paradigm
- Flow Physics: Inviscid, RANS, URANS, DES, LES
- Aeroelastic analysis based on modal representation of structures
- Moving and deforming grids
- Modular code with a uniform data structure based on the linked-list concept

Summary of Features - 2

- Control volume method
- Parallel Shared and Distributed memory
- Multi-block (complex geometry) structured grids
- Unsteady RANS Variety of turbulence models inc. LES/DES
- Implicit time marching
- Osher's and Roe's schemes for convective fluxes
- MUSCL scheme for formally 3rd order accuracy
- Central differences for viscous fluxes
- Krylov subspace linear solver with pre-conditioning
- Moving grids, sliding planes
- Aeroelastic analysis based on modal representation of structures
- Hover formulation, rotor trimming, blade actuation
- Modular code with a uniform data structure based on the linked-list concept
- Documentation
- Validation database
- Range of utilities for processing data, structural models etc.
- Used by academics and engineers

Requirements

- Minimal requirements
- ANSI C compiler
- MPI libraries for parallel computing
- Grid generation (ICEM CFD at present)
- Post-processing (Tecplot, Fieldview, Vigie, Paraview)
- . Any Unix flavour will do
- Optimum (low cost) performance on Beowulf clusters
- Ported to national computing centres, CSAR, HPCx, IAG

CFD Lab – Department of Engineering – The University of Liverpool

UNIVERSITY OF LIVERPOOL Multi-block topologies for rotor cases -**ICEMCFD**

2-4.5M grid points per blade, blade actuation requires special topologies

Add-on_s for TECPLOT

Probe Analyser - MATLAB

Acoust	tic Analyser	Rossiter Modes Calculator
/home/lupiter/slawson/SWall_nodoors/analyser_data/6k Hz_sampling	Default Values For: Experiment Computation	Free-stream Mach number 0.85
Lead Cp.dat Cp_mean0.dat	Input Files Pressure Data File probe_file Co-ord File probe_file Enthre Data File File No. Of Signals 10	Free-stream Velocity (m/s) 280.095 Characteristic Length (m) 0.508 Finter Number of Bossiter Modes 10
acoustic_p_data data_file density_data p_mean.dat o_mean.dat co-ords	No. Df Samples 449 Conversion Factors/Input Parameters	Calculate Mode Frequencies Calculate
pressure_data probe_file psd_K20.eps psd_K26.eps Entire Data	Conversion Factor - Time 2.00181367 Conversion Factor - Pressure 63698.9 Free-stream Mach Number 0.85	1 162.236 2 378.551
psd_K29.eps 3000 psd_rms.fig spectral.dat spectral2.dat Lead Model	Total Temperature (K) 309.3 Total Pressure (Pa) 101000 Characteristic Length (m) 0.508	3 594.866 4 811.181 - -
spi.dat spi2.dat u_data v_data w_data	Select Probes - All All	View Insert Tools Window Help ■ 124 ● ● ● ↓ □ □
windowed_psd_db_f250_f windowed_psd_db_f250_f windowed_psd_db_f250_f windowed_psd_db_f450_f1	Spectral Analyses Power Spectral Density Analyse Band Limiter Min Max	140
windowed_psd_db_f50_f2	Tone Selector Select Band Limited SPL Plot Cross Spectral Density Columnate	Image: 1000
Acoustical Analyses Plot All Pressure	Windowed Spectral Analyses	0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 Frequency (Hz) Frequency (Hz)
Calculate Statistical Properties	Plot Windowed Spectral Density Plot Plot Other Analyses	E 1000 E 1000
Statistical Analyses Probability Calculate	Surface Plot Plot Rossiter Modes Calculate Rossiter Modes Research	0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 Frequency (Hz) Frequency (Hz)
Cumulative Plot Auto-Correlation Calculate Cross-Correlation Calculate	Clean-up "probe" Files Locate Extract Variables from "probe" Files Extract	
		140 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1500 2500 500 1500 2500 1500 2500 1500 1500 2500 1
		300 3000 3000
		0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 Frequency (Hz)

Validation Database

- Distributed with the solver
- Contains public and restricted cases (sponsorspecific)
- Public cases are accessible via www
- Each case is selected to demonstrate and check a particular feature
- Experimental data are available for all cases
- Sample results are included

Partial List of Validation Cases

RAE2822 Case 9	Attached Flow
ONERA A Aerofoil	Separation under apg
Williams aerofoil	Multi-element sections
NACA0012 & AGARD CT2	Pitching aerofoils, inviscid flow
Bachalo-Johnson Bump	SBL interaction
Delery's Bump C	SBL interaction internal flow
2D cavity flow	Unsteady turbulent flow
Convected vortex	Vorticity confinement
AGARD 445.6 wing	Inviscid aeroelastic
ONERA M6 wing	Viscous turbulent flow over a wing
NACA wing - UNSI	3D dynamic stall
AGARD S-duct	Turbulent separated internal flow
65 and 70-degree delta wing	Vortical turbulent flow
ONERA Rotor 7A/7AD	Helicopter rotor flow
Glasgow BERP tip	Tip flow
NACA0015 oscillating wing	DS - tip flow
LABM low-Re DS cases	Transitional flow - dynamic stall

RAE 2822 Aerofoil

ICEMCFD grid files	Yes
PMB mesh file	Yes
Parameters files	Yes
Previous computational solutions	Yes
Tecplot layout and macros	Yes
Raw computational and experimental data	Yes
Bundled test case (all files)	Yes

Table 20: File downloads for the ONERA-A aerofoil 2D Wing test case

RAE 2822 airfoil as reported in reference [4] and corresponds to test case 6. The section can be seen if figure 14. The freestream flow conditions for this case can be seen in table 21

Initial Conditions	
Freestream Mach number	0.729
Reynolds Number	6.5e+6
Incidence	2.31°
Run information	
Grid Size	4,323 (quasi-2D mesh)
	actual mesh size is 8,646 and one cell deep
Modelling	Euler, Standard SA(2000), Standard $k - \omega(3000)$,
	and standard SST(3007)

Table 21: Summary of RAE Aerofoil 2822 test case conditions

Figure 14: RAE 2822 experimental wing section

Results

FUNDACIÓN CENER CIEMAT

Figure 15 shows a comparison of Cp measurements from the RAE aerofoil. It cam be seen that all the results compare well with the experimental data. Closer examination shows that Euler results capture the shock on the upper surface well although there is a peak in the Cp value

at the trailing edge (similar to the ONERA M6 results in figure 7 - remember that negative Cp values are plotted herel). On the whole the $k - \omega$ solution compares most favorably with experiment. The SA model does not capture the shock on the upper surface as well. NOTE: The 2D boundary condition is not very reliable. The flow variables across the 'z' direction differ greatly in some circumstances. It is therefore important to know where to extract 2D data from in terms of a slicing plane along the z plane. This was highlighted previously for the ONERA-A aerofoil and should be investigated for 2D cases.

Figure 15: Cp comparison for the RAE 2822 2D wing

Downloads

Table 22 lists the files available for download for the RAE 2D aerofoil test case. Individual files are available for speedy downloads or a bundled option is included containing all the files.

4.3 Williams Aerofoil

Background

The Williams multi-element aerofoil has been looked at for Euler flow. The freestream flow conditions for this case can be seen in table 23.

Documentation

- Organised as a set of Technical Notes
- . Important part of the CFD solver
- At present there are 14 technical notes covering various features of the code
- Information is included in the source code in the form of comments
- Under continuous development!

FUNDACIÓN CENER CIEMAT

CFD Lab – Department of Engineering – The University of Liverpool

3D DS validation - LABM (i)

Pitching motion, k = 0.048AoA=18 + 6 sin(wt) x/c = 0.4z/c = 0.5

Blade-Vortex Interaction

CFD – Validation - UH-60A Model Main Rotor Tests - Lorber

UH60A - Hover $M_T = 0.626$, 10.5° collective, 2.31° coning

FUNDACIÓN CENER CIEMAT

-2

-1.5

-0.5

0.5

0

Sponsors of our work

FUNDACIÓN CENER CIEMAT

HAWT - Multi-Block Topologies

Annex XX Data

- NASA Ames wind tunnel 24.4 m x 36.6 m test section
- Two bladed upwind wind turbine, with S809 aerofoil after the 25% of the span
- **Test instrumentation (Input)**
 - 22 Pressure taps each at 5 spanwise possitions
 - Accelerometers in both blades (edge & flap) and in the nacelle (yaw, fore-aft & pitch)
 - Strain gauges in both blades (root. edge & flap)
 - Wind tunnel's dynamic, static and total pressures density, temperature, velocity,...
 - Data files (Output)
 - Raw data & Averaged data (Azimuth & Cycle)
 - Azimuthal and raw average data were used

Case L (Parked and Pitching cases)

Investigation of the Blade Shape

First Results

 ∂n

 $\partial \tau_{ii}$

Steady and Unsteady States

Unsteady Navier-Stokes Equations:

Continuity equation

 $\frac{\partial \rho}{\partial t} + \frac{\partial \left(\rho u_i\right)}{\partial x_i} = 0$

 $\partial(\rho u_i) = \partial(\rho u_i u_i)$

Momentum Conservation

Energy equation

$$\frac{\partial \rho (\rho u_i)}{\partial t} + \frac{\partial (\rho u_i u_j)}{\partial x_j} = \rho f_i - \frac{\partial \rho}{\partial x_i} + \frac{\partial (\eta u_j)}{\partial x_j}$$
$$\frac{\partial \rho E}{\partial t} + \frac{\partial}{\partial x_j} \left[u_i \left(\rho E + p \right) \right] - \frac{\partial}{\partial x_j} \left(u_i \tau_{ij} - q_j \right) = 0$$

$$E = \rho \left[e + \frac{1}{2} u_i u_i \right] \quad \tau_{ij} = \mu \left[\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \delta_{ij} \frac{\partial u_k}{\partial x_k} \right]$$

FUNDACIÓN

CENER

Steady and Unsteady States

Steady Navier-Stokes Equations:

 $+\frac{\partial\left(\rho u_{i}\right)}{\partial r_{i}}=0$ Continuity Non-Inertial frame of reference equation $\frac{\partial \left(\rho u_{i} u_{j}\right)}{\partial x_{i}} = \rho f_{i} - \frac{\partial p}{\partial x_{i}} + \frac{\partial \tau_{ij}}{\partial x_{i}} - \rho \vec{\omega} \times \vec{u}_{i}$ Momentum $\partial\left(\rho u_{i}\right)$ Conservation $\frac{\partial \rho E}{\partial t} + \frac{\partial}{\partial x_i} \left[u_i \left(\rho E + p \right) \right] - \frac{\partial}{\partial x_j} \left(u_i \tau_{ij} - q_j \right) = 0$ Energy equation No temporal variation, so their derivate respect the time is equal to zero

Turbulence Modelling

κ-ω of Wilcox

$$\frac{\partial}{\partial t}\left(\rho k\right) + \frac{\partial}{\partial x_{j}}\left(\rho U_{j}k\right) = \frac{\partial}{\partial x_{j}}\left[\left(\mu + \frac{\mu_{t}}{\sigma_{k}}\right)\frac{\partial k}{\partial x_{j}}\right] + \rho\left(P - \beta^{*}\omega k\right)$$

$$\frac{\partial}{\partial t}(\rho\omega) + \frac{\partial}{\partial x_j}(\rho U_j\omega) = \frac{\partial}{\partial x_j}\left[\left(\mu + \frac{\mu_t}{\sigma_\omega}\right)\frac{\partial\omega}{\partial x_j}\right] + \rho\left(\frac{\alpha}{\nu_t}P - \frac{\beta}{\beta^*\omega^2}\right) + \rho S_l$$

D.C Wilcox, Simulation of Transition with a Two-Equation Turbulence Model, AIAA Journal, Vol. 32, No. 2, February 1994

Parameter	Value	Units	Source
Tunnel velocity	20.161	m/s	V275
Averaged Rotational speed	0	rpm	V217
Tunnel air density	1.2309	Kg/m ³	V277
Wind tunnel temperature	12.343	°C	V187
Tunnel static pressure	101,269.73	Pa	V279
Tunnel dynamic pressure	250.17	Pa	V276
Dynamic fluid viscosity	1.7655^{-5}	Pa s	calculated
Reynolds number	1,035,940	-	calculated
Mach number	0.0593	-	calculated

Parameter	Value	Units
Tunnel velocity	20.161	m/s
V_{tip}	0	m/s
λ	0	-
Reynolds number	1,035,940	-
chord	0.737	m
k	$1.1577 \mathrm{x} 10^{-4}$	-
M_{FS} (imposed)	0.15/0.20	-

Computation

FUNDACIÓN CENER CIEMAT

- . Grid Size: 2,416,584
- . Load Balance: 8 computers 0.2%
- Convegency: All in 2000 steps to 10⁻⁶
- . Mach number: 0.15 (1) & 0.20 (2)
- . Turbulence model: 3000 (2) & 3002 (1)

0

-1

-2

-5

-6

500

Residual (10^)

L2000ST0SD Case

			neter	Value	Units	Source
		Tunnel velocity		20.121	m/s	V275
		Averaged Rotational speed		0	rpm	V217
		Tunnel air density		1.2313	Kg/m ³	V277
		Wind tunnel temperature		12.256	°C	V187
\wedge	\mathbf{v}	Tunnel static pressure		101,271.89	Pa	V279
\sim		Tunnel dynamic pressure		249.25	Pa	V276
XT	90 degrees pitch	Pitch	ratio	0.68499	°/s	V161
Wind direction		Dynamic fluid viscosity		1.7652^{-5}	Pa s	calculated
		Reynolds	number	1,034,396	-	calculated
	60 degrees pitch	Mach n	lumber	0.0592	-	calculated
		Pa	arameter	Value	Units	
		Tunr	nel velocity	20.205	m/s	
(L3)	(03)		V _{tip}	0	m/s	
0 degre	es pitch		λ	0	-	
		Reyn	olds number	1,035,000	-	
Positive pitch when the LE changes towards the inflow			chord	0.737	m	
			k	$1.1577 \mathrm{x} 10^{-4}$	-	
		M_{FS}	; (imposed)	0.15	-	
scener 🕈						- ()
Centro nacional de energías renovable: FUNDACIÓN CENER CIEMAN	S					LABORATORY

L2000ST0SD Case

Computation

46.6 %

63.3 %

80 %

S0700000 Case – Steady Computation

Parameters	Value	Units	Source	
Tunnel velocity	7.017	m/s	V275	
Averaged Rotational speed	71.866	rpm	V217	
Tunnel air density	1.2458	Kg/m ³	V277	
Wind tunnel temperature	11.13	°C	V187	 Free stream 7 m/s. Rotational speed 72 rpm.
Tunnel static pressure	101,955	Pa	V279	
Tunnel dynamic pressure	30.678	Pa	V276	
Yaw angle	0.011	0	V204	0.2
Pitch angle	2.986	0	V173	
Dynamic fluid viscosity	1.7601^{-5}	Pa s	calculated	Ň ^o
Reynolds number	365,989	-	calculated	30%
Mach number	0.0206	-	calculated	-0.2 Incidence at 30 % 63.3 %
				-0.4 - Incidence at 63.3 %

S0700000 Case

Computation

- Grid Size: 4,552,304
- Load Balance: 33 computers 0.7 %

Mach number: 0.1 (1)

. Turbulence model: 3000 (1)

S0700000 Case – Steady Computation

S0700000 Case – Steady Computation

S0700000 Case

Integrated Loads

S0700000 Case

S200000 Case - Unsteady Computations High wind speed and stalled behaviour

Parameters	Value	Units	Source	
Tunnel velocity	20.131	m/s	V275	
Averaged Rotational speed	72.014	rpm	V217	0.6 E
Tunnel air density	1.2213	Kg/m ³	V277	0.5 Free stream 20 m/s. Rotational speed 72 rpm.
Wind tunnel temperature	14.48	°C	V187	0.4 E Balde pitch angle 3 (deg) at the tip.
Tunnel static pressure	101,205	Pa	V279	0.3
Tunnel dynamic pressure	247.455	Pa	V276	0.2
Yaw angle	0.141	0	V204	0.1
Pitch angle	2.995	0	V173	
Dynamic fluid viscosity	1.7601^{-5}	Pa s	calculated	-0.1
Reynolds number	1,029,480	-	calculated	-0.2 95 %
Mach number	0.0592	-	calculated	-0.3
				-0.4 Incidence at 30 %
				-0.5
				$-0.6 \begin{bmatrix} -0.6 \\ -0.6 \\ -0.4 \\ -0.2 \\ 0 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.6$

Reynolds number based in the maximum chord of the blade and the free stream velocity.

Y/c

S200000 Case (Unsteady State)

- Grid Size = 6,550,400 (524 blocks)
- Load Balance = 55 processors (97.7%)

S200000 Case - Steady Computation

Lower Surface (Pressure side) 0° azimuth angle

S200000 Case - Steady Computation

Upper Surface (Suction side) 0° azimuth angle

CP

1.0 0.2 -0.7

-1.5 -2.3 -3.1 -3.9

-4.8 -5.6

20m/s

1

20m/s

80 % Steady

80 % Unsteady

80 % EXP (US) 80 % EXP (LS)

ERROR (US)

ERROR (LS)

0.8

 λ_2

S200000 Case (Unsteady Flow Solution)

Future Steps

Sliding Meshes

Free Stream and Wind Tunnel Configurations

Free stream configuration 60 chords away from the wind turbine hub

33.1

chords

= 24.4m

Wind tunnel configuration Dimensions normalised with the maximum chord in the blade

1 Radius = 6.8 chords

INFLOW

Rotor, Nacelle and Tower Configurations

OUTFLOW

Sliding Grids

F	F	F
R	R	R
F	F	F

F = FixR = Rotating

Sliding Plane Method

- Formation of regular intermediate planes to avoid general cloud-tocloud interpolations
- Interpolate from fixed mesh to corresponding intermediate planes
- Interpolate from rotating mesh to corresponding intermediate planes
- Set halo-cells on both side of sliding plane using data on intermediate planes
- Intermediate plane data stored on each CPU
- Identification on small patches of regular planes

Questions?

States of the second state of the

a second

