Climate forcing from carbon emissions

Philip Goodwin¹

Thanks to: Ric Williams¹, Mick Follows², Andy Ridgwell³, Stephanie Dutkiewicz²

¹University of Liverpool ²Massachusetts Institute of Technology, USA ³University of Bristol

Rising atmospheric carbon dioxide (P_{CO2}): Anthropogenic projection

The rise in partial pressure of atmospheric CO₂ (P_{CO2}) causes a radiative forcing (Δ F) which alters climate

For the same ΔI_{em} , eventually same steady state P_{CO2}

Air-sea model response to a ΔI_{em} = 2000GtC EMISSION: Same steady state

Carbon in the atmosphere and ocean

• A steady state is reached when:

$$P_{CO2} \propto [CO_2]_{ocean}$$

Emissions without ocean chemistry

Steady state when:

 $P_{CO2} \propto [CO_2]$

Therefore: $P_{CO2} \propto I_A \propto I_O$ Thus P_{CO2} proportional to total air-sea carbon:

 $P_{CO2} \propto (I_{O} + I_{A})$

And:

 $\delta P_{CO2} \propto \delta (I_o + I_A)$

Special case;
$$I_0 = V^{\text{ocean}} \mathbf{x}[CO_2]$$

We can make a ratio:

$$\frac{\delta P_{CO2}}{P_{CO2}} = \frac{\delta (I_A + I_O)}{I_A + I_O}$$

Change in air-sea carbon is emission, $\delta I_{em} = \delta (I_A + I_O)$: Therefore we can write: $\delta \ln |P_{CO2}| = \frac{\delta I_{em}}{I_A + I_O}$

Emissions with ocean chemistry

We must define a **new** inventory, I_B [Goodwin et al, 2007], that accounts for the dissociation of CO₂ in seawater

NO OCEAN CHEMISTRY : OCEAN CHEMISTRY

25

GCM experiment: how P_{CO2} links to carbon emission

SURFACE TEMPERATURE (^oC) MIT GCM

- Realistic circulation
- Realistic carbon cycling

CONVENTIONAL

5000

RESERVES

- Monthly mean forcing
- 1400 CURRENT **EMISSIONS** 1200 Add carbon to oCO2 (ppm) 1000 atmosphere MITGCM over ~500years 800 Integrate for 600 ~3000 years for steady state 400 Measure final 200 P_{CO2} 1000 2000 0 3000 4000 Carbon emission (GtC)

Testing the independent analytical equation

- Evaluate I_B at pre-industrial steady state for MITGCM
- integrate by assuming I_B remains constant [Goodwin et al, 2007]:

RELATING
$$P_{CO2}$$
 TO ΔF

How can CO₂ affect climate?

Add $CO_2 \longrightarrow Radiation$ imbalance, $\Delta F \longrightarrow Temperature increases, <math>\Delta T$

How do P_{CO2} levels affect ΔF (and so ΔT)?

$$\Delta F = \alpha \Delta \ln \left| P_{CO2} \right|$$

[Myhre et al, 1998]

Why logarithmic?

- CO₂ only absorbs at certain wavelengths
- Amount of those wavelengths in atmosphere reduces with increasing P_{CO2}
- An increase in P_{CO2} absorbs set fraction of what is left in the atmosphere

Therefore, write equations in log form.

RELATING EMISSIONS TO *A*F

How about Radiative forcing?

- The contribution of today's emissions to the climate from 1000 to 5000 years
- cf current forcing ~1.6Wm⁻² in transient state
- Possibly rising to ~7.5Wm⁻² lasting for thousands of years

Climate sensitivity of the past

Feedbacks from carbon cycles changes

Testing the independent analytical relations

Evaluate I_B at pre-industrial steady state and plot:

Feedbacks from carbon cycles changes

P_{CO2} over time for: i) 2000GtC emission,

ii) Change in soft tissue biology,

iii) Change in biological CaCO₃ production

Feedbacks from carbon cycles changes

Feedbacks combine in a non-linear way to alter P_{CO2}

$$\left(\Delta P_{CO2}\right)_{overall} \neq \left(\Delta P_{CO2}\right)_{EMISSION} + \left(\Delta P_{CO2}\right)_{SOFT-TISSUE} + \left(\Delta P_{CO2}\right)_{CaCO3}$$

Feedbacks from carbon cycles changes

Maths predicts:

$$\left(\frac{P_{CO2}}{P_0}\right)_{overall} = \left(\frac{P_{CO2}}{P_0}\right)_{EMISSION} \times \left(\frac{P_{CO2}}{P_0}\right)_{SOFT-TISSUE} \times \left(\frac{P_{CO2}}{P_0}\right)_{CaCO3}$$

Time (yrs)

Conclusions

Analytical link to numerical models: insight into non-linear feedbacks

$$\left(\frac{P_{CO2}}{P_0}\right)_{overall} = \left(\frac{P_{CO2}}{P_0}\right)_{EMISSION} \times \left(\frac{P_{CO2}}{P_0}\right)_{SOFT-TISSUE} \times \left(\frac{P_{CO2}}{P_0}\right)_{CaCO3}$$

Can compare future steady state forcing to present transient levels:

 Present climate sensitivity to carbon perturbations is large: 1.7Wm⁻² per 1000Gt C for thousands of years

Why should we assume I_B remains constant?

 I_B can be expressed in terms of a carbon 'buffer factor', *B*:

$$B = \frac{\delta[CO_2]}{[CO_2]} \frac{C_{DIC}}{\delta C_{DIC}}$$

By writing:

$$I_B = I_A + \frac{I_O}{B}$$

While *B* increases as P_{CO2} increases; they have opposing effects on the value of I_B . Causing: $\Delta I_B << I_B$

VALID UNTIL ~ 5000GtC

