Module Details

The information contained in this module specification was correct at the time of publication but may be subject to change, either during the session because of unforeseen circumstances, or following review of the module at the end of the session. Queries about the module should be directed to the member of staff with responsibility for the module.
Title ELEMENTS OF STELLAR DYNAMICS
Code PHYS484
Coordinator Dr W Maciejewski
Physics
W.Maciejewski@liverpool.ac.uk
Year CATS Level Semester CATS Value
Session 2020-21 Level 7 FHEQ First Semester 7.5

Aims

To show that there is more to gravity than Newton's law. This will provide the students with a basic understanding of the dynamics of systems containing millions and billions of point-like gravitating bodies: stars in stellar clusters and galaxies.


Learning Outcomes

(LO1) At the end of the module the student should have the ability to Show how dynamical processes shape the structure of galaxies and stellar clusters Describe the motion of stars in stellar systems Apply orbital analysis to stellar systems Demonstrate an understanding of the implications of the continuity equation

(S1) Problem solving skills


Syllabus

 

Introduction: C ollisionless and collisional stellar systems. Relaxation time.  Describing motion of 100 billion stars in a galaxy and 100 thousand stars in a Globular Cluster. Stellar orbits in gravitational potentials:  Newton's law applied to distributed mass. Newton's theorems for spherical systems. Potential of a disk. Circular velocity. Escape speed. Orbits in spherically symmetric, axisymmetric and elongated potentials. Keplerian potential. Integrals of the motion. Continuity equation applied to an ensemble of stars:  Phase-space. Distribution function as phase-space density. The collisionless Boltzmann equation. The Jeans theorem. Isothermal sphere. The Jeans equations. Velocity ellipsoid.  Formation and evolution of galaxies:  Dynamical friction. Violent   relaxation. Phase mixing. Encounters in collisional systems: Thermodynamics of collisional systems - negative heat capacity. Evolution of Globular Clusters.


Teaching and Learning Strategies

Teaching Method 1 - Lecture Description: traditional lecture Teaching Method 2 - Tutorial Description: in groups of 4-7 students, solving a list of problems provided beforehand


Teaching Schedule

  Lectures Seminars Tutorials Lab Practicals Fieldwork Placement Other TOTAL
Study Hours 13

  5

      18
Timetable (if known)              
Private Study 57
TOTAL HOURS 75

Assessment

EXAM Duration Timing
(Semester)
% of
final
mark
Resit/resubmission
opportunity
Penalty for late
submission
Notes
Assessment 2 There is a resit opportunity. Standard UoL penalty applies for late submission. This is an anonymous assessment. Assessment Schedule (When) :1  1.5 hour    75       
CONTINUOUS Duration Timing
(Semester)
% of
final
mark
Resit/resubmission
opportunity
Penalty for late
submission
Notes
Assessment 1 Standard UoL penalty applies for late submission. This is not an anonymous assessment. Assessment Schedule (When) :1  5 x 1 hours    25       

Recommended Texts

Reading lists are managed at readinglists.liverpool.ac.uk. Click here to access the reading lists for this module.