Climate change: what role is the ocean playing?

Infra-red satellite data (white is cloud)

- 1. Surface and atmospheric temperature
- 2. Ocean change in heat stored data view

model experiments

3. Attribution? Link back to the atmosphere

Ric Williams, Vassil Roussenov (Liverpool), Susan Lozier, Susan Leadbetter (Duke University)

Surface warming trend from satellite data since 1979:

warming over most of globe
land warming faster than ocean

IPCC (2007)

How about the atmosphere?

Atmospheric warming trend from surface to 10 km since 1979.

IPCC (2007)

How about the ocean?

Why care about the ocean?

- upper 2.5 m of ocean holds as much heat as overlying atmosphere
- oceans have absorbed more than 80% of the heat added to the climate system (IPCC, 2007)

Ocean Heat Content Change

focus on N. Atlantic where high data coverage and a reported warming signal

Levitus et al. (2006) – rise in heat content of upper 3000m from 5 year running averages (10²² J)

- What is the spatial pattern of warming?
- How is the warming controlled?

data from NODC World Ocean Atlas (2001) and WOCE programme

- Overall heat gain equivalent to 0.4 +/- 0.05 W m⁻²
- Smaller than anthropogenic heat gain 1.6 W m⁻² (0.6 to 2.4 Wm⁻²)
- Not the same pattern as for surface & atmosphere T

M. Susan Lozier ¹, Susan Leadbetter ², Richard G. Williams ², Vassil Roussenov ², et al.

What is seen in single sections?

Changes 2005 - 1981: upper ocean warming slight mid-depth cooling

Changes 1981 - 1959: upper ocean cooling

Changes in upper 800 m explained by changes in winds linked to the NAO

Reversing pumping/ heave signals in upper 800m

- Ocean heat content change can be explained by the change in wind forcing linked to the North Atlantic Oscillation
- Possibly seeing decadal, natural variability masking any greenhouse forcing
- Or any anthropogenic change is being imprinted on the ocean with the *same pattern* as that of the North Atlantic Oscillation

- Greenhouse warming has been speculated as being achieved by increasing NAO+ states
- 18 global climate models assessed (Stephenson et al., 2006) 15 models simulate NAO pressure dipole 13 models predict increase in NAO+ with greenhouse forcing no models able to reproduce decadal trend over last 40 years
- Tropical variability might induce random NAO variations based on ensemble of climate models (Selton et al., 2004)
- Stronger stratosphere circulation linked to greenhouse forcing (Butchart et al., 2006), possibly more blocking & NAO- states

time lag for strong & weak vortex events for a pressure anomaly

Bladwin & Dunkerton (2001) Science

Conclusions

- Overall warming of the N. Atlantic
- 0.4+/- 0.05 W m⁻²
- Larger regional changes
- Any anthropogenic warming signal over the basin is not spatially uniform
- Either
 - decadal variability masks anthropogenic warming
 - warming signal is being *imprinted* via the pattern of NAO induced forcing

Whilst many other proxy signals of global warming, still need to be cautious on making attribution of changes.

